
Robust Similarity Measures for Mobile Object Trajectories

Michail Vlachos
UC Riverside

mvlachos@cs.ucr.edu

Dimitrios Gunopulos �

UC Riverside
dg@cs.ucr.edu

George Kollios y

Boston University
gkollios@cs.bu.edu

Abstract

We investigate techniques for similarity analysis of
spatio-temporal trajectories for mobile objects. Such kind
of data may contain a great amount of outliers, which de-
grades the performance of Euclidean and Time Warping
Distance. Therefore, here we propose the use of non-metric
distance functions based on the Longest Common Subse-
quence (LCSS), in conjunction with a sigmoidal matching
function. Finally, we compare these new methods to vari-
ous Lp Norms and also to Time Warping distance (for real
and synthetic data) and we present experimental results that
validate the accuracy and efficiency of our approach, espe-
cially under the strong presence of noise.

1 Introduction

In this work we investigate the problem of discovering
similar trajectories of mobile objects, especially under the
presence of noise. In the last few years, the advances in
mobile computing, sensor and GPS technology have made it
possible to collect large amounts of spatiotemporal data and
there is increasing interest to perform data analysis tasks
over this data [5]. For example, in mobile computing, users
equipped with mobile devices move in space and register
their location at different time instances to spatiotemporal
databases via wireless links. In environmental information
systems, tracking animals and weather conditions is very
common and large datasets can be created by storing loca-
tions of observed objects over time.

One very common application of such kind of data
would be the discovery of objects that moved in a similar
way or followed a certain motion pattern. Therefore, the
objective is to cluster different objects into similar groups,
or to classify an object based on a set of known examples.
The problem is hard, because the similarity model should
allow for imprecise matches. Moreover, a common obsta-
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cle that one confronts when analyzing these types of data,
is the strong presence of noise, usually attributed to a tran-
ceiver and reception problems (figure 1).

The performance of previously used metrics is generally
degraded under noisy conditions, so here we formalize non-
metric similarity functions, which are very robust to noise
and furthermore provide an intuitive notion of similarity be-
tween trajectories by giving more weight to the similar por-
tions of the sequences. Stretching of sequences in time is
allowed, as well as global translation of the sequences in
space. Efficient approximate algorithms that compute these
similarity measures are also provided.
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Figure 1. Examples of marine mammal track-
ing data, representing the movements of dol-
phins. The peaks represent tranceiver mal-
functions.

The rest of the paper is organized as follows. In section 2
we present related work. In section 3 we formalize the new
similarity functions by using a sigmoidal matching function
and extending the LCSS model. Section 4 demonstrates
efficient algorithms to compute these functions. Section 5
provides the experimental validation of the accuracy and ef-
ficiency of the proposed approach. Finally, section 6 con-
cludes the paper.



2 Related Work

The simplest approach to define the similarity be-
tween two trajectories is to map each one into a vec-
tor and then use a p-norm distance to define the sim-
ilarity measure. The p-norm distance is defined as
Lp(�x; �y) = (

P
n

i=1
j xi � yi j

p)
1

p . For p = 2 it is the well
known Euclidean distance and for p = 1 the Manhattan
distance. The advantage of this simple model is that it al-
lows efficient indexing by a dimensionality reduction tech-
nique [3, 29, 13]. On the other hand, the model cannot deal
well with outliers and is very sensitive to small distortions
in the time axis. There are a number of interesting exten-
sions to the above model to support various transformations
such as scaling [9, 25], shifting [9, 14], normalization [14]
and moving average [25]. Other recent works on index-
ing time series data for similarity queries assuming the Eu-
clidean model include [17, 16].

Another approach is based on the time warping tech-
nique that first has been used to match signals in speech
recognition [26]. Berndt and Clifford [6] proposed to use
this technique to measure the similarity of time-series data
in data mining. The idea is to allow stretching in time in
order to get a better distance. Recently, there has been ap-
proached to make this measure more scalable [18, 21].

A similar technique is to find the longest common subse-
quence (LCSS) of two sequences and then define the dis-
tance using the length of this subsequence [4, 7, 10, 8]. The
LCSS shows how well the two sequences can match one
another if we are allowed to stretch them but we cannot re-
arrange the sequence of values.

Other techniques to define time series similarity are
based on extracting certain features (Landmarks [22] or sig-
natures [11]) from each time-series and then use these fea-
tures to define the similarity. An interesting approach to
represent a time series using the direction of the sequence
at regular time intervals is presented in [24]. A domain in-
dependent framework for defining queries in terms of simi-
larity of objects is presented in [15]. In another work, Lee et
al. [20] propose methods to index sequences of multidimen-
sional points. They extend the ideas presented by Faloutsos
et al. in [12] and the similarity model is based on the Eu-
clidean distance.

Recently, there has been some work on indexing mov-
ing objects to answer spatial proximity queries (range and
nearest neighbor queries) [19, 1, 27]. Also in [23], Pfoser et
al. present index methods to answer topological and naviga-
tional queries in a database that stores trajectories of mov-
ing objects. These works do not consider a global similarity
model between trajectories but they concentrate on finding
objects that are close to query locations during a time in-
stant, or time period that also specified by the query.

However most of the above work deals mainly with one

dimensional time-series and, moreover, don’t address the
issue of large amount of outliers.

3 Flexible Similarity Models for Trajectories

We would like to use a distance function that can address
the following issues:

� Different sampling Rates or different speeds
� Similar motions in different space regions
� Outliers
� Different trajectory lengths

In previous work we have extended the LCSS model, in
order to perform matching of 2D trajectories within a region
of Æ in time and a region of � in space ([28]). So, whenever
the points of two trajectories matched within � we increased
the similarity by one. This however penalized the points
that were marginally outside the matching region (assign-
ing to them a value of zero) and also made the choice of
� an important issue. Therefore, here we propose the use
of a weighted matching function according to the distance
of the points. So, the experimental results presented later,
are going to be at least as good as the original LCSS re-
sults for some optimal value of �. Now, however, we don’t
really need to fine-tune the matching parameter. This new
approach facilitates, too, the pruning of outliers since they
will be given a similarity of zero (unlike the Euclidean or
Time Warping Distance where all points, including the out-
liers are going to be matched).

We use the LCSS paradigm in order to allow for time
compression and decompression. However, for the match-
ing function between two trajectories S1 and S2 we use a
sigmoidal function and we set its matching width equal to
min(std(S1; S2)) (figure 2). So, all the points that have
greater distance than the matching threshold will not be
matched (essentially the outliers), but also the weighted ap-
proach will help reveal sequences that are originally very
similar to each other.

Now we are going to define the sigmoidal matching
function. Let s(x) = 1=(1+e�a(x�k�1)); x = 1 : : : 2k+1.
How large k is depends on the accuracy that we want
to achieve. The equation describing the SigmoidMatch

function between two 2D points P1 = (ax; ay), P2 =
(bx; by) belonging to sequences S1 and S2, respectively, is:
8<
:

0 if L1(ai; bi) > min(stdS1i; stdS2i), i = x; y

1
2

Py

i=x
s(d jL1(ai;bi)j

min(stdS1i;stdS2i)
� (2k + 1)e) ; otherwise

One can use different parameters for the variable a, in order
to indicate where more matching weight should be given. In
figure 2 we can observe the different similarity assigned for



different values of a. In our experiments we used a value of
a = 0:25.
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Figure 2. The SigmoidMatch function for dif-
ferent parameters and the weighted matching
procedure.

Let A and B be two trajectories of moving ob-
jects with size n and m respectively, where A =
((ax;1; ay;1); : : : ; (ax;n; ay;n)) and B = ((bx;1; by;1); : : : ;
(bx;m; by;m)). For a trajectory A, let Head(A) be the se-
quence Head(A) = ((ax;1; ay;1); : : : ; (ax;n�1; ay;n�1)).

Our similarity function is defined as:

Definition 1 Given an integer Æ, we define the
SigmoidSimÆ(A;B) as follows:

SigmoidSim(A;B) = SignoidMatch(am; bn) +

maxfSigmoidSim(Head(A);

Head(B));

SigmoidSim(Head(A);B);

SigmoidSim(A;Head(B))g

where;j n�m j� Æ

The constant Æ controls how far in time we can go in or-
der to match a given point from one sequence to a point in
another sequence. An example of the sigmoidal matching
(disregarding the matching within Æ) is depicted in figure 3.

The first similarity function allows time stretching. So,
objects that are close in space at different time instants can
be matched if the time instants are also close.

Definition 2 We define the similarity S1 between two tra-
jectories A and B, given Æ, as follows:

S1(Æ; A;B) =
SigmoidSimÆ(A;B)

min(n;m)
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Figure 3. Sigmoidal matching of a sequence
(without the time matching within Æ). The
similarity value at each point of another se-
quence, declines up to a certain cut-off point.

We use functionS1 to define another, more flexible, sim-
ilarity measure that will be able to detect parallel move-
ments. First, we consider the set of translations. A transla-
tion in 1D simply causes a vertical shift either up or down.
Let F be the family of translations in 2D. Then a func-
tion fc;d belongs to F if fc;d(A) = ((ax;1 + c; ay;1 +
d); : : : ; (ax;n + c; ay;n + d)). Next, we define a second
notion of the similarity based on the above family of func-
tions.

Definition 3 Given Æ, and the family F of translations, we
define the similarity function S2 between two trajectories A
and B, as follows:

S2(Æ; A;B) = max
fc;d2F

S1(Æ; A; fc;d(B))

The similarity functions S1 and S2 range from 0 to 1.
Therefore we can define the distance function between two
sequences by subtracting 1 from the similarity. The new
distance function can detect similarities between parallel
movements (figure 4) and also allow time-stretching.

4 Efficient Algorithms to Compute the Simi-
larity

4.1 Computing the similarity function S1

The SigmoidSim can be computed by a dynamic pro-
gramming algorithm in O(n2) time. However we only al-
low matchings when the difference in the indices is at most
Æ, and this allows the use of a faster algorithm. We can show
that:
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Figure 4. A trajectory B matches another tra-
jectory A after a translation is applied.

Lemma 1 Given two sequences A and B, with jAj = n

and jBj = m, we can find the SigmoidSimÆ;�(A;B) in
O(Æ(n+m)) time.

If Æ is small, the dynamic programming algorithm is very
efficient. This is realistic, since in most real datasets that we
had at our disposal setting the value of Æ to more than 10%�
20% of the trajectory’s length did not yield any significant
improvement.

4.2 Computing the similarity function S2

We now consider the more complex similarity func-
tion S2. Now, we have to find the translation fc;d
that maximizes the matching between A and fc;d(B)
(SigmoidSimÆ(A; fc;d(B)) over all possible translations.

The key observation we make is that, although there is
an infinite number of translations that we can apply to B,
we have to consider only a finite number of translations if
we want the SigmoidSim to be within � of the optimal
matching. Here we will simply give a sketch of the proof.
The interested reader can look at [28]. The proof follows
these steps:

� The matching problem is transformed into an equiv-
alent stabbing problem, so each translation is trans-
formed into a line of slope 1.

� The Sigmoid function is approximated by a constant
number of segments on the stabbing plane. Therefore,
using the SigmoidSim we have an increased number
of lines of slope 1 (translations) that we have to con-
sider, but still the number of segments is multiplied by
a constant factor. In this step we define an approxima-
tion factor �.

� The set of all possible translations is discovered.

� The translations for each axis are sorted. However,
since adjacent translations only lead to LCSS compu-
tations that differ by at most 1, therefore we can ef-
ficiently skip some translations, according to a user
specified error bound.

The running time is summarized in the following theorem:

Theorem 1 Given two trajectories A and B, with jAj = n

and jBj = m, and a constant 0 < � < 1, we can find an
approximation AS2Æ;�(A;B) of the similarity S2(Æ; A;B)
such that S2(Æ; A;B)�AS2Æ;�(A;B) < � � � in O((m+
n)Æ3=�2) time, for a constant �.

Therefore the approximate algorithm offers a dramatic
speedup offered by considering a significantly smaller set
of possible translations.

5 Experimental Evaluation

We implemented the proposed similarity functions and
we compare them to variousLp Norms and also to the Time
Warping using as the base distance differentLp Norms, too.
We use lower than L1 Norms, since for them the extreme
values do not dominate to the total distance, therefore are
more robust to outliers ([2]).

We conducted clustering experiments, using datasets ob-
tained through video tracking, that consisted of various
clusters of trajectories in 2D. The datasets are:

� MobileLong. This is a real dataset consisting of 5
classes of objects, 3 recordings for each cluster. We
have their (x,y) position over time and the lengths of
the trajectories vary from 800 points to almost 2000.

� MobileShort. Again a real-life spatiotemporal dataset.
Now the average length of the sequences is around
100 points and there are 7 classes of objects having
5 recordings per class.

� MobileShort+Noise. Constructed from the previous
dataset but adding noise at a random position of the
trajectory and for 15% of the length of the trajectory.
Essentially, the signal is considered non-recoverable
during this noisy portion (figure 5).

We used the distance function as follows:

1. For the Lp Norms we slid the shorter of the two trajec-
tories along the longer one and recorded the minimum
distance.

2. For DTW we modified the original algorithm in or-
der to match both x and y coordinates. In DTW and
pNorms we normalized the data before computing the
distances.

3. For our method we used the similarity function S1 on
the normalized trajectories.
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Figure 5. The MobileShort after noise is
added.

We performed the following experiment: We clustered
hierarchically (using complete linkage) all the recordings
for each pair of clusters. Then if at the second level the
2 classes are divided correctly we consider the clustering
correct, otherwise not. So, for the MobileLong dataset, we
had a total of 5*(5-1)/2 = 10 experiments.

The results clearly depict that the new SigmoidSim

model is very robust to noise. In the MobileLong dataset
(figure 6) the use of the lower Lp Norms, does not improve
the classification accuracy of the other distance functions.
So, even though the effect of the outliers is less intense,
however these methods have to match all elements (note
that the lengths in this dataset very considerably), therefore
distorting the total distance. However, our model can effi-
ciently skip the erroneous sequence parts.
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Figure 6. The number of correct clusterings
(out of 10) in the MobileLong dataset. The
SigmoidSim model has no errors at all.

For the MobileShort dataset the use of the non-
metric Norms improves the performance. Nonetheless,
SigmoidSim is consistently better (figure 7). Finally, the
MobileShort with the added noise shows the true potential
of our approach. Under the strong presence of noise it is
almost twice as accurate than the antagonist distance func-
tions (figure 8) and as good as the L0:1 Norm on the same
dataset without any noise.
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Figure 7. In this dataset the use of Lp Norms
for p � 1 improves the performance.
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Figure 8. SigmoidSim is obviously superior in
the presence of noise.

6 Conclusion

In this paper we presented efficient techniques to accu-
rately capture the similarity between trajectories with sig-
nificant amount of noise. The similarity measure is based
on the LCSS scheme augmented with a flexible sigmoid
matching function. Our experiments indicate the cluster-
ing superiority of this approach, compared to various Lp-
Norms and the Time Warping distance. In the future we



plan to extend this model in order to be also rotation invari-
ant. Moreover, of further theoretical importance would be
the employment of an indexing structure for the new sim-
ilarity model, since it is non-metric and does not obey the
triangle inequality.
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