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Abstract: Environmental monitoring is a crucial part of environmental management on construction
sites. With the increasing integration of environmental-monitoring systems and cyber-physical
systems (CPS), the environmental-monitoring cyber-physical system (E-CPS) has been developed,
but it still suffers from uncertainty problems and a lack of robustness. In this study, ontology is
utilized to establish an E-CPS model that can realize the integration and interaction of physical space,
cyberspace, and social space, and the E-CPS model contains perception, transportation, fusion, and
decision-making layers. Three uncertainty scenarios are then identified in four layers of the E-CPS to
address the current E-CPS shortcomings. The proposed E-CPS model is applied in a construction
project, and simulation experiments are then conducted on construction sites. The results show
that the abnormal-data-recognition algorithm based on spatiotemporal correlation, whose detection
rate is stable around 96%, improves the system’s anti-interference ability against anomalous data
entering the perception layer and the transportation layer. This algorithm ensures the accuracy of
environmental monitoring for early warning. The sensory data-fusion results based on the belief
function method vary from 52.16 to 52.50, with a decrease rate reduced to 0.65%. Finally, the decision-
fusion algorithm based on the improved Dempster–Shafer (D-S) evidence theory achieves robust
performance. This study could enhance the robustness of the E-CPS in uncertainty conditions and aid
the project managers to make decisions and take targeted measures according to the environmental
monitoring results and experts’ decisions.

Keywords: cyber-physical systems; ontology; system robustness; uncertainty scenarios; environmen-
tal monitoring

1. Introduction

The construction industry consumes several raw materials and energy resources, con-
centrating on pollutant emissions with a wide range of impacts on society [1]. For instance,
dust pollution and noise pollution are generated during the construction process, causing
disputes between builders and nearby residents, while more attention is paid to this issue
by the environmental supervision department. These disorders are often associated with
environmental monitoring systems, and a failure to provide reliable and accurate visual
observations or inspections for decision-makers [2]. Hence, environmental-monitoring
systems for construction sites play an important role in government environmental su-
pervision. Currently, wireless sensor network (WSN)-based environmental-monitoring
systems have been widely used to achieve the real-time monitoring of dust and noise on
construction sites [3,4]. However, they have some limitations, such as the lack of several
system functions, unbalanced coordination between information space and physical space,
and low levels of integration [5,6].

Cyber-physical systems (CPS) can integrate computation, communication, and con-
trol systems in order to achieve the interaction between information space and physical
space. Considering that CPS can solve these problems and bring great value to society, it
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has become a significant direction of studies and a growing concern for the construction
industry. Based on previous studies on CPS and environmental monitoring [7–9], the
environmental-monitoring cyber-physical system (E-CPS) can be applied on construction
sites using multi-source sensors to gain real-time environmental information, and dynam-
ically perceive the environmental changes on construction sites. An E-CPS framework
has four main layers: perception, transportation, fusion, and decision-making layers. The
existing studies on E-CPS mainly focus on the improvements of the perception layer and
the transportation layer, in order to quickly and accurately obtain monitoring data. How-
ever, they ignore the environmental changes’ impact on the decision-making layer of the
E-CPS. Therefore, the decision-making model and controller can be performed to accurately
achieve integrated construction management. Due to the complexity of the construction
sites, the limited accuracy of sensor measurement, and the interference of environmen-
tal changes, E-CPS faces several uncertainty challenges from the perception layer to the
decision-making layer. These challenges mainly derive from three aspects: the impreci-
sion and incompleteness of monitoring data, the non-conventionality of environmental
assessment, and the inconsistency of human irrational behavior and understanding [10,11].

Robustness, as an extension of the uncertainty theory, emphasizes the measurement
and control of data. It also improves the reliability of systems [12]. The robustness of the
E-CPS has two characteristics (reliability and adaptability). It is crucial to consider the
interaction between CPS and the environment on construction sites [13]. More precisely,
a robust E-CPS can stably achieve decision-making when monitoring noisy or damaged
data. In addition, it can automatically detect unexpected events and make advanced
adjustments to adapt to the environmental changes. Several studies on the influencing
factors in robustness, robustness design, and robustness measurement [14–17] exist. Some
researchers consider CPS as technical systems, and they explored the robustness of software
and operating systems [18,19]. However, they ignore the important fact that CPS are
technology-social systems, and their robustness characterizes the joint action of technology,
management, and personnel elements. It is important to mention that the influencing
factors and mechanisms of the E-CPS robustness are crucial. However, uncertainty is a
critical issue that should be paid attention to regarding E-CPS, and there is a lack of studies
on the robustness design, simulation, and evaluation of the E-CPS. This cannot address the
environmental monitoring issues on construction sites.

Within this context, this study aims to build up a comprehensive E-CPS model char-
acterizing the joint action of technology, management, and personnel elements, to handle
the aforementioned environmental monitoring problems. This study aims to handle the
environmental monitoring problems. Ontology can be regarded as a formal description
that can be represented, understood, and utilized by computers. It is characterized by
conceptual clarity, machine readability, and formal representation. Currently, ontology
and semantic web technologies have been widely employed to realize the integration and
sharing of domain knowledge through creating domain ontology [20]. The ontology-based
model can build a unified semantic model and realize the integration and interaction of
physical space, cyberspace, and social space, handling heterogeneous information issues
to conduct semantic collaboration [21]. Furthermore, the formal language of ontology can
describe the logical relationship among ontologies and realize the sharing and reuse of
knowledge, so that the system can still make effective decisions in face of unanticipated
events. Considering that low reliability exists when E-CPS interacts with construction
sites, ontology is used to construct an E-CPS model to conduct environmental monitoring
and evaluation, which characterizes three main functions: early warning, remote control,
and the auxiliary evaluation of construction sites. The E-CPS robustness simulation is
also performed on construction sites. This offers guidance for the robustness design of
the E-CPS and the accurate environmental management of construction sites, which can
deepen one’s understanding of the E-CPS robustness. Moreover, the proposed model can
further expand the understanding of information management and aid project managers to
conduct information management on construction sites.
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The rest of the paper is organized as follows. To proceed, Section 2 reviews the
literature on the application of the E-CPS and system robustness. Section 3 demonstrates the
methodology, including the establishment of evolution models of stakeholders involved in
the ecological compensation of rail transit projects, as well as the replicator dynamic analysis
of multi-stakeholders, and the evolutionary stable strategy (ESS) of tripartite mainstay.
After that, Section 4 conducts E-CPS modeling and uncertainty-factor identification, and
then Section 5 carries out uncertainty detection and processing. Finally, Section 6 discusses
the results of three uncertainty detection algorithms. Section 7 draws the conclusions in
this study.

2. Literature Review
2.1. Applicability of CPS

According to the previously mentioned characteristics, CPS can enhance the informa-
tion processing and address human–machine-environment coupling problems by achieving
bidirectional coordination between the virtual world and physical structures [9]. Hence,
CPS are used in several fields, including manufacturing, transportation, and the construc-
tion industry. When CPS are used on construction sites during the construction process,
their data are first collected by the sensors on construction sites. Consequently, the decision
support system (DSS) makes decisions, and the actuator network then takes necessary
actions in response to the dynamic environmental changes on construction sites and main-
tains interaction with project managers. Therefore, some researchers endeavor to conduct
the building monitoring and visualization of construction sites using CPS. For instance,
Yuan et al. proposed temporary-structure monitoring (TSM) based on CPS. The latter
integrates the virtual model and physical structure on construction sites [22]. Akanmu et al.
created a cyber-physical postural training environment using wearable sensors [23]. During
the operation period of projects, CPS can also be used to monitor the real-time performance
of buildings, in order to offer insurance for project managers in decision-making. This can
be achieved by combining building information-modeling (BIM) and CPS, after they are
tested by a customized simulator [24]. As for E-CPS, important studies try to combine
the environmental monitoring with CPS in order to handle environmental issues, and the
system architecture of the E-CPS has been developed and enriched (cf. Table 1).

Table 1. The main existing methods and themes in E-CPS.

Author Research Methods Theme

Liu et al. [9] CPS + WSN + GPS + BIM Monitoring greenhouses gas emissions of prefabricated
buildings

Nazerdeylami et al. [8] CPS + deep learning Monitoring litter surveying and prediction of human
littering activities in the coastal area

Amuthadevi et al. [25] CPS + WSN Monitoring risk of air pollutant in urban areas

Ding et al. [26] CPS + IoT + cloud-edge orchestration Monitoring production-status service and energy
consumption in the shopfloor

Zografopoulos et al. [27] CPS + simulation modeling Evaluating the system’s performance under adverse
scenarios

In summary, previous studies have confirmed the applicability of CPS in the con-
struction and operation period; it plays a crucial role in the management of the building
life-cycle. Although significant efforts have been made toward CPS-based environmental
monitoring and visualization, studies on the applicability in the construction industry are
still at the initial stage. There are few studies on combining environmental monitoring and
construction process by developing a system suitable for environmental management on
construction sites. Moreover, the existing studies focus on enhancing the remote control of
the environmental monitoring in the E-CPS while ignoring the impact of the environmental
changes on decision-making. The functions of the E-CPS, such as early warning and auxil-
iary evaluation, are rarely performed to assess environmental management using E-CPS.
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Hence, this study addresses the necessity and benefits of the E-CPS in environmental
monitoring for construction sites.

2.2. System Robustness

Researchers in several fields defined robustness with different connotations, while the
entry points for previous studies correlated with robustness also vary [28,29]. Robustness is
a crucial attribute in systems’ handling of uncertainty problems [30]. Some studies focus on
the influencing factors in system robustness and achieving system robustness [31,32]. Other
studies focus on system robustness design. This ensures that the system can achieve robust-
ness by creating control structures or schemes. There are mainly two ways for achieving
system robustness in order to respond to environmental changes. Firstly, reaction capabil-
ities can be used to passively respond to environmental changes. Secondly, preemptive
capabilities can be used to respond actively. Consequently, some researchers conducted
studies from different perspectives. Security defense is a crucial issue in achieving system
robustness [33]. In this complicated system, fault tolerance also characterizes a system’s
robustness under uncertainty conditions such as modeling uncertainty, parametric uncer-
tainty, and unpredictable events. According to the connotation of CPS, individuals such
as implementers and decision-makers are also constituent elements since their irrational
behaviors are associated with making inappropriate decisions. Some researchers mention
that constructing a general fault-tolerance framework for error detection and error handling
can enhance the capacity of fault tolerance [34,35]. Consequently, McPhail established a
generic guidance framework in order to identify the most robust decision choices and
applied a software package to gain intelligent decisions [36].

In terms of resource failure, an isolation strategy is developed to promote the power
system’s robustness. In this approach, some typical clusters are separated from the main
network, and independent alternative energy sources are used as a power supply [37].
Another method to improve the system’s robustness consists in building autonomous
nodes that have stripped off the interaction among networks, in order to cope with the
damage caused by buffer failures [38]. Although the current studies yield some benefits,
the system’s robustness still suffers from several limitations. In fact, most of the existing
robustness methods are based on specific application scenarios, and they are difficult to
migrate to different types of application scenarios. On the other hand, several researchers
consider CPS as a technical system while ignoring the fact that E-CPS is a technology-social
system, whose robustness results from the interaction of technology, management, and
personnel elements.

The literature review demonstrates that uncertainty is a critical issue that should
be paid attention to regarding E-CPS. The existing studies focus on the security defense,
resource failure, and fault tolerance of system robustness, while a lack of studies on E-CPS
robustness exists. However, E-CPS suffers from more severe problems such as maintaining
satisfactory performance when facing uncertain data quality and model specifications.
Therefore, it is necessary to extend E-CPS robust design and simulation scenarios according
to the actual needs of construction sites, as well as conduct targeted operations within
corresponding scenarios.

3. Research Framework

According to the characteristics of robustness, the inputs–processes–outputs (I–P–O)
paradigm is used to develop a robust simulation I–P–O framework for the construction
of site monitoring and decision-making. With the deepening of ontology theory and con-
struction technology, ontology has been utilized in the construction field to realize the
integration and sharing of knowledge information on construction sites. The existing
studies attempted to identify construction safety risks by developing domain ontology
during the construction period [39,40]. Based on these studies, Li et al. considered more
issues on health and well-being to promote safety and information management on con-
struction sites [41]. Moreover, Petnga and Austin combined ontology with CPS to conduct
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information modeling and decision support on construction sites [42]. This study focuses
on environmental issues on construction sites and constructs an environmental monitoring
and evaluation model through ontology and CPS. Therefore, this study creates a work-
flow (Figure 1) that illustrates the prototypical framework to measure the robustness of
the E-CPS.

Figure 1. Overall research framework.

Considering that the E-CPS framework has four main layers (perception, transporta-
tion fusion, and decision-making layers), the ontology is first used to develop an E-CPS
model since the ontology-based model can perform the integration of physical space, cyber
space, and social space, as well as assess the semantic collaboration. This can describe
the relationships among ontologies and perform the sharing and reuse of data, so that
the system can make efficient decisions when facing uncertainty [43]. More precisely, the
ontology objects, including projects, equipment, and sensors in the perception layer and the
object properties, are created and saved in the ontology library. After the database and rule
base are established, the Jena inference engine is used for ontology reasoning. In addition,
the inference results are obtained accordingly in Eclipse, in order to perform the early
warning and control of TSP, PM2.5, PM10, and noise on construction sites. The data from
the environmental monitoring and evaluation indicators are then fused in the fusion layer.
Finally, they enter the decision-making layer for project managers, in order to conduct data
processing and make decisions based on experts’ evaluation and stakeholder interaction.

The E-CPS model contains three environmental-monitoring systems with PM10, PM2.5,
TSP, and other sensors, as well as five video monitoring sites with three dust reduction
controllers: fog cannon, enclosure spray, and tower crane spray. Afterward, the proposed
ontology-based E-CPS model faces different uncertainties on construction sites: (1) uncer-
tainties of anomalous data from the ontology objects such as sensors and equipment in the
perception layer and the transportation layer; (2) uncertainties of multi-source perception
data fusion of rule reasoning and expert scoring in the fusion layer; (3) uncertainties of
experts’ decision fusion results for project managers in the decision-making layer. There-
fore, three categories of uncertainty scenarios of the E-CPS are created according to the
uncertainty factors of the four layers in the E-CPS.
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As for the anomalous data in the perception layer and the transportation layer, uncer-
tainty detection and processing are conducted in the ontology-based E-CPS model using
a spatio-temporal correlation anomaly-recognition algorithm. This improves the E-CPS
robustness since the algorithm can use the temporal and spatial correlation of the monitor-
ing data to identify anomalous data [44]. Previous studies have explored some algorithms,
including belief functions, as well as D-S evidence theory to conduct uncertainty detection
and processing [45–47]. Considering that belief functions can determine the confidence
level of the monitoring data to improve the accuracy and stability of the fusion results,
this study integrates the belief function and the fuzzy-index belief function, in order to
develop a sensor data-fusion belief function that improves the accuracy and stability of
the fusion results. The Dempster–Shafer (D-S) evidence theory is a method of uncertainty
inference, proposed by Dempster and developed by Shafer [47]. It can fuse uncertain
information. However, it sometimes displays poor robustness [48]. Therefore, this study
combines the fuzzy theory and the D-S evidence theory, according to the combination
approach of conflict evidence, in order to conduct conflict detection and the processing of
experts’ decisions on evaluating environmental monitoring results [49]. Finally, the pro-
posed ontology-based E-CPS model is applied in a construction project in Nanjing, Jiangsu
Province, China. The environmental monitoring indicators in this model are determined
using the literature review, the questionnaire survey, and the expert consultant. In this
context, the simulation experiments are performed to examine the improvements of the
system robustness using the recognition algorithm based on spatio-temporal correlation,
the data-level fusion algorithm based on belief functions, and the decision-fusion algorithm
based on the improved D-S evidence theory.

4. E-CPS Modeling and Uncertainty-Factor Identification
4.1. Development of the E-CPS Model Based on Ontology

The ontology-based E-CPS model can provide a platform for querying and analyzing
the environmental information on construction sites, including the main features such as
the sensing elements and control elements. Based on the studies of Zhong et al. [50] and
Wang [43], the process of ontology modeling is presented in Table 2, and the ontology-based
environmental monitoring and evaluation model is illustrated in Figure 2.

Table 2. The process of ontology modelling in the E-CPS.

Step Task Definition Primary Content

1 To establish the ontology model The ontology model contains five basic elements—human, machine, matter,
events, and time—as well as the interaction between the elements.

2 To establish the rule base
According to the actual needs of construction site environmental management,
a number of rule statements can be created in the rule base to analyze the
physical space based on industrial standards and expert experiences.

3 To establish the database
The database is utilized to store historical data and real-time data. The data are
derived from sensors and video surveillance in physical space, which reflect
the environmental information.

4 To establish the inference engine The established inference rules, ontology models, and databases can be
connected to the inference engine.

(1) Development of the ontology model
E-CPS model needs to build a universal ontology. The construction site arranges

the environmental monitoring CPS system by project, and the various devices, sensors
and monitoring data in environmental-monitoring systems depend on the construction
project in question, so the construction project can be used as a generic ontology on
which the sensors, monitoring devices, and other entities can be extended. The attributes of
construction site project in the model established in this paper are: Project_name, Project_ID,
and Project_address. Considering that the ontology model reflects all the important system
characteristics, the main features of the E-CPS are the monitoring equipment, sensors,
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information centers, and controllers. According to the actual needs on construction sites,
ten categories of sensors, including PM10, PM2.5, and TSP; three categories of controllers,
including Envelop-Sprayement, Towercrane-Sprayement, and Workers; and two categories
of alarm (PM10_alarm and Noise_alarm) are developed. The proposed E-CPS model can
obtain real-time information from environmental monitoring indicators such as PM10,
sewage discharge, and noise, for example.

Figure 2. The ontology-based environmental monitoring and evaluation model.

The ontology-based E-CPS model needs to realize the main function of environmental
monitoring and evaluation. Hence, the environmental monitoring and evaluation indicator
system in the E-CPS model contains real-time environmental monitoring indicators, which
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can reflect the level of environmental management of the project. By on-site investigation
and previous studies on environmental monitoring on construction sites [5,50], the envi-
ronmental monitoring and evaluation indicator system was developed and applied in the
construction project in Nanjing, China (Table 3). This project involves 5 video monitoring
points and 3 E-CPSs. Each system contains PM10, PM2.5, TSP, and other sensors, as well
as three kinds of dust-reduction controllers: fog cannons, enclosure sprays, and tower
crane sprays.

Table 3. The environmental monitoring and evaluation indicator system.

No. Indicator Description Source

1 PM10 overrun times Times of PM10 exceed the limit per month PM10 sensor

2 TSP emissions
Difference between the monthly average
concentration of TSP and the urban background
value (mg/m3)

TSP sensor

3 Noise overrun times Times of the monthly noise exceed the limit Noise sensor

4 Illegal construction times at night Times of night construction violations without
approval Noise sensor

5 Discharged sewage suspended
solids content

The content of suspended solids in the sewage
discharged from the construction site

Water quality monitoring
sensor

6 Muck truck cleaning situations Whether departing vehicles are flushed as
required

Vehicle flushing capture
system

7 Number of abnormal monitoring
data

The number of abnormal monitoring data per
month Information platform

8 Hardening of import and export
roads

The main roads and sites on the construction site
are hardened as required Video Surveillance

9 Enclosure around the
construction site

Enclosure measures shall be taken around the
construction site, and the front door and the
vicinity of the enclosure shall be cleaned in time

Video Surveillance

10 Bare ground coverage
The bare ground and mounds of the construction
site shall be covered, solidified, or greened, as
required

Video Surveillance

11 Closed situation of key operation
areas

The outer scaffolding is enclosed by dense mesh
nets, metal safety nets Video Surveillance

12 Implementation of rectification

Whether to deal with warning information
promptly; after heavy air pollution and extreme
weather warning information, stop production
and limit production and response measures
according to the corresponding warning level

Information platform

According to Table 2, the process of environmental monitoring and evaluation on con-
struction sites is as follows. A “project” is first determined. It has a monitoring “equipment”
arranged in different “regions”. The “equipment” contains several “sensors”, and the
“sensors” collect “environmental monitoring data”. When the “environmental monitoring
data” exceed the limit, an “alarm” message is issued, and relevant instructions are then
sent to the “controller” in order to take relevant measures. Finally, the “evaluation of
green construction” is performed based on the “environmental monitoring data” collected
by the monitoring “equipment”. From the perspective of the environmental monitoring
and evaluation, the object properties are hasarea, hasmonitorfacility, hassensor, hascon-
troller, conductalarm, and conductevaluation [50], thereby establishing the data relationship
between ontology concepts and defining object properties, as shown in Figure 3.

The data property establishes the relationship between classes and data and is simpler
than the object properties. Data are associated with a class through a data property, and data
properties depend on the class for their existence. This study entered the data properties in
the data property hierarchy of the Protégé software. Firstly, the data property was created,
then all classes with the data property were added to “domains”. Finally, the data form
“string” in “ranges” was selected to complete the process of creating the data attribute.
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Figure 3. The relationship between the ontology objects of the E-CPS.

After creating the above ontology, object attributes, and data attributes, the E-CPS
ontologies can be constructed as Figure 4.

Figure 4. The ontologies in the E-CPS model.

(2) Ontology reasoning
The inference engine is the core of the ontology-based E-CPS model for construction

sites. Considering that the inference engine should support the rule extension, the Jena
inference engine is used for ontology reasoning in order to enhance the precision of ontology
reasoning in the E-CPS [51]. Taking the PM10 over-limit early warning in the E-CPS as
an example, the “Nanjing Construction Site Intelligent Monitoring of Dust Monitoring
Guide (Trial)” stipulates that the value of early warning for PM10 is 100 µg/m3. When the
monitoring data of PM10 reaches the limit, E-CPS issues an early warning signal. This rule
aims to issue an orange warning when the monitoring value of PM10 is between 100 and
150. Similarly, other rules can be formulated. After the rules are defined (Table 4), they are
saved in a “.rules” file format to build an extended rule library.
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Table 4. Jena inference rules of early warning.

Rule Jena Rules Early Warning

Rule 1

[(?x rdf:type
http://www.owl-ontologies.com/E-CPS.owl#PM10

(accessed on 24 August 2022))(?x
http://www.owl-ontologies.com/E-CPS.owl#hasvalue

(accessed on 24 August 2022) ?y) + “greaterThan(?y,150 )” +
“->(?x http:

//www.owl-ontologies.com/E-CPS.owl#conductalarm
http://www.owl-ontologies.com/E-CPS.owl#Red_

warning_signals) (accessed on 24 August 2022)]

A red alert is issued when the PM10
monitoring value is greater than 150 ug/m3.

Rule 2

[(?x rdf:type
http://www.owl-ontologies.com/E-CPS.owl#Noise

(accessed on 24 August 2022))(?x
http://www.owl-ontologies.com/E-CPS.owl#hasvalue

(accessed on 24 August 2022) ?y)” + “greaterThan(?y,70)” +
”->(?x http:

//www.owl-ontologies.com/E-CPS.owl#conductalarm
http://www.owl-ontologies.com/E-CPS.owl#Noise_

alarm) (accessed on 24 August 2022)]

Noise warning is issued when the noise
value is greater than 70 dB.

Rule 3

[(?x rdf:type
http://www.owl-ontologies.com/E-CPS.owl#PM10

(accessed on 24 August 2022))(?x
http://www.owl-ontologies.com/E-CPS.owl#hasvalue

(accessed on 24 August 2022) ?y) + “greaterThan(?y,150)” +
“->(?x http:

//www.owl-ontologies.com/E-CPS.owl#hascontroller
http://www.owl-ontologies.com/E-CPS.owl#Open-

Envelop-Sprayequipment) (accessed on 24 August 2022)]

The enclosure spraying is open and dust
reduction measures are taken when PM10

monitoring value is greater than 150 ug/m3.

Rule 4

[(?x rdf:type http://www.owl-ontologies.com/E-CPS.owl#
PM10_alarm_number (accessed on 24 August 2022))(?x

http://www.owl-ontologies.com/E-CPS.owl#
Performance_of_indicators (accessed on 24 August 2022) ?y)

+ “greaterThan(?y,1)” + “->(?x
http://www.owl-ontologies.com/E-CPS.owl#Evaluation

http://www.owl-ontologies.com/E-CPS.owl#unqualified)
(accessed on 24 August 2022)]

The evaluation result of this indicator is
unqualified when the number of PM10

warnings is greater than 1.

(3) Ontology and data storage
In this study, the MySQL database is developed to store ontology/data due to the sim-

plicity and convenience of storage of ontology/data operation, and assistance of reasoning.
After customizing the rule library, the Jena inference engine is used in Eclipse in order to
obtain the ontology model. Persistent storage is then performed in MySQL. Afterward,
the rule acquisition and the inference results are obtained. Finally, the functions such as
over-limit early warning, remote control, and the evaluation of green construction can be
performed. An example is when the monitoring value from the PM10 sensor in the protégé
ontology model is 160 ug/m3. The corresponding output results are presented in Figure 5.

4.2. Creation of Uncertain Scenarios

The E-CPS model integrates man–machine materials, reasoning, control, and evalua-
tion [52]. It has a series of reasoning calculation processes, and the calculation results could
be affected by personal experience and subjective judgment. The E-CPS model integrates
reasoning, control, and evaluation and confronts uncertainties in different layers of the E-
CPS model. The perception layer is composed of controllers and network nodes responsible
for collecting the construction site environmental data such as PM10, PM2.5, noise, temper-
ature, and wind speed, using sensor components and video monitoring. The middle layer
in the E-CPS system architecture is the transportation layer, which connects the perception

http://www.owl-ontologies.com/E-CPS.owl#PM10
http://www.owl-ontologies.com/E-CPS.owl#hasvalue
http://www.owl-ontologies.com/E-CPS.owl#conductalarm
http://www.owl-ontologies.com/E-CPS.owl#conductalarm
www.owl-ontologies.com/E-CPS.owl#Red_warning_signals
www.owl-ontologies.com/E-CPS.owl#Red_warning_signals
http://www.owl-ontologies.com/E-CPS.owl#Noise
http://www.owl-ontologies.com/E-CPS.owl#hasvalue
http://www.owl-ontologies.com/E-CPS.owl#conductalarm
http://www.owl-ontologies.com/E-CPS.owl#conductalarm
www.owl-ontologies.com/E-CPS.owl#Noise_alarm
www.owl-ontologies.com/E-CPS.owl#Noise_alarm
http://www.owl-ontologies.com/E-CPS.owl#PM10
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layer and the fusion layer. It is responsible for information transmission using wired net-
works, wireless sensor networks, and WLAN. The upper layer is the fusion layer, in which
data fusion of multiple different point sensors is performed for a consistent description of
the same object. The top layer is the decision-making layer, which is responsible for data
processing and computing decisions, as well as performing user interaction. Based on the
E-CPS framework and the on-site investigation on construction sites, this study identifies
the uncertainty factors in the proposed model and then constructs typical uncertainty
scenarios, which make contributions to performing robust design and simulation.

Figure 5. PM10 warning inference program run.

Uncertain scenario 1: The perception layer data of the E-CPS has some shortcomings
such as low data quality, and poor stability and timeliness. Considering that wrong data
will directly lead to wrong decision-making, four categories of errors that occur in the
sensor exist: (1) large value, i.e., the monitoring data deviates from the average value and
swiftly returns to the normal value. In general, the oversized data are generated under
severe circumstances such as rainy and snowy days, instrument failures, unstable gateways,
and interference with transmission signals. (2) Constant value. It is revealed that the data
remain unchanged in a certain period. This is because the constant value of the monitoring
data is the crash of the sensor processing device. (3) Zero value. This is revealed in the
fact that the platform data continue to be zero for a certain period. (4) The dust/noise
monitoring data are clearly lower than those of the surrounding environment.

Uncertain scenario 2: The construction site is equipped with more than two monitoring
points. The values of similar sensors at each monitoring point differ because of the large area
of the construction sites. When the green construction helps the evaluation of the difference
between the monthly average concentration of the TSP and the urban background value,
and the environmental noise at night, the project with multiple monitoring points requires
multiple TSP sensor data fusions, and therefore the sensor data fusion is measured. Due to
insufficient sensor accuracy, network noise, and other influencing factors, the monitoring
data are under uncertainty conditions.

Uncertain scenario 3: The environmental monitoring and evaluation indicators also
include qualitative indicators, which require experts scoring based on on-site surveillance
videos. However, the evaluation value provided by experts has certain uncertainty, leading
to inconsistent evaluation results among the experts. It is universally approved that the
average of the scores of multiple experts is computed as the final score of the evaluated
index. However, this cannot eliminate the subjective factors. In view of the conflicts in the
fusion of expert scores and decision-making, a decision-making fusion model is constructed
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to ensure the desired quality of evaluation and decision-making. In this study, the identified
uncertainty factors are summarized into three uncertainty scenarios (Figure 6).

Figure 6. Identification of uncertainty factors and scenarios.

5. Uncertainty Detection and Processing

According to the I–P–O paradigm within the identified three uncertainty scenarios,
unanticipated problems of detection and processing are performed to improve the sys-
tem’s robustness.

In Scenario 1, the system robustness is assumed so that the perception layer and
the transportation layer in the E-CPS cannot be interfered with when facing uncertainty
in data quality, which indicates that the abnormal data can be identified and processed,
the environmental early warning can be issued, and the decisions that have been made
are reliable.

In Scenario 2, the system robustness is assumed so that the interfering data can be
identified by the data-fusion algorithm within the uncertainty context regarding multi-
source data fusion, so that the fusion results can keep a steady state due to the changes in
the individual data. The stability and robustness are associated with the uncertainty when
facing multi-source data fusion.

In Scenario 3, the system robustness is assumed so that the decision-making model
can efficiently handle the conflicting evidence when group decision evidence conflicts are
produced. When the basic trust assignment of the evidence focal element slightly changes,
the results remain qualitatively unchanged.

5.1. Abnormality Detection and Processing of Monitoring Data

The spatio-temporal correlation method can more accurately identify the anomalous
data in the E-CPS system. An anomalous-data-identification model is then developed
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based on the principle of spatio-temporal correlation. During the uncertainty detection, the
probability of abnormal data is a crucial indicator for identifying abnormal data [53].

Pj(ti) = Pj(ti−1) + c (1)

where Pj(ti) is an accumulated value that represents the probability of an abnormality at
sampling time ti, and c is a variable representing the increase in the probability of anomalies
at the sampling moment ti over the sampling moment ti−1.

If sensor reading rj(ti) is continuously judged as the abnormal data at several sampling
moments, Pj(ti) is accumulated. If sensor reading rj(ti) fails to meet the judgment condition,
it is cleared until it meets the standard. When Pj(ti) reaches threshold R, the anomaly is
detected in the node and fed back to the platform in order to prevent the abnormal data
from entering the E-CPS [54]. Considering the differences of several sensors and the method
robustness, R can be determined according to the sampling period of each sensor and the
statistical characteristics of the dataset [55]. According to the definition of anomalous data
provided by Hawkins [56] and the construction practice, this study considers PM10 as an
example in order to detect and process the anomalous data regarding the environmental
monitoring in Uncertain Scenario 1. This can be categorized into the following: the
monitoring data are less than the detected value; constant value; the measured data inside
the field is much less than that outside the field; the monitoring value of PM10 is less than
the value of PM2.5; and the PM10 monitoring value is abnormal on rainy and snowy days.

(1) The monitoring data are less than the detected value
This category of conflict data is a monitored data value that is not within the set range

of the detected value. The monitoring data are manifested as 0 or lower than the detection
limit (the detection limit of the PM10 and PM2.5 monitoring data is 5 ug/m3), which fails to
conform to the laws of nature. In this study, the monitoring data are less than the detected
value. If rj(ti) < 5, the monitoring data are judged as abnormal data. If rj(ti) ≥ 5, the
monitoring data are maintained.

(2) Constant value
Since PM10 is continuously monitored in the E-CPS, a fluctuation in the monitoring

data exists within a certain range. When encountering circumstances such as equipment
failure, poor network transmission environment, data acquisition and processing device
crash, energy exhaustion, or damage, the same data can be continuously produced at
different sampling moments. Hence, the constant-value detection is defined as follows. If
rj(ti) = rj(ti−1) and the monitored value remains unchanged for a long time, they should
be judged as abnormal data.

(3) The measured data inside the field is much less than that outside the field
According to the law of dust propagation, the value of the dust within the boundary

of the construction site should be greater than that of the dust outside the boundary of
the site. The actual measurement data within the field boundary is much smaller than
the abnormal event detection concept outside the field boundary. There is no processing
when the absorbable particulate matter concentration rj(ti) within the construction site’s
boundary is not lower than the surrounding absorbable particulate matter concentration
rnearby(ti) far away from the construction site. If rj(ti) < rnearby(ti), the probability value
of abnormal data is accumulated. When the probability of conflict reaches the robust
threshold, it is determined as abnormal data, and an abnormal event report is then sent to
the construction party.

(4) The monitoring value of PM10 is less than the value of PM2.5
PM10 is the inhalable particulate matter with an aerodynamic equivalent diameter

less than or equal to 10 microns. On the other hand, PM2.5 refers to the particulate
matter in the ambient air with an aerodynamic equivalent diameter less than or equal
to 2.5 microns [57]. Hence, the monitoring value of PM10 should be greater than that of
PM2.5. If rPM10(ti) < rPM2.5(ti), the probability value of abnormal data is accumulated.
When the probability value of abnormal data reaches the robust threshold, it is judged as
abnormal data.
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(5) PM10 monitoring value is abnormal on rainy and snowy days
The laser backscatter method is performed to measure PM10. The built-in high-

stability laser signal source irradiates the dust particles. The irradiated dust particles will
then reflect the laser signal, and the reflected signal intensity is positively associated with
the dust concentration. Therefore, the dust concentration can be calculated using a specific
algorithm. Due to the fact that there is no dust pretreatment device, liquid substances can
also be theoretically measured as fugitive dust. On rainy days, rainwater enters the sensor
and meets the laser signal, which increases the laser-reflection signal. Therefore, the dust
indicator value is too high, which results in increasing the PM10 monitoring value to exceed
the standard. Under this circumstance, if rPM10(ti) is less than the limited value, with the
rain and snow sensors revealing the precipitation at this time, it is judged as abnormal data.
Figure 7 presents the identification of abnormal data in the perception layer, according to
the previously mentioned abnormal detection.

Figure 7. Identification process of abnormal data.

5.2. Conflict Detection and Processing of Monitoring Data

The reliability of the data collected by the sensors is first determined using belief
functions. When the level of reliability is low, the data from these sensors cannot participate
in the data fusion. When the reliability is within the threshold range, the fusion weight is
calculated by the belief function proposed in Yager [45] in order to perform multi-sensor
data fusion and therefore improve the stability of the fusion results. This study integrates
the Yager [45] belief function and the fuzzy-index belief function (Jiao et al. [46]), in order
to develop a sensor data-fusion belief function to deal with uncertain data in Scenario 2.

Step 1: Development of the belief function
Considering the large-scale of construction sites, there are large value differences in

terms of TSP sensors at different points. If the difference between xi and xj is larger than
the fusion upper limit of the belief function, the belief degree will turn to 0, making the
result too absolute. In order to avoid the loss of information, the sensor data-fusion belief
function is established.

b
(
xi, xj

)
= K× e−|xi−xj |···, K ∈ [0, 1] (2)

Among them, K represents the magnitude of belief, denoted as 1 for the purpose
of simplicity of calculation. When

∣∣xi−xj
∣∣ < 20, b

(
xi, xj

)
is approximately 0, which is

consistent with actual situations on construction sites.
Step 2: Establishment of the belief matrix
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n represents the number of sensors, and the belief matrix is established according to
the proposed belief function.

B =


b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

. . .
...

bn1 bn2 · · · bnn


Step 3: Fusion of the weighted sensor data
The degree to which the i-th sensor is supported by other functions is in Equation (3).

sup(xi) = ∑n
j=1 bij, i 6= j (3)

After normalizing the belief function, the weight of the sensors can be obtained in
Equation (4).

wi =
sup(xi)

∑n
i=1 sup(xi)

(4)

According to the weights of n sensors, the reading value of fused sensor can be
obtained in Equation (5).

x = w1x1 + w2x2 + · · ·wnxn (5)

5.3. Conflict Detection and Processing of Evaluation Decision

In order to accurately measure the conflict between pieces of evidence in Scenario
3, this study combines the fuzzy set theory and D-S evidence theory according to the
combination approach of conflict evidence proposed by Ma and An [49]. The similarity Sim
is defined by combining the two features of fuzzy closeness Fn and correlation coefficient
Coc, as well as adjusting the evidence credibility. The high-conflict data fusion based on
the improved evidence theory is presented in the sequel.

Step 1: Calculation of transition probability
Assuming that Θ= {θ1, θ2, · · · , θn}, there are k bodies of evidence, and the probability

distribution of evidence is mi(i = 1, 2, · · · , k), which can be obtained by the probability
transition formula k probability vectors, where the transition probability formula is in
Equation (6). In Equation (6), BEL = ∑ Bel(θi), where Bel represents the value of the belief
function, and BEL represents the total value of belief functions.

P(θi) = Bel(θi) +
BEL · Bel(θi) + (1− BEL)pl(θi)

∑ θi∈ΘBEL · Bel(θi) + (1− BEL)pl(θi)
(1− BEL) (6)

Step 2: Combination of the fuzzy closeness and correlation coefficient
Then, the fuzzy closeness of k probability vectors is shown in Equation (7). In Equa-

tion (7), ∧ and ∨ are the minimum and maximum operators separately. Fn
(
mi, mj

)
∈ [0, 1],

when Pi and Pj are more similar, the fuzzy closeness Fn
(
mi, mj

)
is closer to 1.

Fn
(
mi, mj

)
=

∑n
s=1
(

Pi(θs) ∧ Pj(θs)
)

∑n
s=1
(

Pi(θs) ∨ Pj(θs)
) i, j = 1, 2, 3 · · · , k (7)

However, it is unreliable to measure the similarity between the types of evidence
based on the fuzzy closeness Fn, and the robustness stands at an undesirable level [58].
Hence, the correlation coefficient Coc can be analyzed to measure the similarity between
the types of evidence. In this study, the definition of the correlation coefficient is shown in
Equation (8).

Coc
(
mi, mj

)
=


mi

(
θ

mi
max

)
+mj

(
θ

mj
max

)
2 , i f θ

mi
max = θ

mj
max

mi

(
θ

mi
min

)
+mj

(
θ

mj
min

)
2 , i f θ

mi
min 6= θ

mj
min

(8)
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In Equation (8), Coc is used to measure the similarity of the propositions supported by
the maximum trust of two pieces of evidence. If the propositions of two pieces of evidence
are the same, the two pieces of evidence are considered to be similar, and Coc is equal to
the average of the maximum trust values of the two pieces of evidence. On the contrary, if
the propositions are different, the two pieces of evidence are considered to be in conflict,
and Coc is equal to the average of the minimum trust values of the two pieces of evidence.

Fn measures the similarity from the basic probability distribution structure of evidence,
while Coc measures the similarity of the evidence from the perspective of evidence reliability.
In order to comprehensively measure the similarity between the types of evidence, Fn and
Coc are combined through Sim in Equation (9). This shows that the degree of belief of
evidence is associated with the degree of similarity. The greater the degree of similarity
between the types of evidence, the higher the credibility is.

Sim
(
mi, mj

)
=

Fn
(
mi, mj

)
+ Coc

(
mi, mj

)
1 + Fn

(
mi, mj

)
× Coc

(
mi, mj

) (9)

Step 3: Fusion of the weighted average evidence
The calculation formula for the credibility degree Sd is as follows:

Sd(mi) = ∑k
j=1,j 6=i Sim

(
mi, mj

)
(10)

After normalizing Sd, the credibility Cd of the evidence is obtained in Equation (11) as
the weight of the evidence.

W(mi) = Cd(mi) =
Sd(mi)

∑k
s=1 Sd(mi)

(1 ≤ i ≤ k) (11)

After obtaining the weight of the evidence, the average evidence WAE is obtained in
Equation (12). Finally, the average evidence WAE is fused to produce the result according
to the Dempster combination rule.

WAE(m) = ∑k
i=1 W(mi)×mi (12)

6. Results and Discussion
6.1. Anomaly Recognition

In order to verify the feasibility and accuracy of the proposed anomaly identification
algorithm, simulation experiments are performed using MATLAB. The monitoring point
is sampled every 1 min, with a total of 1429 data. The abnormal data are then infused,
including 11 “data less than the detected value”, 27 “constant value”, 9 “abnormal data
PM10 less than PM2.5”, 8 “data far below the out-of-site monitoring value”, and 29 “ab-
normal data on rainy and snowy days”. The fault injection rate is 5.8%, which is mainly
consistent with the probability of abnormal data in practice. The objective of developing
an abnormal-data-monitoring algorithm is to accurately identify the abnormal data and
avoid false alarms. Therefore, the detection rate R and false alarm rate N are selected as
evaluation indicators in order to measure the E-CPS robustness.

R =
TP

TP + FN
(13)

In Equation (13), TP represents the number of samples that are abnormal data, and
FN denotes the number of samples that are abnormal data but are incorrectly classified as
normal data.

N =
TN

TP + TN
(14)
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In Equation (14), TN represents the number of samples that are normal data but
identified as abnormal data, and TP denotes the number of samples that are abnormal
data and identified as abnormal data. In this study, 8 “far below the monitoring value
outside the field”, 35 “constant value”, 9 “abnormal PM10 less than PM2.5”, 11 “less than
the detected value”, and 29 “abnormal data on rainy and snowy days” are detected by the
simulation experiments. The simulation results are presented in Figure 8.

Figure 8. Identification of the PM10 monitoring value abnormal data.

The abnormal data are added at 16:36 on 24 November 2020 and 18:46 on 24 November
2020. The PM10 monitoring value at these two moments exceeds 100 ug/m3. If E-CPS fails
to perform abnormal data detection, the platform sends two early warning messages to in-
form the construction enterprises of the dust control. After abnormal data identification, the
two moments are judged as abnormal points, and no early warning processing is performed.
It is deduced that the identification of abnormal data can improve the anti-interference
ability, which avoids affecting the decision-making due to the input of abnormal data and
ensures the efficiency of the decision-making and the stable output. Therefore, the robust
performance of the E-CPS is improved.

In this study, the detection rate of abnormal data obtained using the detection algo-
rithm is approximately 96%, slightly fluctuating with the changes of the sample size. This
is due to the fact that the abnormal data discriminating rules are based on dust propaga-
tion laws and mathematical models, rather than relying on learning samples. Hence, the
detection rate can remain stable, and the detection rate of “PM10 is less than PM2.5” and
“less than the detection value” can reach 100%.

The “constant value” is a reason of false alarms. In this experiment, the robust
threshold of “constant value” is set to 10, which indicates that the data are judged as
abnormal data when the value of PM10 remains unchanged within 10 min. However, it is
deduced that, when the wind speed at night is slow, the PM10 value remains unchanged
for 10 min, which results in a higher false alarm rate of 9.3%. If the robust threshold of
“constant value” is set to 12, the false positives of the constant value can be highly reduced,
as shown in Figure 9. In the constant-value detection, the detection rate and false alarm
rate should be taken into consideration according to the actual situations on construction
sites, and the abnormal probability threshold should meet the site conditions. In addition,
the data “far below the monitoring value outside the field” may also result in false alarms
during work stoppages.
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Figure 9. Anomaly recognition effect after adjusting the constant-value detection threshold.

6.2. Sensory Data Fusion

The experimental data of the robustness of sensor data fusion comes from the TSP val-
ues of three monitoring points at seven times (0:01, 0:02, . . . , –0:07), on 24 November 2020.

The seven sets of data are processed according to the arithmetic mean and belief
function method. Figure 10 shows the fluctuation of the monitoring data after the belief
function fusion is reduced, which is also verified by the sample standard deviation. The
sample standard deviation of the data fusion of the arithmetic mean is 3.49, while the
sample standard deviation of the belief function method fusion is 2.78, which is 20.34%
lower than that of the arithmetic mean method. This indicates that the input stability of the
monitoring data should be improved.

Figure 10. Data-fusion results obtained in two ways.

In addition, a comparative analysis of the anti-interference performance of the two
fusion algorithms is conducted. The first data in the 7th group of measured data is changed
to 47.12, while the other data remain unchanged. The fusion results obtained using the
arithmetic mean method vary from 51.45 to 50.78, with a decrease rate of 1.29%. Conse-
quently, the fusion results based on the belief function method vary from 52.16 to 52.50,
with a decrease rate reduced to 0.65%. The random experiments using the seven sets of
data demonstrate that, when large interfering data exist in a set of data, the belief function
can identify the interfering data at a desirable level, which improves the robustness of the
output data.



Appl. Sci. 2022, 12, 10822 19 of 24

6.3. Expert Score Fusion

In Example 1, the classic data fusion based on the D-S evidence theory cannot produce
accurate results. Hence, the efficiency of the improved D-S evidence theory is evaluated.

The average evidence WAE can be obtained according to Equations (6)–(12) (cf.
Table 5), where m(Excellent) = 0.45, m(Quali f ied) = 0.1, and m(Unquali f ied) = 0.45.
The evidence-fusion results are presented in Table 6.

Table 5. The calculation process of the weighted average evidence.

Equation Parameter Results

Equation (6) Transition probability Pj P =

[
0.9 0.1 0
0 0.1 0.9

]
Equation (7) Fuzzy closeness Fn Fn =

[
1 0.0526

0.0526 1

]
Equation (8) Correlation coefficient Coc Coc =

[
0.9 0
0 0.9

]
Equation (9) Combination of Fn and Coc through Sim Sim =

[
1 0.0526

0.0526 1

]
Equation (10) Degree of belief Sd Sup(m1) = Sup(m2) = 0.0526
Equation (11) Credibility Cd Cd =

[
0.5 0.5

]
Equation (12) Average evidence WAE m(Excellent) = 0.45, m(Quali f ied) = 0.1,m(Unquali f ied) = 0.45.

Table 6. Evidence fusion results in Example 1.

Excellent Qualified Unqualified

D-S evidence theory 0 1 0
Improved D-S evidence theory (Expert 1, Expert 2) 0.4880 0.0241 0.4880

Expert 3 0.9 0.1 0
Improved D-S evidence theory (Expert 1, Expert 2, and Expert 3) 0.9983 0.0016 0.001

It can be seen from Table 6 that the result of the classic evidence combination rule is
“qualified”, which is in contrast to intuition. Based on the credibility method, the conflict
between the evidence can be reduced by weighting the high-conflict evidence. Although the
fusion result is m(Excellent) = m(Unquali f ied), the evaluation result cannot be obtained,
and therefore the judgment result relying on the two negative pieces of evidence of Expert 1
and Expert 2 cannot be obtained. When the new evidence from expert 3 is added, the
result points to “excellent”, with a maximum trust degree of 0.9983. The results after the
fusion of credibility evidence are presented in Table 7. These results are consistent with the
conditions on construction sites, which indicates that the proposed method can reasonably
and effectively handle the conflict problems.

Table 7. Basic probability distribution.

Excellent Qualified Unqualified

Expert 1 0 0.9 0.1
Expert 2 0.6 0.4 0
Expert 3 0.75 0.25 0
Expert 3′ 0.8 0.2 0

Improved D-S evidence theory 0.9983 0.0016 0.001

Due to the insufficient cognition and subjective judgment of experts, expert scoring is
often unreliable, and the mass function changes within a certain range. The slight changes
in mass function can result in high changes, which indicates that the robustness of the
method is at an undesirable level. The robustness of the credibility algorithm is verified
by slightly changing the mass function of the evidence. Assuming that three independent
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elements in the framework Θ are excellent, qualified, and unqualified, the mass functions
of the four pieces of evidence are determined (cf. Table 7).

It can be seen from Table 7 that the mass functions of Expert 3 and Expert 3′ undergo
minor changes. The classical evidence theory, Murphy, and improved D-S evidence theory
based on the credibility method for decision-making fusion are respectively used.

Expert 2, Expert 3, and Expert 3′ are considered “excellent” with the greatest trust
value. However, expert 1 is the most likely to become “qualified”. The credibility of expert 1
is lower than that of expert 2 and expert 3, and the fusion result tends to be “excellent”.

It can also be seen from Table 8 that the results obtained using the classical evidence
theory method, before and after, are both “qualified”. This is inconsistent with the subjective
judgment, which is consistent with Zhao’s findings [59]. Murphy [60] indicates that using
actual belief functions in the combining rule confirms Bayesian theory and convergence.
The result based on the Murphy’s method has the largest “qualified” trust value among
the three results. In this study, the fusion result should be “excellent”, which demonstrates
the poor robustness of Murphy’s method utilized in conflicts in experts scores, although
it is calculated simply when making decisions with incremental evidence. In this context,
Ma and An [49] handled conflict evidence with different weighting factors through a
new probabilistic dissimilarity to handle the issues due to unreliable evidence instead
of Dempster rules. Based on this study, this study combined the fuzzy theory and D-S
evidence theory to improve the credibility of evidence and better system robustness and
effectiveness performance. The two fusion results based on the proposed method point to
“excellent”, and the trust degree remains mainly unchanged. This indicates that the output
results maintain a satisfactory performance when the evidence is highly conflicting, and
the evidence focal element slightly changes, which can be utilized in expert score fusion of
evaluating green construction on construction sites.

Table 8. Fusion results of three evidence-fusion methods.

Excellent Qualified Unqualified

D-S evidence
theory

m123 0 1 0
m123

′ 0 1 0

Murphy m123 0.397 0.602 0.01
m123

′ 0.551 0.449 0
Improved D-S

evidence theory
m123 0.8544 0.1456 0
m123

′ 0.8837 0.1152 0

In summary, the abnormal-data-recognition algorithm based on the spatio-temporal
correlation improves the system’s anti-interference ability to prevent anomalous data
entering the perception and transportation layer of the E-CPS and enhances the quality
of the environmental monitoring data on construction sites. This can be used to identify
and process the anomaly monitoring data on construction sites and lay a foundation
for the stable and accurate output of early warning. The developed belief functions can
detect the interfering data and improve the fusion of the monitoring data from different
sensors on construction sites in the fusion layer of the E-CPS. This enhances the system
robustness of the output data when witnessing the changes of individual data and helps
the project managers deal with the problems of sensory data conflicts during the process of
environmental management. Finally, the decision-fusion algorithm based on the improved
D-S evidence theory can resolve the highly conflicting data and achieve stable results
of the experts’ decisions in the decision-making layer of the E-CPS. This indicates that
the E-CPS model can maintain a robust performance during the construction period. In
practice, different experts’ decisions on the environmental monitoring results are collected
on construction sites. The decision-fusion algorithm can be used to assess the project
managers to better fuse the experts’ decisions and efficiently evaluate the environmental
performance and remote control of the environment on construction sites according to the
experts’ decisions.
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6.4. Limitations of the Study

E-CPS is a complex system, and the formation of robustness requires multi-link and
multi-factor synergy, as well as both technical and management guarantees, but the re-
search on E-CPS is still in the initial stage. This study identified three typical scenarios,
including inaccuracies and inconsistencies in perception data, multi-source perception data
fusion, and experts’ decision fusion during the process of environmental monitoring and
evaluation. There may be a lack of theoretical support in the identification of impact factors
and the creation of uncertainty scenarios. E-CPS uncertainty scenarios and concepts will be
further combined to drive theoretical analysis, and theoretical system development and
platform applications will be improved in the future. Moreover, the uncertainty scenarios
were considered mainly in technical space in this study. In the future, uncertainty factors
regarding organization and management on construction sites in different scenarios can be
more considered and optimized to create more comprehensive uncertainty scenarios in the
E-CPS. Since the quantification of system robustness for organization and management is
still a challenging issue, it deserves further study in the future.

7. Conclusions

This study proposed developing an ontology-based E-CPS model for construction sites.
The study also conducted a robustness design and simulation of the E-CPS within three
scenarios, including uncertain perceptual data, sensory data conflicts, and expert score
conflicts, using the spatio-temporal correlation, belief functions, and improved D-S evidence
theory. The simulation results demonstrate that the three methods allow the system to
have anomaly recognition, conflict resolution, and fault-tolerant reasoning capacities, thus
improving system robustness.

The main findings are summarized as follows. (1) The established ontology-based
E-CPS model can achieve early warning, remote control, and green construction evaluation
functions under uncertainty through Jena reasoning, which can be applied on construction
sites. (2) The abnormal-data-recognition algorithm based on the spatio-temporal correlation
can significantly improve system robustness against erroneous data, which ensures the
validity of the decision-making of project managers on construction sites. (3) The data-level
fusion algorithm based on the belief function can effectively identify interfering data, thus
improving the stability of the output data when E-CPS witnesses individual data changes;
(4) the proposed algorithm based on the improved D-S evidence theory can improve system
robustness regarding experts score conflicts. Hence, the aforementioned methods can be
utilized to perform the uncertainty-detection process in different scenarios, and they can
prevent uncertain monitoring data, such as PM10 and noise entering the decision-making
layer of the E-CPS and interfering with the environmental control on construction sites.
This helps project managers to make more reliable and efficient decisions, in order to
better control noise and dust on construction sites, when the uncertain data are detected
and processed.

This study can deepen the understanding of the E-CPS robustness, and the proposed
model can further expand the understanding of information management on construction
sites, which will provide a reference for E-CPS design on construction sites. In addition, this
study can aid project managers to better conduct environmental management on construc-
tion sites. This can make contributions to promoting green construction management on
construction sites. Although a significant amount of time was required to analyze E-CPS ro-
bustness, it is challenging to measure the robustness of organization and management. Like
any other new feature, there is room for optimizing environmental-monitoring indicators in
the ontology-based E-CPS model, in order to comprehensively evaluate the environmental
performance on construction sites. In future work, more effort will be dedicated to ensuring
the system robustness within uncertain situations such as organization and management in
the operation period of the projects.
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Abbreviations

CPS Cyber-physical system
E-CPS Environmental-monitoring cyber-physical system
WSN Wireless sensor network
GPS Global positioning system
BIM Building information-modeling
I–P–O Inputs–processes–outputs
TSP Total suspended particulate
PM2.5 Fine particles with a diameter of 2.5 µm or less
PM10 Inhalable coarse particles with a diameter of 10 µm or less
D-S evidence theory Dempster–Shafer evidence theory
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