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Abstract. This paper addresses the problem of Simultaneous Localization and
Mapping (SLAM) when working in very large environments. A Hybrid architecture
is presented that makes use of the Extended Kalman Filter to perform SLAM in
a very efficient form and a Monte Carlo type filter to resolve the data associa-
tion problem potentially present when returning to a known location after a large
exploration task. The proposed algorithm incorporates significant integrity to the
standard SLAM algorithms by providing the ability to handle multimodal distri-
butions in real time. Experimental results in outdoor environments are presented
to demonstrate the performance of the algorithm proposed.

1 Introduction

This paper address the problem of navigating autonomously in very large ar-
eas. This problem is usually referred as Simultaneous Localization and Map-
ping (SLAM) [1] or Concurrent Map Building and Localization (CML) [2].
It has been addressed in [3] using a Monte Carlo method in indoor problems
and in [4] using sum of Gaussian in sub-sea applications. These algorithms
are suitable to handle multi-modal probability distribution. Although these
methods have proven to be very robust in many localization applications
their extension to SLAM is computationally expensive making them difficult
to apply in real time. In [5] the map building and localization processes are
decoupled by assuming that the pose of the vehicle is known. This is achieved
with enough particles to represent the true pose of the vehicle at all times.
The Kalman Filter can also be extended to solve the SLAM problem [1] once
appropriate models for the vehicle and sensors are obtained. In [6] the real
time implementation aspects of SLAM using EKF techniques were addressed.
A Compressed Extended Kalman Filter (CEKF) algorithm was introduced
that significantly reduces the computational requirement without introduc-
ing any penalties in the accuracy of the results. Sub-optimal simplifications
were also presented in [7] to update the full covariance matrix of the states
bounding the computational cost and memory requirements.

Simultaneous navigation and map building algorithms are based on a
exploration stage and re-visit of known places to register the new learned
map to the known map. Depending on the quality of the kinematics models
and external sensors used, the exploration stage can be extended to larger
areas. Nevertheless no matter how good sensors and models are, at one point
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Fig. 1. Example of closing a large loop. The uncertainty when closing the loop at
point 3 is larger than the separation between landmarks A and B.

the accumulated error will make the registration or data association task
impossible. This problem is shown is Figure 1. In this experimental run the
vehicle started near point 3 and circulated CW direction. The Figure shows
the estimated path using a CEKF filter aided with absolute GPS information
[8]. The ” ∗ ” represent natural landmarks incorporated as features into the
map. The vehicle uses dead reckoning information to predict its position and
incorporates features into the map to bound the dead-reckoning errors. If the
vehicle return to the point label 3 with an error smaller than the separation
between landmarks then it is possible to use standard algorithms to perform
data association and register the new learned local map. In this particular
case there are very few landmarks in the part of the trajectory labeled 1-2-
3 making the estimated vehicle error to grow to 10 meters when returning
close to the initial position labeled 3. This error is plotted as an ellipse in the
Figure. Since the separation between the landmarks A and B is approximately
8 meters the algorithm will not be able to perform the data association and
will be in failure. This is an inherent limitation of all simultaneous navigation
and mapping methods and is independent of the implementation method or
model used. Significant improvements to the standard Nearest Neighbor (NN)
data association algorithm were presented in [9] with an approach based on
considering more than one feature at a time. In this paper we present a robust
solution to this problem using a combination of the CEKF with a Monte
Carlo Filter. This hybrid architecture is designed to exploit the efficiency of
the CEKF algorithm to estimate and maintain vehicle and map states and
to provide appropriate initialization to the Monte Carlo filter to accelerate
the convergence of the particle type filters once a potential data association
problem is detected. The algorithms are presented for generic range/bearing,
range only and bearing only sensors.
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2 Bayesian Estimation in navigation problems

The SLAM problem under a probabilistic estimation approach requires that
the marginal probability density p(xLk

,m|Zk,Uk, x0) must be known for all
k, where xLk

is the vehicle state, x0 its initial condition, m are the states
representing a feature in the map and Zk and Uk are the observations and
input signals respectively at time k. To obtain the recursively form of this
density [4] [10], it is assumed that the density p(xLk−1 ,m|Zk−1,Uk−1, x0) is
known. Then applying the Bayesian rule and the Total Probability theorem
we have

p(xLk
,m|Zk,Uk, x0) = κp(zk|xLk

,m)·
· ∫ p(xLk

|xLk−1 , uk)p(xLk−1 ,m|Zk−1,Uk−1, x0)dxLk−1

(1)

where κ is a normalization constant, p(zk|xLk
,m) represents the observation

model and p(xLk
|xLk−1 , uk) models the vehicle dynamic. When the map m

is known

p(xLk
|m,Zk,Uk, x0) = κp(zk|m, xLk

)∫
p(xLk

|xLk−1 , uk)p(xLk−1 |m,Zk−1,Uk−1, x0)dxLk−1

(2)

represents the Localization Problem.

2.1 Localization with the Particle Filter

Particle Filters approximate the joint posterior probability density with a
set of random samples called particles. As the number of samples becomes
large, they provide an exact, equivalent representation of the required distri-
bution, that is the filter output will be close to the Bayesian filter. In this
work we use the SIR (Sampling Importance Resampling) filter [11], to lo-
calize a vehicle in a predefined map using range and bearing information.
Assuming that R samples {xi

k−1}R
i=1 of the previous posterior distribution

are available, the process model is then used to propagate these samples to
obtain {x̃i

k}R
i=1. The new samples represents the a priori probability density

p(xk|m,Zk−1,Uk, x0). The update stage is performed in two steps. The first
step consist of the evaluation likelihood for each predicted particle as,

wi =
p(zk|m, x̃i

k)
R∑

j=1

p(zk|m, x̃j
k)

(3)

where zk is the observation at time k. The pair {x̃i
k}R

i=1 , {wi
k}R

i=1 defines a
discrete distribution that tends to the real continuous posterior distribution
as R tends to infinity. The second stage performs a resampling selecting
only the particles with probability pr{xj

k = x̃i
k} = wi

k for each j. Finally the
probability of measuring zk given the state x̃k is required, that is p(zk|m, x̃i

k).
This pdf can be approximated with a sum of gaussian (SOG) assuming each
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beacon is represented with a Gaussian distribution centered at its estimated
position and considering all the uncertainties presents in the observation:

p(zk|m, xLk
) =

n∑
1

αi

2πσrσβ
e
−0.5(

(xm−xi)
2

σ2
x

+
(ym−yi)

2

σ2
y

)
(4)

where (xi, yi) are the landmarks a priori estimated positions, σx and σy are
the correspondent deviation in x and y and (xm, ym) are the observations
obtained from each particle. For the range and bearing case they can be
expressed as follows:

xm = x̃L
i
k + zr cos(zβ − pi/2 + ϕ̃L

i
k)

ym = ỹL
i
k + zr sin(zβ − pi/2 + ϕ̃L

i
k)

(5)

where (x̃L
i
k, ỹL

i
k, ϕ̃L

i
k) are each of the states of the particles and (zr, zβ) are

the observations.

Localization with Range and Bearing Information In the case of range
and bearing observation (zr, zβ), it can be assumed that the measurements are
contaminated by additive noise (γr, γβ) with a given probability distribution.
The conditional probability distribution of the observation (zr, zβ) respect to
the vehicle states, considering the uncertainty in the landmark position and
the observation noise can be obtained from the following integral,

p(zk|m, xLk
) =

∫
Ω

p(mx,my, γr, γβ) µ |−→dS|
Ω = {(mx,my, γr, γβ) ∈ <4}

(6)

The integral is a surface integral and p(mx,my, γr, γβ) is the joint probabil-
ity density distribution of the random variables (r.v.) due to the four noise
sources. The factor µ · |−→dS| is the surface differential used to perform the
integration over the surface region defined by the equality constrains given
in equation 7.

zr =
√

(mx − xL)2 + (my − yL)2 + γr

zβ = arctan(my−yL

mx−xL
)− ϕ + π

2 + γβ

(7)

The probability density distribution 6 can be evaluated using the proba-
bility density distribution restricted to the observations,

pzr,zβ
(zr0 , zβ0) =

∂Fzr,zβ
(zr0 , zβ0)

∂zr∂zβ
(8)
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where Fzr,zβ
(zr0 , zβ0) is the probability distribution. After some manipula-

tions this distribution can be expressed as

Fzr,zβ
(zr0 , zβ0) =

∞∫
−∞

∞∫
−∞

γr0∫
−∞

γr0∫
−∞

p(mx,my, γr, γβ) · dγr · dγβ · dmx · dmy

γr0 = zr0 −
√

(mx − xL)2 + (my − yL)2,
γβ0 = zβ0 − arctan( my−yL

mx−xL
) + ϕ− π

2 ,

(9)

Finally, the probability density distribution is evaluated differentiating the
probability distribution function (9),

pzr,zβ
(zr0 , zβ0) =

∂Fzr,zβ
(zr0 ,zβ0 )

∂zr∂zβ
=

∞∫
−∞

∞∫
−∞

p(mx,my, γr0(mx,my), γβ0(mx,my))dmxdmy

(10)

This integral is numerically evaluated reducing the integration region to
the mx,my space close to the landmarks.

Localization with bearing only information In this case the observa-
tions model in 2-D is

zβj = ϕL − arctan
yi − yL

xi − xL
+

π

2
(11)

where (xi, yi) represent the position of the beacon i, (xL, yL, ϕL) is the vehicle
position and βj is the observed bearing to the beacon j. The probability
p(zk|xLk

) can be calculated similarly to (eq. 10)

pzβ
(zβ0) =

∞∫

−∞

∞∫

−∞
p(mx,my, γβ0(mx,my)) · dmx · dmy (12)

where

γβ0 = γβ0 (mx,my) = β − arctan
(

my − yL

mx − xL

)
+ ϕL − π

2
(13)

Localization with range only information Another common type of
sensors are those that return range only information or range and bearing
but with large uncertainty in bearing such as ultrasonic. The observations
model can then be written

zrj =
√

(yi − yL)2 + (xi − xL)2 (14)
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where (xi, yi) is the position of the observed beacon i, (xL, yL, ϕL) is the
vehicle position and zrj is the j observation in the sensor data frame.

The conditional probability density distribution p(zk|xLk
) can be calcu-

lated according to (eq. 15) considering all the uncertainties present

pzr
(zr0) =

∞∫

−∞

∞∫

−∞
p(mx,my, γr0(mx,my)) · dmx · dmy (15)

where

γr0 = zr0 −
√

(mx − xL)2 + (my − yL)2 (16)

3 Compressed filter and the aiding of the SIR filter

The proposed architecture uses CEKF under normal conditions to perform
SLAM. At a certain time the system may not be able to perform the asso-
ciation task due to large errors in vehicle pose estimation. This is an indica-
tion that the filter can not continue working with a mono-modal probability
density distribution. At this point, we have the CEKF estimated mean and
deviation of the states representing the vehicle pose and landmark positions.
With the actual map, a de-correlated map is built using a coordinate trans-
form and the decorrelation procedures presented in [7]. A particle filter uses
this information to resolve the position of the rover as a localization prob-
lem. When the multi-hypothesis are resolved the CEKF is restarted with
the back propagated states values. Then the CEKF resumes operation until
a new potential data association problem is detected. This section presents
several important implementation issues that need to be taken into account
to maximize the performance of the proposed architecture.

Map for the particle filter The SLAM algorithm builds a map while the
vehicle explore a new area. The map states will be, in most cases, highly cor-
related in a local area. In order to use the particle filter to solve the localiza-
tion problem a two dimensional map probability density distribution needs to
be synthesized from an originally strongly correlated n dimension map. The
decorrelation procedure is implemented in two steps. The map, originally
represented in global coordinates is now represented in a local frame defined
by two beacons states that are highly correlated to all the local landmarks.
The other local landmarks are then referenced to this new base. This results
in a covariance matrix of the form,

pm =




pm1 C12 · · · C1m

C21 pm2 · · ·
...

...
. . . . . .

...

Cm1 · · · . . . pmm




(17)
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where the cross-correlation components between states of different landmarks
are usually weak, i.e. they meet the condition Ci,j/

√
pmi · pmj << 1. To de-

correlate the map it is necessary to apply an additional step. A conservative
bound matrix for (eq. 17) can be easily obtained increasing the diagonal com-
ponents and deleting the cross-correlation terms. This can be implemented as
shown in eq 18 where diag[·] represents the elements of a diagonal matrix [7].
For presentation purposes, all the states in equation 18 are assumed to belong
to different landmarks. The decorrelation procedure performs the decorrela-
tion of block diagonal matrices, being each block matrix the covariance of
the states representing a particular landmark.

p̃m = diag




pm1 +
j 6=1∑

j

| k1j · C1j |
...

pmm +
j 6=m∑

j

| kmj · Cmj |




(18)

The set {kij}i,j meets the condition kij = 1/kji > 0. This un-correlated
map is used to define a two dimension map probability density distribution
used by the particle filter to localize the vehicle.

Filter Initialization: As the number of particles affects both, the com-
putational requirements and convergence of the algorithm, it is necessary to
select an appropriate set of particles to represent the a priori density func-
tion at time T0. Since the particle filters work with samples of a distribution
rather than its analytic expression it is possible to select the samples based
on the most probable initial pose of the rover. A good initial distribution is
a set of particles that is dense in at least a small sub-region that contains
the true states value. The initial distribution should be based in at least one
observation in a sub-region that contains this true states value. Once a range
and bearing from a landmark is obtained a distribution is created having a
shape similar to a family of solid helical cylinders. Although it is recognized
that some returns will not be due to landmarks, all range and bearing ob-
servations in a single scan are used to build the initial distribution. Even
though a family of families of helices will introduce more particles than a
single family of helices (one observation), it will be more robust in presence
of spurious observations. Considering the observations of range and bearing
as perfect observations, this defines a discontinued one dimensional curve
(family of helices) C, in the three dimensional space (x, y, ϕ)

Ci =





(x, y, ϕ) \
x = x (τ) = xi + zr · cos (τ)
y = y (τ) = yi + zr · sin (τ)
ϕ = ϕ (τ) = τ − zβ − π

2
τ ∈ [0, 2π)





(19)
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These regions can be reduced by adjusting the variation of τ according to
the uncertainty in ϕ. Assuming the presence of noise in the observation and
in landmark position

zr = z∗r + γr, zβ = z∗β + γβ

xi = x∗i + γxi , yi = y∗i + γyi

(20)

this family of helices becomes a family of cylindrical regions surrounding the
helices.

Selection of a reduced local map: In most practical cases the local
map is very large when compared to the sensor field of view. Most of the
landmarks are usually beyond the range of the sensor. It is then possible to
select only the visible beacons from the entire map taking into account the
actual uncertainties. This will significantly reduce the computation complex-
ity of (10). Figure 2 presents this approach for the case of only two particles.
In this Figure (R, β) are the observations, the ” ∗ ” are the projected obser-
vation form each particles and the encircle stars are the beacons. It can be
appreciated from the Figure that there are only a few beacons that can be
within the field of view of any of the particles. The other beacons are not
considered to be part of the reduced map.

Fig. 2. Selected beacons in a reduced local map and uncertainty regions

Interface with the CEKF: Two main issues need to be addressed to
implement the switching strategy between the CEKF and the SIR filter. The
detection of the potential data association failure while running the CEKF
is implemented by monitoring the estimated error in vehicle and local map
states. The second issue is the reliable determination that the particle filter
has resolved the multi-hypothesis problem and is ready to send the correct
position to the CEKF back propagating its results. This problem is addressed
by analyzing the evolution of the estimated deviations errors. The filter is
assumed to converge when the estimated standard deviation error becomes
less than two times the the noise in the propagation error model for x, y and
ϕ.
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Fig. 3. GPS position and particles cloud after processing a number of observations:
Top (left to right): Initialization and after 3 observations. Bottom ( left to right):
After 6 and 52 observations.

4 Experimental Results

This section presents experimental results of the proposed hybrid architecture
running in an outdoor environment. The CEKF filter is used to navigate
when no data association faults are detected otherwise the particle filter
is initialized with the position and uncertainties reported by CEKF filter
and is run after convergence is reached. This is shown in Figure 3 where the
estimated path is represented at selected times for the range and bearing case.
Figures 4 shows the deviations of the states x and y of the vehicle averaged
over the fifty runs of the Monte Carlo simulation. For the range and bearing
case, it is clear that convergence is achieved with the observations present
in the first laser scan since the error is reduced during a single time stamp.
The error at time 26 decreased from 2.2 to 0.5 meters. This scan included
observations from several beacons. It is important to note that although the
environment can be crowded with landmarks and other spurious objects the
algorithm remains robust since no data association is performed at this stage.
The convergence for the range only and bearing only case are much slower
as expected but still achieved in few scans. Obviously, the convergence time
will depend on the number of features in the environment.

5 Conclusions

This paper presented a hybrid architecture that make use of the Compressed
Extended Kalman Filter (CEKF) algorithm to perform SLAM in an efficient
form and a Monte Carlo type filter to resolve the data association problem
present when closing large loops.
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Fig. 4. History of state’s x and y error when the filter is run with range and bearing,
bearing only and range only information
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