
ACCV2002: The 5th Asian Conference on Computer Vision, 23–25 January 2002, Melbourne, Australia

Robust Simultaneous Registration of Multiple Range Images

Ko Nishino and Katsushi Ikeuchi

Institute of Industrial Science, The University of Tokyo

kon@computer.org, ki@iis.u-tokyo.ac.jp

Abstract

The registration problem of multiple range images is fun-

damental for many applications that rely on precise geomet-

ric models. We propose a robust registration method that

can align multiple range images comprised of a large num-

ber of data points. The proposed method minimizes an error

function that is constructed to be global against all range

images, providing the ability to diffusively distribute errors

instead of accumulating them. The minimization strategy is

designed to be efficient and robust against outliers by using

conjugate gradient search utilizing M-estimator. Also, for

“better” point correspondence search, the laser reflectance

strength is used as an additional attribute of each 3D data

point. For robustness against data noise, the framework

is designed not to use secondary information, i.e. surface

normals, in its error metric. We describe the details of the

proposed method, and present experimental results apply-

ing the proposed method to real data.

1 Introduction
Registration of multiple point cloud range images is an

important and fundamental research topic in both computer

vision and computer graphics. Many applications and al-

gorithms can be (are) developed on the assumption that ac-

curate geometric models are obtained a priori, e.g., recog-

nition, localization, tracking, appearance analysis, texture-

mapping, metamorphism, and virtual/mixed reality sys-

tems in general, among others. Additionally, projects to

construct precise geometric models based on observation

of real world objects for the purpose of digital preserva-

tion of cultural heritage objects have drawn attention re-

cently [3, 9, 21]. Because of their objective, these projects

require very precise registration of multiple range images.

In this paper, we propose a framework to register multi-

ple range images robustly. Taking the point cloud images

obtained through use of a range sensor, e.g., laser range

scanner [14, 13, 15], light-stripe range finder [24], etc., as

the input, we simultaneously register all range images to

sit in one common coordinate system. We highly priori-

tize our efforts to make the resulting registered geometric

model accurate compared with making the whole procedure

computationally fast. For this reason, we design our regis-

tration procedure to be a simultaneous registration method

based on an error metric computed from point-point dis-

tance, including additional attributes in its metric. Also,

for robustness and efficiency, we adopt a conjugate gradient

framework utilizing M-estimator to solve the least-square

problem of minimizing the total errors through registration.

Since we target large objects like the Great Buddha in Ka-

makura, the data size of each range image becomes huge.

Thus, we employ k-d tree data structures for efficient point-

point correspondence searches.

The remainder of this paper is organized as follows. In

section 2, we overview related work and present our frame-

work. Section 3 describes how a point correspondence

search will be accomplished efficiently; and we describe the

details of how least- square minimization of the objective

function, the core of our simultaneous registration frame-

work, in section 4. We show results of applying our ap-

proach to real data in section 5, and section 6 concludes the

paper.

2 Overview

2.1 Related Work

Past work on range image registration can be roughly

classified with respect to the following three aspects.

Strategy: simultaneous1 or sequential The basic strat-

egy of registering multiple range images can be represented

by two different approaches. The straightforward strategy

is to focus on only two range images at a time, and register

each range image to another [25]. After one range image

pair is registered, a new pair including either range image

in the former pair, positioned in the resulting coordinate, is

registered. This is repeated till all range images are used.

Since this sequential strategy requires only two range im-

ages for each registration stage, it can be implemented with

less memory and the overall computational cost tends to be

cheap. Also, the computational cost for each registration

stage is not affected by the number of range images to be

1Commonly refered to as “global registration” and “multi-view regis-

tration”, especially in the graphics community
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registered consequently.

However, this straightforward strategy is well known to

be less accurate. In each range image pair registration stage,

some error will be introduced due to data noise, etc. Since

each range image will be fixed in the resulting position for

each registration stage, this unavoidable error will be propa-

gated to the latter registration stage and it will result in unaf-

fordable error accumulated in the last range image position.

Although the “gap” developed by this error accumulation

can be small enough depending on the use of the resulting

geometric model, it is much more preferable to avoid this

theoretically, especially when the geometric model will be

used as a basis of texture-mapping or appearance analysis,

and so on.

Simultaneous registration solves this error accumulation

problem by aligning all range images at once [1, 2, 5, 6, 8,

16, 20, 22, 23]. This can be accomplished by defining an er-

ror minimization problem by using an error metric common

among all range images. This approach can diffusively dis-

tribute the registration error over all overlaps of each range

image. The drawback is its large computational cost as op-

posed to that of sequential approaches.

Matching unit: features or points When registering

range images, the problem is usually redesigned as an er-

ror (distance) minimization problem. The basis of the error

to be measured can be features derived from the range im-

ages or points consisting of the range data. Feature-based

methods extract some signatures around 3D points, invari-

ant to Euclidean transformation, in each target range im-

age and make correspondences among those features [6, 17,

18]. Based on the assumption that all correspondences are

matched correctly, the transformation for registration can

be computed in a closed form manner. On the other hand, if

the signatures computed from the range images do not pro-

vide enough information and the matching of them cannot

be done correctly, the registration stage can fail miserably.

Point-based methods directly use the 3D points in an itera-

tive manner. The point mates, the point correspondences to

compute the error metric, are dynamically updated and sev-

eral iterative steps are used to minimize the total error. One

drawback of this point-based approach is that it requires an

initial estimation of the rough transformation between the

target range images, which is normally provided by human

hand or interaction, while most feature-based approaches

do not have this requirement.

Error metric: point-point distance or point-plane dis-

tance Originally, point-based approaches, such as the ICP

algorithm [4, 28], set the error metric basis on the Eu-

clidean distance between two points corresponding each

other [10, 20]. However, since this error metric does not

take the surface information into account, the point-based

approaches based on point-point distance suffer from the

inability to “slide” overlapping range images. An alterna-

tive to this distance metric is to use point-plane Euclidean

distance, which can be computed by evaluating the distance

between the point and its mate’s tangent plane [6, 22]. By

embedding the surface information into the error metric in

this way, point-based approaches utilizing point-plane dis-

tance metric tend to be robust against local minima and

converge quickly. However, computing the point-plane dis-

tance is computationally expensive compared with point-

point distance computation; thus, methods using viewing

direction to find the correspondence are also proposed for

efficiency [1, 5, 22].

2.2 Our Approach

Taking into account the consideration described above,

we have designed a registration algorithm which is i) based

on the simultaneous strategy, ii) using points as matching

units, iii) with the point-point distance metric. The frame-

work is inspired by the work of Wheeler et al [26, 27], that

applied similar techniques for object recognition and local-

ization.

We want to construct the geometric model to be as ac-

curate as possible. Also as future work, we would like to

accomplish appearance analysis making considerable use

of the geometry. For this reason, as a preliminary step,

we attach more importance to robustness and accuracy than

to computational expense in the registration method. This

causes us to choose a simultaneous strategy, which is accu-

rate in principle.

We employ points as matching units. Although the laser

range scanner we use is quite accurate, still the distance to

the object is large and the measurement condition is poor

in many cases. Because the scanned range images include

noise, the information computed from them will be even

more corrupted by that noise. Thus, we avoid using any

secondary features derived from raw range data; instead,

we directly use data points as matching units.

We use the point-point distance metric. Due to the noise

problem, as mentioned above, we have to avoid obtaining

secondary features, surface normals in this case, and thus,

cannot use the point-plane metric that requires us to calcu-

late surface normals. It is also true that point- point metric

is less expensive in computational cost than the point- plane

metric, and is preferable when the data set is very large.

The overall simultaneous registration framework can be

described as an iteration of the following procedure until it

converges.

Procedure OneStepOfSimultaneousRegistration

Array KDTrees, Scenes, PointMates, Transforms

foreach r in AllRangeImages

KDTrees[r] = BuildKDTree(r)

foreach r in AllRangeImages
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foreach s in AllRangeImage-r

Scenes[s] = s

foreach i in Pointsof(r)

foreach s in Scenes

PointMates[i] += CorrespondenceSearch(i,

KDTree[s])

Transforms[r] = TransformationStep(PointMates)

TransformAll(AllRangeImages, Transforms)

We basically extend the framework of the pairwise ICP

algorithm to handle multiple range images simultaneously.

This is achieved by setting up an objective function to min-

imize globally, with respect to each of the range images.

Defining model as the particular range image in interest and

scene as one of the range images in the rest of range im-

age set, in one simultaneous registration loop, each range

image becomes a model once. Point mate search (search

for nearest neighbor point) for each point in the model is

done against all scene range images (M − 1 if we have M
range images), and they are stored in a global array. Rigid

transformation for the current model is computed in a conju-

gate gradient search framework utilizing M-estimator, and

is stored in a global array. After each range image has be-

come a model once, all range images are transformed us-

ing the transformation stored in the global array. Note that

each range image is not transformed immediately. Consid-

ering that each step transformation evaluated inside one si-

multaneous registration procedure will not be so large, this

latency of transformation will not cause a problem. Further-

more, this timing of transformation saves us a large amount

of computational time, since construction of k-d trees is re-

quired only once per range image in one simultaneous regis-

tration procedure. Details will be discussed in the following

sections.

3 Point Mate Search

3.1 K-D Tree

As we try to register range images that consist of a large

amount of 3D points, finding correspondences for each

point in each range image can easily dominate a critical

portion of the overall computational time. To obtain point

correspondences efficiently, we employ k-d tree structure

to store the range images [11]. K-d tree’s k-d abbreviates k-

dimensional and it is a generalization of a binary-search tree

for efficient search in high dimension space. The k-d tree is

created by recursively splitting a data set down the middle

of its dimension of greatest variance. The splitting contin-

ues until the leaf nodes contain a small enough number of

data points.

The k-d tree constructed becomes a tree of depth

O(logN ) where N is the number of points stored. A

nearest-neighbor search can be accomplished by follow-

ing the appropriate branches of the tree until a leaf node

is reached. A hyper-sphere centered at the key point with

a radius of the distance to the current closest point can be

used to determine which, if any, neighboring leaf nodes in

the k-d tree must be checked for closer points. Once have

we tested all the data in leaf nodes which could possibly be

closer, we are guaranteed to have found the closest point in

the tree. Though its worst case complexity is O(N ), the ex-

pected number of operations for the nearest-neighbor search

is O(logN ), which will be the case if the data is evenly dis-

tributed. For the cases of storing surfaces in 3D space in

k-d trees, usually this even distribution assumption holds.

The largest overhead involved in using k-d trees is that the

k-d tree of range-image points must be built prior to the

search. This operation costs O(N logN ). To avoid making

this computational expense critical, we update each range

image position only once in one simultaneous registration

procedure as listed in the psuedo code in section 2.2, requir-

ing only M times of k-d tree rebuilds in one global iteration,

where M is the number of range images.

3.2 Distance Metric

To utilize a nearest-neighbor search based on k-d tree

structure, we need a measure of dissimilarity between a pair

of points. The dissimilarity, ∆, between k-d points x and y

must have the form

∆(x,y) = F (

k
∑

i=1

fi(xi,yi)) (1)

where the functions fi are symmetric functions over a sin-

gle dimension and functions fi and F are monotonic. All

distances satisfy these conditions, including the Euclidean

distance ‖x−y‖. As mentioned in section 2.1, using point-

plane distance as the error metric provides faster conver-

gence . However, the point-plane distance, which can be

computed by

∆(x,y) = (x − y) ·Ny (2)

does not satisfy the monotonic condition. To take advantage

of the efficiency of the k-d tree structure, we use the point-

point Euclidean distance as the dissimilarity measure. Also,

we prefer point-point distance for the sake of robustness;

avoiding the usage of secondary information derived from

raw data, such as surface normals in point-plane, which can

be sensitive to noise in the raw data points.

Figure 1 depicts an example of point correspondences

in the case of using point-point distance metric and point-

plane distance metric. While the point-point distance metric

searches for the nearest neighboring point, meaning estab-

lishing a discrete mapping of one surface to another, the

point-plane distance metric can be considered as a way to

find the continuous mapping of one surface to another. In

cases like Figure 1, where the model surface has to be “slid”

to fit the scene surface, the point-plane approach succeeds

in finding the correspondences that enable us to compute the

rigid transformation close to the sliding direction, while the
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Figure 1. Point correspondences using point-point

and point-plane distance metric.

Figure 2. Images using laser reflectance strength as

pixel values.

point-point approach tends to get stuck in a local minima

because of the inability to find point mates in the sliding di-

rection. This sliding ability of point-plane approaches pro-

vides faster convergence compared with using point-point

distance metric.

To compensate for the inability of sliding in point-point

based distance measurement, we need to attach, to the 3D

points, some information that suggests better matches. For

this purpose, we use the laser reflectance strength value (re-

ferred to as RSV in the rest of this paper) as an attribute of

each 3D point. Most laser range finders return the strength

of the laser reflected at each surface point that it measured as

an additional output value. Figure 2 shows two images with

RSVs used as the pixel values. For better visualization, the

images are histogram-equalized. As can be seen, the RSVs

are mostly invariant against Euclidean transformation, since

the dominant factor of the power of laser reflected at an ob-

ject surface is its surface material. One common method

to utilize two different sources of information in distance

measurement, in this case the position distance and RSV

distance, is to set up a combined metric, such as

∆(x,y) = [(xx−xy)2+(yx−yy)2+(zx−zy)2+λ(rx−ry)2]
1

2

(3)

where r is RSV and λ is a constant scalar. However, this

scalar introduces a tedious and ad hoc effort to determining

model

scene

Figure 3. Point mates using point-point distance

metric with reflectance strength values. Different

shape marks indicate different reflectance strength

values.

the “best” λ. Instead, we use the reflectance to determine

the best pair among candidates of closest points. Namely,

we first search for multiple (m) closest points in the k-d tree,

and then evaluate the RSV distance for each of them to get

the closest point with respect to laser reflectance strength

value. We gradually reduce the number of the candidates

m along the iteration so as to make it inversely proportional

to the number of iterations. This utilization of the laser re-

flectance is similar to [19], which uses color attributes to

narrow down the closest point candidates. Figure 3 depicts

how the point-point distance metric utilizing RSV as addi-

tional attribute works in the example case depicted in Figure

1 (m = 4 in this example).

3.3 Speeding Up

Even though we employ k-d tree structure for efficient

point correspondence search, when the number of points in

the target range images get a large, the computational cost

becomes massive. In early stages of the simultaneous reg-

istration, when the range images are widely distributed, it

is more important to get them close to each other than to

accurately compute the rigid transformation for each regis-

tration step. To provide a way to speed up the registration,

we subsample each range image to reduce the number of

points used in the registration process. The points in each

range image are given a sequential identification number

m = 0, .., M − 1 and a uniformly distributed random num-

ber within the interval [0, M −1] is generated to pick up the

points to be used. The seed number to generate the random

numbers is common for all range images in one simultane-

ous registration procedure and updated once per one global

registration step. In the current implementation, we allow

the user to determine the percentile of points to be used in

each range image interactively. In future implementation,

this could be done automatically by first using small per-

centage and gradually increasing it to reach one hundred

percent.

As the range images are set to be still in one iteration of

simultaneous registration, it is very easy to make the whole
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framework run in a parallel manner. In our current imple-

mentation, constructing k-d trees and search points mates

and computing transformation steps are done in threads,

providing high scalability.

4 Least-square Minimization Strategy
4.1 Representing Transformation

Given a set of corresponding points (xi,yi) where i =
0, ..., N−1, the registration problem is to compute the rigid

transformation which registers the model points x i with

their corresponding scene points yi. The rigid transforma-

tion can be specified by a pair of a 3 × 3 rotation matrix

R and a 3D translation vector t. When the corresponding

points are aligned with each other, yi can be written as

yi = Rxi + t (4)

Since range data points will be contaminated by noise, the

range image registration problem can be described as an

error minimization problem with the error function as fol-

lows:

f(R, t) =
∑

i

‖Rxi + t− yi‖
2 (5)

to minimize with regard to (R t). As mentioned in section

2.2, i will stand for all point mates established from all pairs

of range images (if there are M range images, i will include

all point mates from M × (M − 1) range image pairs). Al-

though it is convenient for vector computation to represent

the rotation as a 3 × 3 matrix R, R will be constrained in a

non-linear way as follows (T stands for transpose):

RRT = I

|R| = 1

It is difficult to take advantage of the linear matrix represen-

tation of rotation while satisfying these constraints. For this

reason, we will use the quaternion representation for rota-

tion, which is a well known solution to this rotation prob-

lem. (The benefits of using quaternion will be described

later.) Thus, the position parameters of each range image

and the rigid transformation to register all of them will be

represented with seven element vectors as follows:

p = [tT qT ]T (6)

where q = [u v w s]T

4.2 M-Estimator

As seen in section 4.1, the registration problem can be

described as a least-square minimization problem with the

objective function equation (5). Point correspondences are

acquired using the techniques described in section 3. On

solving this error minimization problem, we will have to

deal with two problems,

Poor initial correspondences We must assume that the

point correspondences established in the beginning

will include a large number of mismatches.

Outliers Even when most of the point correspondences are

correct, we still have to deal with outliers resulting

from mismatches and noise-corrupted data points.

The underlying problem here is how to robustly reject out-

liers. The following three representative classes of solutions

can be found in the field of robust statistics. The first class

of solutions, outlier thresholding, is the simplest and most

computationally cheap technique; thus it is the most com-

mon technique used in vision applications. The basic idea is

to estimate the standard deviation σ of the errors in the data

and to then eliminate data points which have errors larger

than |kσ| where k is typically greater than or equal to 3.

The problem of outlier thresholding is that a hard thresh-

old is determined to eliminate the outliers. This means that,

regardless of where the threshold is chosen, some number

of valid data points will be classified as outliers and some

number of true outliers will be classified as valid. In this

sense, it is unlikely that a perfect method for selecting the

threshold exists unless the outliers are all known a priori.

The second class of robust estimators is the median/rank

estimation method. The basic idea is to select the median

or kth value (for some percentile k) with respect to the er-

rors for each observation and to then use that value as our

error estimate. The logic behind this is that the median is

almost guaranteed not to be an outlier as long as half of the

data is valid. An example of median estimators is the least-

median-of-squares method (LMedS). LMedS computes the

parameters of interest which minimize the median of the

squared error computed from all data pairs using that pa-

rameter. Essentially, this requires an exhaustive search of

possible values of the parameters by testing least-squares

estimates using that parameter for all possible combinations

of point correspondences. While these median-based tech-

niques can be very robust, this exhaustive search remains a

large drawback.

The third class of robust techniques is M-estimation; the

technique we use. The general form of M-estimators allows

us to define a probability distribution which can be maxi-

mized by minimizing a function of the form

E(z) =
∑

i

ρ(zi) (7)

where ρ(z) is an arbitrary function of the errors zi in the

data set. The M-estimate is the maximum-likelihood esti-

mate of the probability distribution P equivalent to E(z).
Least-squares estimation, such as minimizing (5), corre-

sponds to M-estimation with ρ(z) = z2.

P (z) = e−E(z) = e−
�

i
z2

i (8)

We can find the parameters p that minimize E by taking the

derivative of E with respect to p and setting it to 0.

∂E

∂p
=

∑

i

∂ρ

∂zi

·
∂zi

∂p
=

∑

i

w(zi)zi

∂zi

∂p
= 0 (9)

where w(z) = 1
z

∂ρ
∂z
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As can be seen in (9), M-estimation can be interpreted as

weighted-least square minimization, with the weight func-

tion w being a function of data points z i. In our current

implementation, we use the Lorentz function as the M-

estimator because we found it to work best with our range

image data.

4.3 Putting It Together

Now, we can redefine our registration problem as

follows: Given a set of corresponding points (x i,yi)
(i=0,...,N-1), we will minimize

E(p) =
1

N

N
∑

i

ρ(zi(p)) (10)

where zi(p) = ‖R(q)xi + t− yi‖ (11)

and ρ(zi) = log(1 +
1

2
z2
i ) (12)

The minimization of function E can be accomplished in a

conjugate gradient search framework. Conjugate gradient

search is a variation of gradient descent search; it constrains

each gradient step to be conjugated to the former gradi-

ent step. This constraint avoids much of the zig-zagging

that pure gradient descent will often suffer from, and con-

sequently provides faster convergence.

In applying conjugate gradient search to our minimiza-

tion problem, we need to compute the gradient of function

E with respect to pose parameter p which can be described

as equation (9). For the following derivations, we redefine

zi to be

zi(p) = ‖R(qxi) + t− yi‖
2 (13)

A priori to the computation of the gradient, we pre-rotate

the model points, so that the current quaternion is q I =
[0 0 0 1]T which has the property that R(qI) = I. This

allows us to take advantage of the fact that the gradient of

R(q)x can easily be evaluated at q = qI :

∂(Rx)

∂q
x = 2C(x)T b (14)

where C(x) is the 3× 3 skew-symmetric matrix of the vec-

tor x which has the useful characteristic as follows.

C(x)y = x× y (15)

where × is the cross product. With these facts, ∂zi

∂p
in equa-

tion (9) can be derived as

∂zi

∂p
= 2(R(q)xi + t− yi)

∂(R(q)xi + t− yi)

∂p

=

[

2(xi + t− yi)
4C(x)T (xi + t− yi)

]

=

[

2(xi + t− yi)
4xi × (t− yi)

]

(16)

With the gradient computed in the above manner, line

minimization is accomplished with a golden section search.

Line minimization methods using interpolation are not

adopted, since it is easy to imagine the base function to be

highly non-linear.

Figure 4. Initial positions of the Noisy Cat sequence.

5 Results

5.1 Noisy Range Images

To examine its robustness against noise, we applied the

proposed method to a noisy range image sequence. We built

a light stripe range finder [24], and scanned a ceramic cat.

By setting the threshold of the light stripe range finder to

include quite an amount of background and not to eliminate

ill triangle patches (triangle patches that have large aspect

ratios), we obtained three range images including a lot of

noise. To compare the proposed method with the registra-

tion method proposed in [22] 2, the range images were ini-

tially aligned with each other by means of human interac-

tion as depicted in Figure 4. 3 After iterating both methods

until convergence, we eliminated all 3D points and triangle

patches that did not belong to the ceramic cat and measured

the errors by using a point-plane distance metric. Table 1

shows the results and Figure 5 depicts the histograms of

errors for both methods. Our method converged robustly,

while the method of [22] converged into a local minima,

leaving a gap as can be seen in Figure 6.

Average Error Max. Error Min. Error

Our method 0.84 2.55 5.35× 10−7

[22] 1.29 2.57 3.21× 10−5

Table 1. Comparison of errors in mm.

5.2 Preserving Cultural Heritage Objects

We have applied the proposed method to register real

data, the Great Buddha in Kamakura (Figure 7): a 13m tall

statue sitting in open air. The Great Buddha was scanned

from fourteen different directions using Cyrax 2400 [14], a

2We implemented the registration method in [22] based on the paper,

meaning the comparison may not be fair.
3With more rough initial hand alignment, the other registration method

did not converge.
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Figure 5. Histogram of errors.

Figure 6. Left: Registered with [22] Right: Regis-

tered with our method.(Viewing from the top left of

the cat.)

time-of-flight laser range scanner that can scan up to 100m

with ±6mm error at 50m distance. Each point cloud im-

age consists of approximately three to four million vertices.

Since registering all range images with full resolution re-

quires massive computational resource and time, we regis-

tered those range images in 1/25 resolution as a preliminary

experiment.

First the input range images were registered in a pair-

wise manner with occasional human interaction for initial

alignment; they were then registered simultaneously. The

variance of Lorentz’s function was set large in the begin-

ning and then gradually decreased each time the registra-

tion procedure converged with a particular variance value.

Rough initial pairwise alignment was accomplished with

around five to ten iterations, and the final simultaneous reg-

istration was done with 25 iterations. Figure 8 depicts the

M-estimator error for each iteration for the last 25 itera-

tion. Since all range images are treated to be static inside

Figure 7. A photograph of the Great Buddha in Ka-

makura City.

0 10 20
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1.5

1.6

Iteration number

M-estimator error

0 10 20

1.4

1.5

1.6

Iteration number

M-estimator error

Figure 8. M-estimator error v.s. iteration number

each iteration, the M-estimator error does not always get

smaller after each iteration compared with the former itera-

tion. However, because the error is guaranteed to decrease

inside each iteration, it is clear that the algorithm converges

to a certain minimum which is shown in the graph.

Figure 9 shows the resulting Great Buddha rendered as a

point cloud.

6 Conclusion and Future Work
We have proposed a framework to simultaneously reg-

ister multiple range images. The simultaneous registration

problem is redefined as a least- square problem with an ob-

jective function globally constructed with respect to each

range image. For efficiency, we employ k-d tree structure

for fast point correspondence search and apply conjugate

gradient search in minimizing the least-square problem for

faster convergence. For robustness, we employ the laser re-
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Figure 9. Registered Great Buddha.

flectance strength as an additional attribute of the 3D points

and search for “better” point mates based on their distance.

Also, M-estimator is used for robust outlier rejection.

For future work, we plan to automate initial estimation

of the rigid transformations to pass to the simultaneous reg-

istration program, which is currently done by human inter-

action.
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