
Robust Sketched Symbol Fragmentation using Templates
Heloise Hse

Department of Electrical Engineering
and Computer Sciences

University of California at Berkeley
Berkeley, CA 94720, U.S.A.

+1 510 642 2481

hwawen@eecs.berkeley.edu

Michael Shilman
Microsoft Research
One Microsoft Way

Redmond, WA 98052
+1 425 722 5853

shilman@microsoft.com

A. Richard Newton
Department of Electrical Engineering

and Computer Sciences
University of California at Berkeley

Berkeley, CA 94720, U.S.A.
+1 510 642 5771

newton@eecs.berkeley.edu

ABSTRACT
Analysis of sketched digital ink is often aided by the division of
stroke points into perceptually-salient fragments based on
geometric features. Fragmentation has many applications in
intelligent interfaces for digital ink capture and manipulation, as
well as higher-level symbolic and structural analyses. It is our
intuitive belief that the most robust fragmentations closely match
a user’s natural perception of the ink, thus leading to more
effective recognition and useful user feedback. We present two
optimal fragmentation algorithms that fragment common
geometries into a basis set of line segments and elliptical arcs.
The first algorithm uses an explicit template in which the order
and types of bases are specified. The other only requires the
number of fragments of each basis type. For the set of symbols
under test, both algorithms achieved 100% fragmentation
accuracy rate for symbols with line bases, >99% accuracy for
symbols with elliptical bases, and >90% accuracy for symbols
with mixed line and elliptical bases.

Categories and Subject Descriptors
I.4.6 [Image Processing and Computer Vision]: Segmentation –
edge and feature detection.

General Terms
Algorithms, Human Factors.

Keywords
Curve segmentation, perceptual grouping, shape templates, fitting,
sketch-based user interface, HCI

1. INTRODUCTION
Sketching is a simple and natural mode of expression. It is
especially desirable for conceptual design, both on an individual
basis and in a collaborative environment. With a sketch-based
user interface, one can have the freedom of sketching on paper

and the benefit of an electronic design tool [9]. If a sketch system
also includes a recognition capability, sketches can be interpreted
and augmented with semantics so that they can be edited easily,
efficiently searched, and neatened.

There has been a significant amount of research to date in various
aspects of sketch-based user interfaces: interactive design tools
[12, 13], studies of gestures [15], software toolkits [10], ink
beautification [11], and sketch recognition [1, 24]. However,
relatively little work has focused on the fragmentation of hand-
sketched symbols (e.g. [4, 21, 25]). Fragmentation is a perceptual
analysis of ink strokes in which stroke points are clustered into
geometrically salient primitives, such as line segments and
elliptical arcs. Figure 1 shows an example fragmentation of a
sketched square and the ways that the resulting fragmentation can
be utilized.

Figure 1. (a) An initial stroke, (b) its natural fragmentation
(overlaying the stroke points), (c) a direct manipulation user
interface based on the fragmentation, (d) a beautification of

the stroke.

Fragmentation is a very basic problem, making it widely
applicable to intelligent ink manipulation as well as other higher-
level digital ink analyses. The structural information that it
generates can be useful in the following situations:

• Generating structural descriptions for use in symbol
recognition, especially by structural recognizers [4, 17].

• Locating functional points in a symbol, such as the tip of an
arrowhead, the four corners in a square, etc. (Figure 1c) This
is especially applicable to recognizers that do not perform
structural analysis [2, 8, 14, 20, 25], such as statistical
recognizers [8, 20, 25].

• Automatically ‘neatening’ a symbol using the geometric
primitives which result from fragmentation (Figure 1b).
Further beautification of the symbol can be based on the
recognition result or geometric properties such as parallel
lines, right angles, etc. (Figure 1d) [11]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.
Copyright 2004 ACM 1-58113-815-6/04/0001…$5.00.

(a) (b) (c) (d)

• Providing a direct manipulation user interface with which to
interact with sketched ink (Figure 1c). For example, Saund's
PerSketch provides fluid interaction with sketch fragments
based on perceptual salience [22].

Most segmentation techniques in image processing target nicely
printed symbols and do not scale well to hand-sketched symbols
due to the noise and distortion in sketches. Sezgin [23], and later
Calhoun [4], used both curvature and speed information in a
stroke to locate breakpoints. Yu applied the mean shift procedure
to approximate strokes [27]. Saund's approach to fragmentation
uses more perceptual context, including local features such as
curvature and intersections, as well as more global features such
as closed paths [21]. However each of these methods is still
susceptible to over- and under-fragmentation of strokes. Their
methods use empirical thresholds to test the validity of an
approximation which ultimately leads to the problem of a
threshold being too tight or too loose. A noisy stroke that just falls
outside the threshold will not be fragmented correctly.

In this paper, we describe a robust fragmentation approach that
generates consistent and correct structural descriptions of symbols
such that the resulting fragmentations closely match human
perception. Fischler and Bolles [7] suggest that humans have a
rich visual vocabulary of iconic primitives with which to impart
structure to data. When given a geometric symbol, the human
visual system easily identifies an optimal fragmentation, even in
the presence of noise, based on a mental model of that symbol.

We build on this observation to create a simple and efficient
fragmentation model based on templates. The first type of
fragmentation template is an ordered sequence consisting of line
segments and elliptical arcs. Given a sketch and a template, our
algorithm determines the optimal set of breakpoints for the
fragmentation of the sketch according to the template. The
second type of template consists of only the number of line
segments and the number of elliptical arcs and is equivalent to the
first template without the ordering information. Both methods are
simple and are free of empirical thresholds.

In Section 2, we elaborate on our choice of line segments and
elliptical arcs as basis geometries. In sections 3 and 4, we present
the two template-based fragmentation algorithms based on a
Dynamic Programming (DP) approach. Implementation and
results are discussed in Section 5.

2. BASIS FRAGMENTS
The choice of basis representation for fragmentation is dependent
on the application. Our objective is to fragment a wide variety of
sketched symbols (e.g. squares, ovals, trapezoids, pentagons, etc.)
into simpler structures such that they are both faithfully
represented and less complex than their original form. There are a
number of published approaches to polygonal approximation in
which planar curves are fragmented into line segments. While
such approaches make approximation simpler, since only a first-
degree polynomial is used, it is ineffective to represent smooth
curves with lines. Curves can be approximated using higher order
primitives such as circular arcs [26], ellipses [16] and splines [5],
but significantly more computation is required when these
additional parameters are involved. In this work, we chose to use
segmented ellipses in our basis over circular arcs because we have
found such approximation provides a more concise and natural

fitting result for the family of symbols we are working with now
and are likely to work with in the future. Although higher order
polynomials (e.g. splines) can be used to interpolate and/or
approximate a set of points, they are far less likely to provide
useful structural information for later use in symbol recognition.

It should also be noted that the algorithms introduced in this paper
are not limited to fragmentation with line and ellipse bases.
Rather, these algorithms provide a general structure for optimal
fragmentation, and any basis can be easily substituted.

3. OPTIMAL FRAGMENTATION USING
ORDERED TEMPLATES
There have been several earlier attempts to produce optimal
solutions for curve partitioning with constraints [3, 18]. Bellman
was the first to use DP for curve approximation with line
segments [3] given that the analytic expression of the curve is
known. Perez [18] used a DP approach to optimally approximate
a digitized curve with a given number of line segments. Our
method extends the basis of primitives from lines to lines and
elliptical arcs. In addition, our algorithms can be applied to
multiple strokes, not just one. For the remainder of this paper, we
will use the word basis to mean either a line segment (L) or an
elliptical arc (E).

If the stroke order of a sketched symbol is known, the template
can be described as an ordered sequence of L’s and E’s. For
example, the template for the character symbol ‘D’, in which the
vertical line is drawn before the elliptical arc, is ‘LE’. Of course,
if a symbol consists of only one type of basis, ordering is not an
issue. In this section, we present an algorithm that optimally
fragments a given sequence of strokes with this form of template
(an ordered sequence of L’s and E’s).

3.1 Problem Formulation
Given a sketched symbol S and a template T, find a set of
breakpoints in S such that the fitting performed according to T
yields the minimum fit error. The sketched symbol S consists of a
sequence of strokes {S1, S2, ..., SN} and each stroke Si contains a
sequence of timed-ordered points {Pi

1, Pi
2, ..., Pi

M}. The template
T is a string of L's and E's. For example, the template for squares
would be LLLL and the template for P’s would be LE or EL
depending on the stroke order. The number of breakpoints
needed to be identified is K=T.len-N, where T.len is the number of
basis fragments in T, and N is the total number of strokes. The
fragmentation algorithm requires symbols to contain fewer strokes
than the number of basis elements to fit.

3.2 A Dynamic Programming Algorithm
The problem of "fitting to a template" is an optimization problem
in which the goal is to minimize the error from fitting a shape
with basis elements by identifying an optimal set of breakpoints.
Suppose k breakpoints are needed to fragment S into T, a brute-
force approach would do an exhaustive search on all
combinations of k breakpoints. This approach requires testing
mCk (m choose k) sets of breakpoints, where m is the total number
of data points in S. The number of combinations is exponential in
the size of m, and therefore this exhaustive search method is a
poor strategy and not practical for use in interactive applications.

Below, we describe a polynomial time algorithm that is simple
and optimal using a DP approach.

First, we define the optimal substructure for the fragmentation
problem. An optimal fragmentation of S that chooses a breakpoint
at Pi

j contains the optimal fragmentation of the stroke(s) up to Pi
j.

In other words, to find an optimal fragmentation of S with
template T, one assumes that the optimal solution for fragmenting
everything up to Pi

j with a template T[1...T.len–1] has been
computed, and the piece from Pi

j to the end is then fit with
T[T.len].

Next, a recursive solution is defined based on this optimal
substructure. Let d(n,m,k,t) be the minimum fitting error to
approximate every point up to the mth point in the nth stroke with
the template t, and let f(Sn,i,m,t[j]) be the fitting error resulting
from fitting the segment from Pn

i to Pn
m using t[j]. If t[j] is 'E',

elliptical fitting on the data points is performed [19]; if t[j] is 'L',
total least square fitting is performed [6]. The best fragmentation
for S with N strokes using K breakpoints and a template T would
thus be d(N,MN,K,T) where MN is the index of the last point in SN.

d(n,m,k,t) is defined as follows. When k=0, each of the first (n–1)
strokes is fit with the corresponding basis in the template and the
segment from Pn

0 to Pn
m in the nth stroke is fit with the last

primitive in the template. When n=1 and k>0, a choice has to be
made on a point Pn

i to be the breakpoint and i>k, otherwise the
number of breakpoints required would exceed the number of data
points available. When n>1 and k>0, in addition to checking the
best breakpoint to use in Sn, the previous stroke (Sn–1) must also
be checked because it is possible that the best breakpoint may lie
in any of the previous strokes. Due to the optimal substructure,
the optimal fragmentation for the last point in the previous stroke
Sn–1 is all that must be checked. The recursive definition for
fragmentation of S is given in Figure 2. The algorithm has a run

time complexity of O(K×M2) where K is the number of
breakpoints and M is the total number of data points. The space
requirement is O(K×M) for keeping a table of solutions to the
sub-problems.

4. OPTIMAL FRAGMENTATION USING
UNORDERED TEMPLATES
If the basis ordering information is not known (i.e. only the
number of each type of basis element, “E” or “L”, are passed into
the fragmentation routine), the fragmentation problem becomes
more complex. In a naïve approach, the algorithm presented in the
previous section could be applied to each combination of the basis
elements. The combination that yields the least fit error is selected
as the optimal fragmentation of the sketched symbol. For a
template consisting of l L’s and e E’s, there are a total of (l+e)Ce
number of orderings. This number is exponential in the size of l
and e. Using DP, this problem can be solved in polynomial time
O(K×M2×l×e). This result is more efficient than using DP to
solve all (l+e)Ce combinations since the solutions to each of the
overlapping sub-problems is only computed once. Given a set of
strokes and the number of lines (l) and ellipses (e), Figure 3
shows a recursive solution based on DP for optimal fragmentation
of the set of strokes.

5. IMPLEMENTATION AND DISCUSSION
Our target class of application for this work is one that has a
bounded set of target symbols from which to select (e.g. a UML
diagram editor, a slide drawing program like Microsoft
PowerPoint, or an electrical schematic editing tool). We have
implemented both algorithms and tested them on user sketched
symbols collected from 17 users. Each user was asked to sketch
≈30 examples for each of the 10 symbols shown in the top two

()
() ()
() (){ }
() ()

() (){ }













>>












+−−
+−−

>=+−

=+








=

<<

−

<<

−

=
∑

0,1 if ;
]len.[,,,]1len....1[,1,,min

,]len.[,,0,]1len....1[,,,1
min

0,1 if ;]len.[,,,]1len....1[,,,min

0 if ;][,,0,][,,0,

,,,

1

1

1

1

kn
ttmiSfttkind

ttmSfttkMnd

knttmiSfttkind

kntmSfitMSf

tkmnd

n
mi

nn

n
mik

n

n

i
ii

Figure 2. Optimal fragmentation of a sequence of strokes, {S1, …, Sn} to a sequence of E’s and L’s using DP.

()

()
()

() (){ }
() (){ }

() ()
() ()

() (){ }
() (){ }


















>>>

























+−−
+−−
+−−
+−−

>>=












+−−
+−−

=
=

=

<<

<<

−

−

<<

<<

0 0, 1, if ;

'E',,,,1,1,,min

,'L',,,1,,1,,min

,'E',,0,,1,,,1

,'L',,0,1,,,,1

min

0 0, 1, if ;
,'E',,,,1,1,,min

,'L',,,1,,1,,min
min

0 if ;sL' of string a is ,,,,

0 if ;sE' of string a is ,,,,

,,,,

1

1

1

1

eln

miSflekind

miSflekind

mSflekMnd

mSflekMnd

eln
miSflekind

miSflekind
elttkmnd

lettkmnd

lekmnd

n
mi

n
mi

nn

nn

n
mik

n
mik

Figure 3. Optimal fragmentation of a sequence of strokes, {S1, …, Sn} to a set of E’s and L’s using DP.

rows of Figure 4. The data set contains a total of 5,928 examples
overall and about 540 examples per symbol. The first algorithm
using ordered template was evaluated against human perception of
breakpoints. A correct fragmentation consists of breakpoints in
the places where one would expect them to be. The second
algorithm using unordered templates is evaluated by checking
both the breakpoint placement and the correctness of the
templates it generates. For all symbols, except crescents and
arches, both algorithms achieved 100% accuracy rate in
identifying the correct set of breakpoints. For crescents and
arches, the algorithms were able to achieve over 99%
fragmentation accuracy. To further evaluate the algorithms on
symbols consisting of mixed line segments and elliptical arcs,
three more symbols are introduced (cylinders, callouts and
plaques shown in the bottom row of Figure 4). We collected
these data from 8 users and obtained ≈150 examples per symbol.
The overall results are shown in Table 1.

Figure 4. Symbol set used in evaluation: triangle, square,
trapezoid, parallelogram, pentagon, hexagon, oval, crescent,

heart, arch, cylinder, callout, and plaque.

Table 1. Fragmentation accuracy result for both algorithms

Ordered

templates (%)

Unordered

templates (%)

Triangles 100 100

Squares 100 100

Trapezoids 100 100

Parallelograms 100 100

Pentagons 100 100

Hexagons 100 100

Ovals 100 100

Crescents 99.62 99.62

Hearts 100 100

Arches 99.82 99.08

Cylinders 98.04 95.42

Callouts 99.34 99.34

Plaques 93.38 90.07

From the experimental data, it is evident that both fragmentation
algorithms are robust. The analysis on mis-fragmented examples
showed that the breakpoints were mis-identified at connection
points of a line segment and an elliptical arc due to the fact that
the transition from one to the other is often blended and

indistinguishable, especially under quick pen motion. Figure 5
shows the result of the ordered-template algorithm performed on
seven sketched symbols. The circles on a symbol indicate the
breakpoints computed by the algorithm. We consider breakpoints
to be interior points in a stroke, and therefore the first and last
points of a stroke are not considered to be breakpoints, even
though they may form a corner. All of our experiments were
performed on symbols in their original sketched form without any
preprocessing (e.g. de-hooking, point reduction, smoothing, etc.)

Figure 5. Sketched symbols, fragmentations, and templates.

When no information about the number of L’s or E’s is given, the
fragmentation problem becomes less tractable. Given an error
threshold, an optimal fragmentation that uses the fewest number
of segments to achieve an approximation error below the
threshold can be obtained by testing with 1 L, 1 E, 2 L’s, 2 E’s, 1
L and 1 E, and so forth, using the aforementioned algorithm with
a different unordered template each time. The complexity of this
approach is exponential, which is not practical for real-time

LLLLL

LLLLLL

LELE

EEE

EELEL

LELELELE

EE

applications. This problem is similar to the general curve
partitioning problem since no information about L’s and E’s is
given. Many heuristic methods have been developed to address
the problem in image processing, however these methods are
highly problem dependent (e.g. industrial parts inspection, map
contour approximation in images) and do not adapt well to
fragmenting sketched symbols due to distortion and imprecise
nature of sketches. For example, in hand-sketched symbols,
corners may not always be sharp, lines may not be straight, and
curves may not be smooth. If some information such as ordered
bases, unordered bases, or even the number of fragments can be
obtained, the fragmentation problem becomes much more
tractable and our DP algorithms provide a robust method for
fragmentation.

6. CONCLUSION
In this paper, we considered two types of fragmentation templates.
One specifies a sequence of lines and ellipses and the other
specifies the number of lines and ellipses. The methods, based on
dynamic programming, are efficient and robust. The result shows
that the fragmentations closely match human perception. The
fragmentation accuracy rate is 100% for the symbols with line
bases, >99% for the symbols with elliptical bases, and >90% for
the symbols with mixed line and elliptical bases.

7. REFERENCES
[1] Alvarado, C., Oltmans, M. and Davis, R., A Framework for

Multi-domain Sketch Recognition. in 2002 AAAI Spring
Symposium - Sketch Understanding, (Palo Alto CA, 2002),
AAAI Press, 1-8.

[2] Apte, A., Vo, V. and Kimura, T.D., Recognizing
Multistroke Geometric Shapes: An Experimental
Evaluation. in UIST 1993, (Atlanta Georgia, 1993), ACM
Press, 121-128.

[3] Bellman, R. On the Approximation of Curves by Line
Segments using Dynamic Programming. Commun. ACM, 4
(6). 284.

[4] Calhoun, C., Stahovich, T.F., Kurtoglu, T. and Kara, L.B.,
Recognizing Multi-Stroke Symbols. in 2002 AAAI Spring
Symposium - Sketch Understanding, (Palo Alto CA, 2002),
AAAI Press, 15-23.

[5] Chang, H. and Yan, H. Vectorization of Hand-drawn Image
using Piecewise Cubic Bezier Curves Fitting. Pattern
Recognition, 31 (11). 1747-1755.

[6] Duda, R.O. and Hart, P.E. Pattern Classification and Scene
Analysis. Wiley Press, New York, 1973.

[7] Fischler, M.A. and Bolles, R.C. Perceptual Organization
and Curve Partitioning. IEEE Trans. PAMI, 8 (1). 100-105.

[8] Fonseca, M.J., Pimentel, C. and Jorge, J.A., CALI: An
Online Scribble Recognizer for Calligraphic Interfaces. in
2002 AAAI Spring Symposium - Sketch Understanding,
(Palo Alto CA, 2002), AAAI Press, 51-58.

[9] Hearst, M.A., Gross, M.D., Landay, J.A. and Stahovich,
T.F. Sketching Intelligent Systems. IEEE Intelligent System,
3 (3). 10-19.

[10] Hong, J.I. and Landay, J.A. SATIN: A Toolkit for Informal
Ink-based Applications. CHI Letters: ACM Symposium on
User Interface Software and Technology: UIST 2000, 2 (2).
63-72.

[11] Igarashi, T., Matsuoka, S., Kawachiya, S. and Tanaka, H.,
Interactive Beautification: a Technique for Rapid Geometric
Design. in UIST 1997, (Canada, 1997), 105-114.

[12] Landay, J.A. and Myers, B.A. Sketching Interfaces: Toward
More Human Interface Design. IEEE Computer, 34 (3). 56-
64.

[13] Lin, J., Newman, M.W., Hong, J.I. and Landay, J.A.
DENIM: Finding a Tighter Fit between Tools and Practice
for Web Site Design. CHI Letters: ACM Symposium on
User Interface Software and Technology: UIST 2000, 2 (1).
510-517.

[14] Lipscomb, J.S. A Trainable Gesture Recognizer. Pattern
Recognition, 24 (9). 895-907.

[15] Long, A.C., Landay, J.A. and Rowe, L.A. Visual Similarity
of Pen Gestures. CHI Letters: ACM Symposium on User
Interface Software and Technology: UIST 2000, 2 (1). 360-
367.

[16] Pavlidis, T. Curve Fitting with Conic Splines. ACM Trans.
on Graphics, 2 (1). 1-31.

[17] Pavlidis, T. Structural Pattern Recognition. Springer-Verlag
Press, Berlin, 1977.

[18] Perez, J. and Vidal, E., An Algorithm for the Optimum
Piecewise Linear Approximation of Digitized Curves. in
11th IAPR International Conference on Pattern
Recognition, (1992), 167-170.

[19] Pilu, M., Fitzgibbon, A. and Fisher, R. Direct Least-Square
Fitting of Ellipses. IEEE Trans. PAMI, 21 (5). 476-480.

[20] Rubine, D. Specifying Gestures by Example. SIGGRAPH
'91, 25 (4). 329-337.

[21] Saund, E. Finding Perceptually Closed Paths in Sketches
and Drawings. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25 (4). 475-491.

[22] Saund, E. and Moran, T., A Perceptually Supported Sketch
Editor. in UIST 1994, (Marina del Rey CA, 1994), ACM
Press, 175-184.

[23] Sezgin, T.M., Stahovich, T. and Davis, R., Sketch Based
Interfaces: Early Processing for Sketch Understanding. in
PUI 2001, (Orlando FL, 2001), ACM Press.

[24] Shilman, M., Pasula, H., Russell, S. and Newton, A.R.,
Statistical Visual Language Models for Ink Parsing. in 2002
AAAI Spring Symposium - Sketch Understanding, (Palo
Alto CA, 2002), AAAI Press, 126-132.

[25] Ulgen, F., Flavell, A. and Akamatsu, N., Recognition of On-
Line Handdrawn Geometric Shapes by Fuzzy Filtering and
Neural Network Classification. in HCI International '95,
(Yokohama, Japan, 1995), 567-572.

[26] West, G. and Rosin, P. Techniques for Segmenting Image
Curves into Meaningful Descriptions. Pattern Recognition,
24 (7). 643-152.

[27] Yu, B., Recognition of Freehand Sketches using Mean Shift.
in IUI 2003, (Miami FL, 2003), 204-210.

