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ABSTRACT 
Analysis of sketched digital ink is often aided by the division of 
stroke points into perceptually-salient fragments based on 
geometric features. Fragmentation has many applications in 
intelligent interfaces for digital ink capture and manipulation, as 
well as higher-level symbolic and structural analyses. It is our 
intuitive belief that the most robust fragmentations closely match 
a user’s natural perception of the ink, thus leading to more 
effective recognition and useful user feedback. We present two 
optimal fragmentation algorithms that fragment common 
geometries into a basis set of line segments and elliptical arcs.  
The first algorithm uses an explicit template in which the order 
and types of bases are specified.  The other only requires the 
number of fragments of each basis type.  For the set of symbols 
under test, both algorithms achieved 100% fragmentation 
accuracy rate for symbols with line bases, >99% accuracy for 
symbols with elliptical bases, and >90% accuracy for symbols 
with mixed line and elliptical bases. 

Categories and Subject Descriptors 
I.4.6 [Image Processing and Computer Vision]:  Segmentation – 
edge and feature detection. 

General Terms 
Algorithms, Human Factors. 

Keywords 
Curve segmentation, perceptual grouping, shape templates, fitting, 
sketch-based user interface, HCI 

1. INTRODUCTION 
Sketching is a simple and natural mode of expression. It is 
especially desirable for conceptual design, both on an individual 
basis and in a collaborative environment.  With a sketch-based 
user interface, one can have the freedom of sketching on paper 

and the benefit of an electronic design tool [9].  If a sketch system 
also includes a recognition capability, sketches can be interpreted 
and augmented with semantics so that they can be edited easily, 
efficiently searched, and neatened. 

There has been a significant amount of research to date in various 
aspects of sketch-based user interfaces: interactive design tools 
[12, 13], studies of gestures [15], software toolkits [10], ink 
beautification [11], and sketch recognition [1, 24].  However, 
relatively little work has focused on the fragmentation of hand-
sketched symbols (e.g. [4, 21, 25]). Fragmentation is a perceptual 
analysis of ink strokes in which stroke points are clustered into 
geometrically salient primitives, such as line segments and 
elliptical arcs.  Figure 1 shows an example fragmentation of a 
sketched square and the ways that the resulting fragmentation can 
be utilized.  

 

 

 

 

 

Figure 1. (a) An initial stroke, (b) its natural fragmentation 
(overlaying the stroke points), (c) a direct manipulation user 
interface based on the fragmentation, (d) a beautification of 

the stroke. 

Fragmentation is a very basic problem, making it widely 
applicable to intelligent ink manipulation as well as other higher-
level digital ink analyses. The structural information that it 
generates can be useful in the following situations: 

•  Generating structural descriptions for use in symbol 
recognition, especially by structural recognizers [4, 17]. 

•  Locating functional points in a symbol, such as the tip of an 
arrowhead, the four corners in a square, etc. (Figure 1c)  This 
is especially applicable to recognizers that do not perform 
structural analysis [2, 8, 14, 20, 25], such as statistical 
recognizers [8, 20, 25].  

•  Automatically ‘neatening’ a symbol using the geometric 
primitives which result from fragmentation (Figure 1b).  
Further beautification of the symbol can be based on the 
recognition result or geometric properties such as parallel 
lines, right angles, etc. (Figure 1d) [11] 
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•  Providing a direct manipulation user interface with which to 
interact with sketched ink (Figure 1c).  For example, Saund's  
PerSketch provides fluid interaction with sketch fragments 
based on perceptual salience [22]. 

Most segmentation techniques in image processing target nicely 
printed symbols and do not scale well to hand-sketched symbols 
due to the noise and distortion in sketches. Sezgin [23], and later 
Calhoun [4], used both curvature and speed information in a 
stroke to locate breakpoints. Yu applied the mean shift procedure 
to approximate strokes [27].  Saund's approach to fragmentation 
uses more perceptual context, including local features such as 
curvature and intersections, as well as more global features such 
as closed paths [21]. However each of these methods is still 
susceptible to over- and under-fragmentation of strokes.  Their 
methods use empirical thresholds to test the validity of an 
approximation which ultimately leads to the problem of a 
threshold being too tight or too loose. A noisy stroke that just falls 
outside the threshold will not be fragmented correctly.   

In this paper, we describe a robust fragmentation approach that 
generates consistent and correct structural descriptions of symbols 
such that the resulting fragmentations closely match human 
perception. Fischler and Bolles [7] suggest that humans have a 
rich visual vocabulary of iconic primitives with which to impart 
structure to data. When given a geometric symbol, the human 
visual system easily identifies an optimal fragmentation, even in 
the presence of noise, based on a mental model of that symbol. 

We build on this observation to create a simple and efficient 
fragmentation model based on templates. The first type of 
fragmentation template is an ordered sequence consisting of line 
segments and elliptical arcs. Given a sketch and a template, our 
algorithm determines the optimal set of breakpoints for the 
fragmentation of the sketch according to the template.  The 
second type of template consists of only the number of line 
segments and the number of elliptical arcs and is equivalent to the 
first template without the ordering information.  Both methods are 
simple and are free of empirical thresholds. 

In Section 2, we elaborate on our choice of line segments and 
elliptical arcs as basis geometries. In sections 3 and 4, we present 
the two template-based fragmentation algorithms based on a 
Dynamic Programming (DP) approach.  Implementation and 
results are discussed in Section 5. 

2. BASIS FRAGMENTS 
The choice of basis representation for fragmentation is dependent 
on the application.  Our objective is to fragment a wide variety of 
sketched symbols (e.g. squares, ovals, trapezoids, pentagons, etc.) 
into simpler structures such that they are both faithfully 
represented and less complex than their original form.  There are a 
number of published approaches to polygonal approximation in 
which planar curves are fragmented into line segments.  While 
such approaches make approximation simpler, since only a first-
degree polynomial is used, it is ineffective to represent smooth 
curves with lines.  Curves can be approximated using higher order 
primitives such as circular arcs [26], ellipses [16] and splines [5], 
but significantly more computation is required when these 
additional parameters are involved. In this work, we chose to use 
segmented ellipses in our basis over circular arcs because we have 
found such approximation provides a more concise and natural 

fitting result for the family of symbols we are working with now 
and are likely to work with in the future.  Although higher order 
polynomials (e.g. splines) can be used to interpolate and/or 
approximate a set of points, they are far less likely to provide 
useful structural information for later use in symbol recognition. 

It should also be noted that the algorithms introduced in this paper 
are not limited to fragmentation with line and ellipse bases.  
Rather, these algorithms provide a general structure for optimal 
fragmentation, and any basis can be easily substituted. 

3. OPTIMAL FRAGMENTATION USING 
ORDERED TEMPLATES  
There have been several earlier attempts to produce optimal 
solutions for curve partitioning with constraints [3, 18]. Bellman 
was the first to use DP for curve approximation with line 
segments [3] given that the analytic expression of the curve is 
known. Perez [18] used a DP approach to optimally approximate 
a digitized curve with a given number of line segments. Our 
method extends the basis of primitives from lines to lines and 
elliptical arcs.  In addition, our algorithms can be applied to 
multiple strokes, not just one.  For the remainder of this paper, we 
will use the word basis to mean either a line segment (L) or an 
elliptical arc (E).  

If the stroke order of a sketched symbol is known, the template 
can be described as an ordered sequence of L’s and E’s.  For 
example, the template for the character symbol ‘D’, in which the 
vertical line is drawn before the elliptical arc, is ‘LE’.  Of course, 
if a symbol consists of only one type of basis, ordering is not an 
issue.  In this section, we present an algorithm that optimally 
fragments a given sequence of strokes with this form of template 
(an ordered sequence of L’s and E’s). 

3.1 Problem Formulation 
Given a sketched symbol S and a template T, find a set of 
breakpoints in S such that the fitting performed according to T 
yields the minimum fit error. The sketched symbol S consists of a 
sequence of strokes {S1, S2, ..., SN} and each stroke Si contains a 
sequence of timed-ordered points {Pi

1, Pi
2, ..., Pi

M}. The template 
T is a string of L's and E's. For example, the template for squares 
would be LLLL and the template for P’s would be LE or EL 
depending on the stroke order.  The number of breakpoints 
needed to be identified is K=T.len-N, where T.len is the number of 
basis fragments in T, and N is the total number of strokes.  The 
fragmentation algorithm requires symbols to contain fewer strokes 
than the number of basis elements to fit. 

3.2 A Dynamic Programming Algorithm  
The problem of "fitting to a template" is an optimization problem 
in which the goal is to minimize the error from fitting a shape 
with basis elements by identifying an optimal set of breakpoints. 
Suppose k breakpoints are needed to fragment S into T, a brute-
force approach would do an exhaustive search on all 
combinations of k breakpoints. This approach requires testing 
mCk (m choose k) sets of breakpoints, where m is the total number 
of data points in S. The number of combinations is exponential in 
the size of m, and therefore this exhaustive search method is a 
poor strategy and not practical for use in interactive applications. 



Below, we describe a polynomial time algorithm that is simple 
and optimal using a DP approach. 

First, we define the optimal substructure for the fragmentation 
problem. An optimal fragmentation of S that chooses a breakpoint 
at Pi

j contains the optimal fragmentation of the stroke(s) up to Pi
j. 

In other words, to find an optimal fragmentation of S with 
template T, one assumes that the optimal solution for fragmenting 
everything up to Pi

j with a template T[1...T.len–1] has been 
computed, and the piece from Pi

j to the end is then fit with 
T[T.len]. 

Next, a recursive solution is defined based on this optimal 
substructure. Let d(n,m,k,t) be the minimum fitting error to 
approximate every point up to the mth point in the nth stroke with 
the template t, and let f(Sn,i,m,t[j]) be the fitting error resulting 
from fitting the segment from Pn

i to Pn
m using t[j]. If t[j] is 'E', 

elliptical fitting on the data points is performed [19]; if t[j] is 'L', 
total least square fitting is performed [6]. The best fragmentation 
for S with N strokes using K breakpoints and a template T would 
thus be d(N,MN,K,T) where MN is the index of the last point in SN. 

d(n,m,k,t) is defined as follows. When k=0, each of the first (n–1) 
strokes is fit with the corresponding basis in the template and the 
segment from Pn

0 to Pn
m in the nth stroke is fit with the last 

primitive in the template. When n=1 and k>0, a choice has to be 
made on a point Pn

i to be the breakpoint and i>k, otherwise the 
number of breakpoints required would exceed the number of data 
points available. When n>1 and k>0, in addition to checking the 
best breakpoint to use in Sn, the previous stroke (Sn–1) must also 
be checked because it is possible that the best breakpoint may lie 
in any of the previous strokes.  Due to the optimal substructure, 
the optimal fragmentation for the last point in the previous stroke 
Sn–1 is all that must be checked. The recursive definition for 
fragmentation of S is given in Figure 2. The algorithm has a run 

time complexity of O(K×M2) where K is the number of 
breakpoints and M is the total number of data points. The space 
requirement is O(K×M) for keeping a table of solutions to the 
sub-problems. 

4. OPTIMAL FRAGMENTATION USING 
UNORDERED TEMPLATES 
If the basis ordering information is not known (i.e. only the 
number of each type of basis element, “E” or “L”, are passed into 
the fragmentation routine), the fragmentation problem becomes 
more complex. In a naïve approach, the algorithm presented in the 
previous section could be applied to each combination of the basis 
elements. The combination that yields the least fit error is selected 
as the optimal fragmentation of the sketched symbol.  For a 
template consisting of l L’s and e E’s, there are a total of (l+e)Ce 
number of orderings.  This number is exponential in the size of l 
and e.  Using DP, this problem can be solved in polynomial time 
O(K×M2×l×e).  This result is more efficient than using DP to 
solve all (l+e)Ce combinations since the solutions to each of the 
overlapping sub-problems is only computed once.  Given a set of 
strokes and the number of lines (l) and ellipses (e), Figure 3 
shows a recursive solution based on DP for optimal fragmentation 
of the set of strokes. 

5. IMPLEMENTATION AND DISCUSSION  
Our target class of application for this work is one that has a 
bounded set of target symbols from which to select (e.g. a UML 
diagram editor, a slide drawing program like Microsoft 
PowerPoint, or an electrical schematic editing tool).  We have 
implemented both algorithms and tested them on user sketched 
symbols collected from 17 users.  Each user was asked to sketch 
≈30 examples for each of the 10 symbols shown in the top two 
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Figure 2. Optimal fragmentation of a sequence of strokes, {S1, …, Sn} to a sequence of E’s and L’s using DP. 
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Figure 3. Optimal fragmentation of a sequence of strokes, {S1, …, Sn} to a set of E’s and L’s using DP. 



rows of Figure 4.  The data set contains a total of 5,928 examples 
overall and about 540 examples per symbol.  The first algorithm 
using ordered template was evaluated against human perception of 
breakpoints.  A correct fragmentation consists of breakpoints in 
the places where one would expect them to be.  The second 
algorithm using unordered templates is evaluated by checking 
both the breakpoint placement and the correctness of the 
templates it generates.  For all symbols, except crescents and 
arches, both algorithms achieved 100% accuracy rate in 
identifying the correct set of breakpoints.  For crescents and 
arches, the algorithms were able to achieve over 99% 
fragmentation accuracy.  To further evaluate the algorithms on 
symbols consisting of mixed line segments and elliptical arcs, 
three more symbols are introduced (cylinders, callouts and 
plaques shown in the bottom row of Figure 4).  We collected 
these data from 8 users and obtained ≈150 examples per symbol.  
The overall results are shown in Table 1. 

 

 

 

 

 

 

Figure 4. Symbol set used in evaluation: triangle, square, 
trapezoid, parallelogram, pentagon, hexagon, oval, crescent, 

heart, arch, cylinder, callout, and plaque. 

 

Table 1. Fragmentation accuracy result for both algorithms 

 
Ordered 

templates (%) 

Unordered 

templates (%) 

Triangles 100 100 

Squares 100 100 

Trapezoids 100 100 

Parallelograms 100 100 

Pentagons 100 100 

Hexagons 100 100 

Ovals 100 100 

Crescents 99.62 99.62 

Hearts 100 100 

Arches 99.82 99.08 

Cylinders 98.04 95.42 

Callouts 99.34 99.34 

Plaques 93.38 90.07 

 

From the experimental data, it is evident that both fragmentation 
algorithms are robust.  The analysis on mis-fragmented examples 
showed that the breakpoints were mis-identified at connection 
points of a line segment and an elliptical arc due to the fact that 
the transition from one to the other is often blended and 

indistinguishable, especially under quick pen motion.  Figure 5 
shows the result of the ordered-template algorithm performed on 
seven sketched symbols.  The circles on a symbol indicate the 
breakpoints computed by the algorithm.  We consider breakpoints 
to be interior points in a stroke, and therefore the first and last 
points of a stroke are not considered to be breakpoints, even 
though they may form a corner.  All of our experiments were 
performed on symbols in their original sketched form without any 
preprocessing (e.g. de-hooking, point reduction, smoothing, etc.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Sketched symbols, fragmentations, and templates. 

 

When no information about the number of L’s or E’s is given, the 
fragmentation problem becomes less tractable.  Given an error 
threshold, an optimal fragmentation that uses the fewest number 
of segments to achieve an approximation error below the 
threshold can be obtained by testing with 1 L, 1 E, 2 L’s, 2 E’s, 1 
L and 1 E, and so forth, using the aforementioned algorithm with 
a different unordered template each time.  The complexity of this 
approach is exponential, which is not practical for real-time 
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applications.  This problem is similar to the general curve 
partitioning problem since no information about L’s and E’s is 
given.  Many heuristic methods have been developed to address 
the problem in image processing, however these methods are 
highly problem dependent (e.g. industrial parts inspection, map 
contour approximation in images) and do not adapt well to 
fragmenting sketched symbols due to distortion and imprecise 
nature of sketches.  For example, in hand-sketched symbols, 
corners may not always be sharp, lines may not be straight, and 
curves may not be smooth.  If some information such as ordered 
bases, unordered bases, or even the number of fragments can be 
obtained, the fragmentation problem becomes much more 
tractable and our DP algorithms provide a robust method for 
fragmentation. 

6. CONCLUSION  
In this paper, we considered two types of fragmentation templates.  
One specifies a sequence of lines and ellipses and the other 
specifies the number of lines and ellipses.  The methods, based on 
dynamic programming, are efficient and robust.  The result shows 
that the fragmentations closely match human perception.  The 
fragmentation accuracy rate is 100% for the symbols with line 
bases, >99% for the symbols with elliptical bases, and >90% for 
the symbols with mixed line and elliptical bases. 
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