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Abstract 

This paper presents a robust sliding mode controller for a class of unknown nonlinear discrete- 

time systems in the presence of fixed time delay. A neural-network approximation and the Lya-

punov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network 

based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Net-

works (CNNs), that it requires much less computation time as compare to multi layer neural net-

work (MLNN), is preferred to approximate the unknown system functions. By means of linear 

matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that 

the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding 

mode control technique guarantees the system state trajectory to the designed sliding surface. 

Finally, simulation results illustrate the main characteristics and performance of the proposed 

approach. 
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1. Introduction 

Time delay is undesirable parameter which is often encountered in various engineering systems, such as me-

chanical systems, chemical systems, and so on. The time delay degrades the system performance and leads to 

instability of the system. As a design tool for robust motion control system, SMC has been well designed for a 

wide range of nonlinear systems in both continuous time and discrete time. SMC is robust to parametric uncer-
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tainties and insensitive to unknown disturbance. SMC has been studied in seventies by the name of variable 

structure control (VSC) [1] [2]. VSC, is characterized by discontinuous feedback control law which switches the 

system in a predefined subspace [3]. Its implementation by a digital system requires sampling interval which 

leads to chattering. Over the past few decades, considerable attention has been reported to the stability analysis 

of continuous time delay systems by using different approaches [4]-[10]. In [4], robust controller has been de-

signed for continuous time delay system using Ricacati equation approach. Considerable, attention has been 

given using LMI approach for stabilization of continuous time delay systems [5]-[8]. An adaptive control ap-

proach has been proposed for the control of time delay system [9] [10]. A discrete SMC (DSMC) is important 

when we implement robust control digitally with slow sampling rate. It is important to note that DSMC cannot 

be obtained from its continuous counterpart by simple conversion. Since modeling inaccuracy and external con-

ditions lead to uncertainties, disturbances and nonlinearities in systems. Hence, the stability analysis of uncertain 

discrete-time delay systems have been studied over past few years with different control approaches have been 

well documented in [11] and reference therein. Moreover, in the above papers, the unknown nonlinearities have 

not been investigated. In [12], a robust control of uncertain nonlinear state delayed system, which gives a con-

servative condition of control, is presented. In recent years, many papers have reported the problem of SMC for 

state delay uncertain systems [13]-[17]. Most of these papers for uncertain time delay systems involve norm- 

bound nonlinearities which are treated as external disturbances. Adaptive multilayer neural control schemes for 

the control of complex nonlinear systems have shown great results over past few years. Now, it is an established 

fact that unknown nonlinear functions can be approximated from neural network. Neural network appears a po-

werful tool for nonlinear control problems [18]-[20]. In [21], the SMC have been used for control of uncertain 

state-delay system with unknown nonlinearity. In this work, Chebyshev Neural Network is used to estimate the 

unknown nonlinearity and linear matrix inequalities (LMI) conditions were derived to ensure the asymptotic 

stability on the defined sliding surface. Adaptive SMC for a class of discrete nonlinear systems was proposed. 

The proposed controller uses switching function with adaptive term to reduce the problem of chattering. Artifi-

cial neural network (ANN) was used for approximation of modeling errors. The nonlinearity is strictly positive 

and bounded away from zero [22]. In [23], a new SMC has been used to control the unknown nonlinear dis-

crete-time systems. The chattering is reduced as compared to normal discrete-time sliding mode control using 

time varying gain. 

This paper proposes a discrete-time sliding mode controller for a class of state delay nonlinear discrete sys-

tems. The unknown nonlinear functions in system dynamics is approximated using Chebyshev Neural Networks 

(CNNs). New weight update laws are derived to make this scheme adaptive. The stability of state delay system 

is taken care by carefully selecting Lyapunov-Krasovskii functional candidate. Thus conservative, sufficient 

conditions were derived which was represented by an appropriate set of LMIs.  

The paper organization is as follows. Section 2 presents the CNN structure. Problem formulation and prelim-

inaries are elaborated in Section 3. Section 4 presents controller design is stated in detail. The stability analysis 

is presented in Section 5. The effectiveness of proposed scheme is validates through simulation results in Sec-

tion 6. The note ends with concluding remarks in Section 7. 

Notations: .  denotes Euclidean norm, .
F

 implies Frobenius norm. The ( )tr .  stands for trace of matrix. 

2. CNN Structure  

An ANN is a simple interconnected group of nonlinear elements, which has the capability to represents nonli-

near functions. The representation accuracy depends on the ANN complexity, i.e., the number of elements and 

the way in which they are interconnected [24].  

There is different ANN configuration available, like feed forward network such as multilayer perceptron 

(MLP), radial basis function (RBF) networks, Chebyshev neural network (CNN) etc. The MLP network has 

certain disadvantage that it requires a large amount of computation for learning. The RBF network can effec-

tively learn from discontinuities and local variations. The problem with this network is choosing an appropriate 

set of RBF centers for effective learning. A single-layer functional link artificial neural network (FLANN) in 

which the need of hidden layer is eliminated by expanding the input pattern using Chebyshev polynomials. The 

main advantage of this network is that it requires much less computation as compared to a multilayer perceptron 

(MLP). 

CNN is a functional link network (FLN) based on Chebyshev polynomials. CNN architecture has two main 
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parts, namely, numerical transformation and learning [25]. In numerical transformation we use finite set of 

Chebyshev polynomials as a functional expansion (FE) of input pattern. The learning part is a functional-link 

neural network based on Chebyshev polynomials. The Chebyshev polynomials can be obtained by a recursive 

formula  

( ) ( ) ( ) ( )1 1 02 ,      1i i iT x xT x T x T x+ −= − =                                (1) 

where, ( )1T x  are Chebyshev polynomials, i  is the order of polynomials chosen and here x  is a scalar 

quantity. The different choices of ( )1T x  are & 2x x . 

The output of single layer neural network is given by 

( ) Tˆ ˆg x w φ=                                     (2) 

where, w  are the weights and φ  is the suitable basis function of neural network. Based on the approximation 

property of CNN [27]-[30], there exist ideal weights w , so that the function ( )g x  to be approximated can be 

represented as 

( ) T
g x w φ ε= +                                   (3) 

where, ε  is the CNN functional reconstruction error vector and 
Nε ε≤  is bounded. 

3. Problem Formulation 

Consider the following discrete-time state delay system as in [26] (Figure 1) 

( ) ( ) ( ) ( )( ) ( )1 dx k Ax k A x k h g x k u k+ = + − +                         (4) 

where, ( ) n
x k R∈  and ( ) m

u k R∈  denote the state and input vectors respectively. A  and 
dA  are real con-

stant matrices with appropriate dimensions. ( )( )g x k  is a unknown nonlinear function of a given system in 

Equation (4), and h  is a positive number representing delay.  

For the system given in (4) the sliding mode controller is obtained as 

( )
( )( ) ( ) ( )1

ˆ
du k Ax k A x k h

g x k
= − + −                             (5) 

where ( )( )ĝ x k  is the approximated value of the nonlinear function. 

The objective of this work is to guarantee the stability of sliding mode controller in Equation (5) of the nonli-

near system Equation (4), so that the system stays on the sliding surface. 

4. Controller Design 

The first step in the design of discrete-time SMC control algorithm would be the design of sliding surface. The 

linear sliding surface is defined as: 

( ) ( )s k Cx k=                                       (6) 

where m n
C R

×∈  is a real matrix of appropriate dimensions. 

For a system to be asymptotically stable, the sliding surface is defined as follows. 

( ) 0s k =                                         (7) 

 

 

Figure 1. Chebyshev neural network.               
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The second step is to design a control law which can guarantee the sliding mode reaching condition of the 

given linear sliding surface. The obtained control law is given in Equation (5) will force the trajectory of the 

system to move towards the sliding surface monotonically and causes zigzag motion around the sliding sur-

face. 

5. Stability Analysis 

The following assumptions are needed for the stability analysis of the given unknown nonlinear system [26]. 

Assumption 1: The state delay h is a constant time delay that is basically induced by the network transmis-

sion. For constant time delay the lower and upper bounds are assumed to be identical. 

Assumption 2: The nonlinear function ( )( )g x k  in the system is unknown and bounded. 

Assumption 3: (Bounded Ideal NN Weights): The ideal NN weights w  are bounded so that 
Mw w≤ , with 

Mw  a known bound. The symbol 
F

⋅  denotes the Frobenius norm, i.e. given a matrix A , the Frobenius norm 

is given by,  

( )2 Ttr
F

A A A=  

Assumption 4: Let ( )( ) ( )( )ˆg x k Gg x k= , where T
G G=  is a n n×  symmetric matrix, and ( )( )g x k  

and ( )ĝx k  are the n -column vectors. 

Theorem 1: 

Given the system in Equation (4) and Assumptions 1 - 4, sliding mode control law Equation (5), the estimated 

NN weights are given by 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )1 21 2
T Tˆ ˆˆ ˆ1w k w k x k Q P Z x k M x k ZM x k + = + − − +  

             (8) 

with the condition are 

( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )1 21 2 1 2
T Tˆ ˆˆ4 0w k M x k ZM x k x k Q P Z x k− − >                  (9) 

( )( ) ( )( ) ( )( ) ( )( )( )1 21 2
T Tˆ ˆ2 0x k Q P Z x k M x k ZM x k− − >                    (10) 

Suppose there exist an n n×  positive-definite matrix P , an n n×  nonnegative-definite matrix Q , an 

n n×  nonnegative-definite matrix z  and n n×  symmetric matrix G  such that  following LMI holds, 

)
T T T T T T T T T T

T T T T
1 0

*

d d d

d d d d

A G PGA A G zGA A G z zGA A G PGA A G zGA GzA
H

A G PGA A G zGA Q

 − − − − −
= < 

− − 
     (11) 

Thus by properly selecting the control gain and the design parameters, the state trajectory is reaching on the 

designed sliding surface.  

Proof: Choose Lyapunov-Krasovskii functional candidate, 

( ) ( ) ( ) ( ) ( )1 2 3 4V k V k V k V k V k= + + +                           (12) 

where 

( ) ( ) ( )T

1V k x k Px k=                                   (13) 

( ) ( ) ( )
1

T

2

k

i k h

V k x i Qx i
−

= −

= ∑                                 (14) 

( ) ( ) ( )( )T

3 trV k w k w k=                                   (15) 

( ) ( ) ( )T

4  V k k Z kη η=                                  (16) 

And 
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( ) ( ) ( )1k x k x kη = + −                                  (17) 

Substituting Equations (13)-(16) in Equation (12) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1

T T T Ttr
k

i k h

V k x k Px k x i Qx i w k w k k Z kη η
−

= −

= + + +∑                (18) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )T T T T

1

1 1 1 tr 1 1
k

i k h

V k x k Px k x i Qx i w k w k M x k ZM x k
= − +

+ = + + + + + + +∑
 

    (19) 

where 

( ) ( )( )ˆ1k M x kη + =                                      (20) 

Since P , Z  is a positive-definite and Q  is a nonnegative-definite, ( )V k  is then positive-definite. 

Therefore, 

( ) ( ) ( )1V k V k V k∆ = + −                                   (21) 

Substituting Equation (18) and (19) in Equation (21), 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

T T T T

1

1
T T T T

ˆ ˆ1 1 tr 1 1

              tr .

k

i k h

k

i k h

V k x k Px k x i Qx i w k w k M x k ZM x k

x k Px k x i Qx i w k w k k Z kη η

= − +

−

= −

∆ = + + + + + + +

− − − −

∑

∑

 

 
     (22) 

Substituting Equation (5) in Equation (21) and using Assumption 3 in Equation (22) 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T T T T

2 2T T T

ˆ

ˆ               

ˆ ˆ              

              1 1 1 .

d

d

V k Ax k A x k h g x k u k g x k u k

P Ax k A x k h g x k u k g x k u k

x k Qx k M x k ZM x k x k Px k x k h Qx k h

x k x k Z x k x k w k w k

 ∆ = + − + + 
 × + − + + 

+ + − − − −

− + − + − + + −      





 

      (23) 

After some mathematical manipulations in Equation (23), 

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T T T T T

2 2
T T

ˆ ˆ

              1 .

V k x k Qx k M x k ZM x k x k Px k x k h Qx k h x k Zx k

w k w k Z k

∆ = + − − − − −

+ + − + 
 (24) 

where  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( ) ( )( ) ( )

T T T T T T

T T T T T T T

T T T T T T

T T T T

ˆ

ˆ            

            

ˆ            

d

d

d

Z k x k A Pg x k u k x k h A Pg x k u k u k g x k Pg x k

u k g x k PAx k u k g x k PA x k h u k g x k Pg x k u k

u k g x k Pg x k u k x k A Zg x k u k x k h A Zg x k u k

u k g x k Zg x k u k g x k ZAx k

= + − +

+ + − +

+ − − −

− − −

  

  

   

  ( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

T T T

T T T T T T

T

ˆ            

            .

du k g x k ZA x k h

u k g x k Zg x k u k u k g x k Zg x k u k u k g x k Zx k

x k Zg x k u k

−

− − +

+



   



 (25) 

Collecting the terms together and substitute control law Equation (5) in Equation (24) yields 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )
( ) ( )

2
1 21 22 T Tˆ ˆˆ ˆ1V k w k w k x k Q P Z x k M x k ZM x k

S k Z k

 ∆ = − + + + − − +  
+ +

  (26) 

where  
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( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )( ) ( ) ( )

1 2 1 2
T T

1 21 2
T T T

ˆ ˆˆ ˆ2 2

ˆ ˆ           2 .

S k w k M x k ZM x k w k x k Q P Z x k

x k Q P Z x k M x k ZM x k x k h Qx k h

= − − − −

− − − − − −
     (27) 

with tuning law in Equation (8) , Equation (26) will be, 

( ) ( ) ( )V k S k Z k∆ = +                               (28) 

substituting Equations (25), (27) in Equation (28)  

( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )( )

( ) ( )
( ) ( )
( )

1 2 1 2
T T

1 21 2
T T

T T T T T T T

T T T T T

T T T

ˆ ˆˆ ˆ2 2

ˆ ˆ              2

              

              

              

d d d

d

V k w k M x k ZM x k w k x k Q P Z x k

x k Q P Z x k M x k ZM x k

x k A G PGA A G ZGA A G Z ZGA x k

x k A G PGA A G ZGA ZGA x k h

x k h A G

∆ = − − − −

− − −

 + − − − 
 + − − − 

+ − ( )
( ) ( )

T T T T

T T T T T               .

d d

d d d d

PGA A G ZGA A ZG x k

x k h A G PGA A G ZGA Q x k h

 − − 
 + − − − − 

       (29) 

Manipulating the nonquadratic terms using the following inequality 
2

a b
ab

+
≤  (which turns into equality 

if and only if a b=  we get, 

( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( ) ( )( )( )

( ) ( )
( ) ( )
( )

1 21 2 1 2
T T

1 21 2
T T

T T T T T T T

T T T T T

T T T

ˆ ˆˆ4 

ˆ ˆ              2

              

              

              

d d d

d

V k w k M x k ZM x k x k Q P Z x k

x k Q P Z x k M x k ZM x k

x k A G PGA A G ZGA A G Z ZGA x k

x k A G PGA A G ZGA ZGA x k h

x k h A G PG

∆ ≤ − − −

− − −

 + − − − 
 + − − − 

+ − ( )
( ) ( )

T T T T

T T T T T              .

d d

d d d d

A A G ZGA A ZG x k

x k h A G PGA A G ZGA Q x k h

 − − 
 + − − − − 

         (30) 

where 

( )( ) ( )( ) ( )( )( )1 2
Tˆ ˆˆ2a w k M x k ZM x k= −                            (31) 

( )( ) ( )( ) ( )( )1 2
Tˆ2b w k x k Q P Z x k= − − −                           (32) 

In Equation (30), ( )V k∆  is guaranteed to remain negative as long as 

T T T T T T T T T T

T T T T
0

*

d d d

d d d d

A G PGA A G zGA A G z zGA A G PGA A G zGA GzA

A G PGA A G zGA Q

 − − − − −
< 

− − 
 

Since the first two terms in Equation (30) are satisfying the condition in Equation (9), (10), next four terms 

are satisfying the LMI in Equation (11). Therefore, we conclude that the system in Equation (4) is stable with 

control law Equation (5) and LMI in Equation (11). 

6. Simulation Results  

In this section, a numerical example is presented to validate the performance and effectiveness of the nonlinear 

discrete-time system proposed in Equation (4). Consider the set of parameters for the given system 

0.8 0.4

0.14 0.1
A

 
=  − 

, 
0.2 0

0 0.1
dA

 
=  
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and 

( )( )

( )
( )

( )
( ) ( )

2

1

2

1

1

2 2

1 2

1.4

1

1

x k

x k
g x k

x k

x k x k

 
 

+ =  
 
 + + 

 

The fixed time delay is assumed to be 2h = . The proposed system has initial condition of states 1x  and 2x  

are chosen as [ ]T0.01 0,02 . The LMI in H1) are solved by using Matlab LMI Toolbox and the values of P , 

Q , z  and G  are obtained as  

108.8411 0

0 108.8411
P

 
=  
 

, 11
0.1040 0.0338

10
0.0338 0.0186

Q
−  

=  − 
 

10
0.1198 0.0001

10
0.0001 0.0247

G
− − 

=  
 

, 11
0.3485 0.0103

10
0.0103 0.4639

z
− − 

=  − 
 

The trajectories of the system states 1x  and 2x  are shown in Figure 2 and Figure 3. It is observed in Fig-

ure 2 and Figure 3 that the states of the sliding motion approach to zero quickly. Figure 4 demonstrates that the 

controller robustly stabilizes the system by sliding mode technique with fixed time delay. The simulation results 

confirm the stability of the system and show the effectiveness of proposed scheme.  

 

 

Figure 2. ( )1
x k  with respect to sample time k  ( )2h = . 

 

 

Figure 3. ( )2
x k  with respect to sample time k  ( )2h = . 
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Figure 4. ( )u k  with respect to sample time k  ( )2h = .    

7. Conclusion  

In this paper, a sliding mode control for a class of unknown nonlinear discrete-time system is proposed ,which 

results in small chattering motion in both control signal and system output. A Chebyshev Neural Network is 

used to approximate the unknown system dynamics. A new learning algorithm for neural network approxima-

tion is proposed. This neural network based sliding mode control approach guarantees the system state trajectory 

to the defined sliding surface. An LMI based sufficient condition for the asymptotic stability of the sliding mode 

dynamics is derived by means of a Lyapunov-Krasovskii approach. Simulation results are validating the effec-

tiveness of proposed scheme. 
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