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Abstract

In this paper, an H∞ sliding mode control (SMC) problem is studied for a class of discrete-time nonlinear stochastic

systems with multiple data packet losses. The phenomenon of data packet losses, which is assumed to occur in a

random way, is taken into consideration in the process of data transmission through both the state feedback loop

and the measurement output. The probability for the data packet loss for each individual state variable is governed

by a corresponding individual random variable satisfying a certain probabilistic distribution over the interval [0 1].

The discrete-time system considered is also subject to norm-bounded parameter uncertainties and external nonlinear

disturbances, which enter the system state equation in both matched and unmatched ways. A novel stochastic discrete-

time switching function is proposed to facilitate the sliding mode controller design. Sufficient conditions are derived by

means of the linear matrix inequality (LMI) approach. It is shown that the system dynamics in the specified sliding

surface is exponentially stable in the mean square with a prescribed H∞ noise attenuation level if an LMI with an

equality constraint is feasible. A discrete-time SMC controller is designed capable of guaranteeing the discrete-time

sliding mode reaching condition of the specified sliding surface with probability 1. Finally, a simulation example is given

to show the effectiveness of the proposed method.
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I. Introduction

In the past few decades, the sliding mode control (also known as variable structure control) problem origi-

nated in [33] has been extensively studied because of its advantage of strong robustness against model uncer-

tainties, parameter variations and external disturbances, see [6, 16, 26–28] and the references therein. In the

sliding mode control, trajectories are forced to reach a sliding manifold in finite time and then stay on the

manifold for all future time. It is worth mentioning that, in the existing literature concerning SMC problem for

nonlinear systems, the nonlinearities and uncertainties taken into consideration are mainly under the matching

conditions, that is to say, the nonlinear and uncertain terms enter the state equation at the same point as the

control input and consequently the motion on the sliding manifold is independent of those matched terms, see

[23, 24, 34]. However, in engineering practice, a large part of external nonlinear disturbances and parameter

uncertainties cannot be treated as matched type of nonlinearities.

In recent years, since most control strategies are implemented in a discrete-time setting (e.g., networked

control systems), the sliding mode control (SMC) problem for discrete-time systems has gained considerable
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research interests and many results have been reported in the literature, see [1, 3, 5, 7, 8, 14, 18, 20, 21, 40, 43].

To be specific, an integral type SMC schemes was proposed in [1, 3] for sampled-data systems and a class of

nonlinear discrete-time systems, respectively. By applying adaptive laws, in [5, 7], the authors synthesized

sliding mode controllers for discrete-time systems with stochastic as well as deterministic disturbances. A

methodology for designing sliding mode controllers was put forward in [8] for a class of linear multi-input

discrete-time systems with matching perturbations. In [18], using dead-beat control technique, the authors

presented a discrete variable structure control method with a finite-time step to reach the switching surface.

In [20, 21], the discrete-time SMC problems were solved via output feedback. It is worth mentioning that in

[14], a novel reaching law approach was developed, which was conveniently and widely applied in literature

to handle robust SMC control problems for discrete-time systems, see [40,43] for some latest publications.

On another research front, in most practical systems nowadays such as a target tracking system, there may

be certain observations that consist of noise only when the target is absent due to its high maneuverability.

In other words, the measurements are not consecutive but usually subject to partial or complete information

missing. Such a phenomenon is referred to as measurement missing, information dropout or data packet losses,

which occurs frequently for a variety of reasons such as sensor temporal failure, network congestion, accidental

loss of some collected data or network-induced delay, and might leads to system performance degradation and

sometimes even instability [9, 32,37,38]. Therefore, in the past few years, a great deal of research efforts has

been made to solve the control and filtering problems in the presence of data packet losses. Such a data packet

loss phenomenon is usually characterized in a probabilistic way. As a result, in [22,30,31,35], the packet losses

phenomenon has been modeled by different kinds of stochastic variables, among which the binary random

variable sequence taking on values of 0 and 1, also known as Bernoulli distributed model, have been widely

applied because of its simplicity [35, 44]. It is worth mentioning that, in a recent paper [39], it has been

assumed that the missing probability for each sensor is governed by an individual random variable satisfying

a certain probabilistic distribution over the interval [0 1], which is more general than most existing literature

and includes the Bernoulli distribution as a special case.

Up to now, to the best of the authors’ knowledge, the H∞ sliding mode control problem has not been

studied for discrete-time uncertain nonlinear stochastic system with multiple data packet losses. By using

the discrete-time sliding motion concept, this paper aims to design a state feedback controller such that 1)

the system state trajectories are globally driven onto the pre-specified sliding surface with probability 1, then

results in a non-increasing zigzag motion on the sliding surface; 2) the exponentially mean-square stability

and the H∞ noise attenuation level of the system are simultaneously achieved on the pre-specified sliding

surface. The main contribution of this paper lies in (a) a new description of data packet losses, which is much

more general than the existing literature, is proposed and considered in both the state-feedback loop and the

measurement output channel; (b) in the light of the presented data packet losses model, a novel stochastic

switching function is proposed for the discrete-time SMC problem and then a control law is designed to drive

the state trajectories onto a pre-specified stochastic sliding surface with probability 1; (c) an algorithm is

proposed which is capable of handling both matched and unmatched external nonlinear disturbances as well

as internal parameter variations.

The rest of this paper is arranged as follows. Section II formulates an uncertain nonlinear stochastic system

with multiple data packet losses. In Section III, a novel switching function is first put forward and then two

LMI-based sufficient conditions are given to obtain the parameters in the proposed switching function for

simultaneously ensuring the exponentially mean-square stability and H∞ performance in the sliding surface.

Secondly, an SMC law is synthesized to drive the state trajectories onto the specified surface with probability

1. In Section IV, an illustrative numerical example is provided to show the effectiveness and usefulness of the

proposed approach. Section V gives our conclusions.

Notation The following notation will be used in this paper. R
n and R

n×m denote, respectively, the
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n-dimensional Euclidean space and the set of all n × m matrices, and I
+ denotes the set of nonnegative

integers. The notation X ≥ Y (respectively X > Y ), where X and Y are symmetric matrices, means that

X − Y is positive semi-definite (respectively positive definite). E{x} stands for the expectation of stochastic

variable x and E{x|y} for the expectation of x conditional on y. The superscript “T” denotes the transpose.

diag{F1, F2, . . .} denotes a block diagonal matrix whose diagonal blocks are given by F1, F2 . . . . The symbol

“∗” in a matrix means that the corresponding term of the matrix can be obtained by symmetric property.

II. Problem Formulation

Consider an Itô-type nonlinear stochastic system governed by the following state-space equation:

x(k + 1) = (A+∆A)x(k) +B(u(k) + f(x(k))) + E1g(x(k)) + E2x(k)ω(k), (1)

and the output equation:

y(k) = Cx(k) + E3h(x(k)) +Dν(k), (2)

where x(k) ∈ R
n is the state vector, y(k) ∈ R

p is the output signal, u(k) ∈ R
m is the control input, ν(k) ∈ l2

is a stochastic external disturbance. A, B, C, D, E1, E2 and E3 are known constant real-valued matrices

with appropriate dimensions. The nonlinear function f(x(k)) represents the matched bounded disturbance.

ω(k) is a scalar Wiener process (Brownian Motion) on (Ω,F ,P) with

E {ω(k)} = 0, E
{
ω2(k)

}
= 1, E {ω(k)ω(j)} = 0 (k 6= j). (3)

The matrix ∆A is the real-valued norm-bounded parameter uncertainty

∆A =MFN, (4)

where M and N are known real constant matrices which characterize how the deterministic uncertain param-

eter in F enters the nominal matrix A with

FTF 6 I. (5)

The parameter uncertainty ∆A is said to be admissible if both (4) and (5) are satisfied.

The vector-valued nonlinear functions g(x(k)) and h(x(k)) stand for the unmatched external nonlinearities,

satisfying:

[g(x) − g(z)− U1(x− z)]T [g(x)− g(z) − U2(x− z)] 6 0, g(0) = 0, ∀x, z ∈ R
n,

[h(x) − h(z) − V1(x− z)]T [h(x)− h(z) − V2(x− z)] 6 0, h(0) = 0, ∀x, z ∈ R
n,

(6)

where U1, U2, V1 and V2 ∈ R
n×n are known real constant matrices, with U = U1 −U2 and V = V1 − V2 being

positive definite matrices.

In this paper, the phenomenon of multiple data packet losses, which frequently occur in a networked

environment, is also taken into consideration. We use the following formula to describe such a multiple data

packet losses situation:

x̄(k) = Θx(k), (7)

where x̄(k) is the actual signal obtained from the process of sampling the feedback or output signal. The

matrix of Θ is defined as

Θ = diag{θ1(k), θ2(k), · · · , θn(k)}

with θi(k) (i = 1, 2, · · · , n) being n unrelated random variables which are also unrelated with ω(k). It

is assumed that θi(k) has the probabilistic density function ̺i(s) (i = 1, 2, · · · , n) on the interval [0 1]

with mathematical expectation µi and variance σ2i . Note that θi(k) could satisfy any discrete probabilistic
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distributions on the interval [0 1]. Due to multiple data packet losses (7), the output equation (2) should be

amended as
y(k) = Cx̄(k) + E3h(x(k)) +Dν(k)

= CΘx(k) +E3h(x(k)) +Dν(k)

=

n∑

i=1

Ciθi(k)x(k) + E3h(x(k)) +Dν(k),

(8)

where

Ci := C · diag{0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

}. (9)

In the sequel, we denote Θ̄ = E{Θ}.
Remark 1: In the formulation of the multiple data packet losses (7), θi(k) could take value on the interval

[0 1], hence it includes the widely used Bernoulli distribution as a special case. To be specific, when θi(k) = 0

(respectively, 0 < θi(k) < 1), the ith state variable xi(k) is completely (respectively, partially) lost at the

sampling instant k. The main difference between the model for output missing proposed in [39, 44] and this

paper is that, the former focus on the data missing phenomenon caused by sensors’ failures while, in this

paper, we are interested in the situation that the data packet, due to complex circumstances such as network

congestion and transmission lines aging, is completely or partially lost before it reaches the sensors.

III. Design of Sliding Model Controllers

In this section, we first propose a switching function in a stochastic form for the uncertain nonlinear

system (1) with data packet losses. Then, two theorems will be given in order to design the switching

function parameters capable of simultaneously ensuring the exponentially mean square stability and the H∞

performance in the sliding motion. It is shown that the controller design problem in the sliding motion can

be solved if an LMI with an equality constraint is feasible. Finally, a controller is synthesized to satisfy

the improved discrete-time sliding motion reaching condition to drive the trajectories of system (1) onto the

pre-specified sliding surface with probability 1.

A. Sliding Surface

In this paper, considering the existence of random data packet losses in the feedback loop, we choose the

switching function as follows:

s(k) = Gx̄(k) = GΘx(k), (10)

where G is designed such that GΘ̄B is nonsingular and GΘ̄E = 0, where E :=
[
E1 E2

]
. In this paper, we

select GΘ̄ = BTP with P > 0 being a positive definite matrix to confirm the non-singularity of GΘ̄B.

It can be seen that the switching function (10) serves as a stochastic difference equation due to the existence

of the random variable matrix Θ. Therefore, the traditional necessary condition for discrete-time quasi-sliding

motion, stated as s(k + 1) = s(k) = 0, should be re-formulated on (Ω,F ,P) as follows:

P{s(k + 1) = s(k) = 0} = 1. (11)

In order to obtain the equivalent control law of the sliding motion, we take

E{s(k + 1)} = E{s(k)} = 0. (12)

Solving the above for u(k), the equivalent control law of the sliding motion is given by

ueq(k) = −(BTPB)−1BTP (A+∆A)x(k) − f(x(k)). (13)
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Substituting (13) as u(k) into (1) yields

x(k + 1) = AKx(k) + E1g(x(k), k) + E2x(k)ω(k) (14)

where AK := A + ∆A − B(BTPB)−1BTP (A + ∆A). The expression (14) is the sliding mode dynamics of

system (1) in the specified switching surface E{s(k + 1)} = E{s(k)} = 0.

Remark 2: It is the first time in the literature that a stochastic switching function (10) is introduced to deal

with the discrete-time SMC problem for stochastic systems with multiple random data packet losses. The

reason why we use (12) as the necessary condition for a discrete-time sliding motion is that it is meaningless

to solve a stochastic difference equation s(k + 1) = s(k) = 0 for an equivalent control law in sliding motion

followed by the deterministic SMC controller parameters. As a result, both the equivalent control law (13)

and the sliding mode dynamics (14) exist in a probabilistic sense. Moreover, throughout this paper, the SMC

controller is designed to satisfy the discrete-time sliding motion reaching condition as well as the necessary

condition on sliding surface also in a probabilistic sense.

Remark 3: In the output equation (8) and stochastic switching function (10), the matrix Θ is employed to

describe the random data packet losses in the output channel as well as in the state feedback loop. Generally,

in most real-world engineering practices, the probabilities of data packet losses through feedback channel and

output channel might not be identical to each other since they are always transmitted by different ways.

Nevertheless, the packet loss probabilities are assumed to be the same in this paper purely for avoiding

unnecessarily complicated notations. It should be pointed out that our main results can be easily extended

to more general cases where different data transmitting channels have different packet loss probabilities.

Remark 4: The condition GΘ̄E = 0 is applied to eliminate the unmatched nonlinearity g(x(k)) and the

Brownian motion on the sliding surface so as to obtain the deterministic form of switching parameters that will

be used to synthesize the SMC controller. For continuous-time stochastic systems, such a methodology has

been used in [23, 24], where the unmatched external nonlinearity is not taken into consideration. It is worth

mentioning that, by the proposed technique in this paper, we could deal with a wide range of nonlinearities,

either stochastic or deterministic.

Before stating the designing goal, we introduce the following stability concept for system (14).

Definition 1: The system (14) is said to be robustly mean square stable if, for any ε > 0, there exists a

δ(ε) > 0 such that E{‖x(k)‖2} < ε (k > 0) when E{‖x(0)‖2} < δ(ε). And if limk→∞ E{‖x(k)‖2} = 0 for any

x(0) ∈ R
n, then the system (14) is said to be asymptotically mean square stable. Moreover, if there exist

constants β > 1 and 0 < τ < 1 such that E{‖x(k)‖2} 6 βτkE{‖x(0)‖2}, then the system (14) is said to be

exponentially mean square stable.

In this paper, we aim to synthesize an SMC law such that, for all admissible parameter uncertainties and

multiple data packet losses, the following two requirements are achieved simultaneously:

(Q1) The state trajectory of system (1) is globally driven onto the pre-specified sliding surface (10) with

probability 1 and, subsequently, the sliding motion is exponentially mean square stable.

(Q2) For a given scalar γ > 0, with ν(k) 6= 0, the controlled output y(k) satisfies

∞∑

k=0

E
{
‖y(k)‖2

}
6 γ2

∞∑

k=0

E
{
‖ν(k)‖2

}
, (15)

under the zero initial condition.

The problem addressed above is referred to as the robust H∞ sliding mode control for nonlinear stochastic

systems with multiple packet losses.

B. Stability and H∞ Performance on Sliding Surface

In this subsection, we present two theorems to determine the parameters appeared in switching function

(10). These parameters are necessary for designing the SMC controller to fulfil the control tasks (Q1) and
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(Q2).

To begin with, we introduce the following lemmas which will be used later.

Lemma 1: [36] Let W(k) = xT(k)Px(k) be a Lyapunov functional where P > 0. If there exist real scalars

ζ, µ, υ and 0 < ψ < 1 such that both

µ‖x(k)‖2 6 W(k) 6 υ‖x(k)‖2 (16)

and

E{W(k + 1)|x(k)} −W(k) 6 ζ − ψW(k) (17)

hold, then the process x(k) satisfies

E{‖x(k)‖2} 6
υ

µ
‖x(0)‖2(1− ψ)k +

λ

µψ
. (18)

Lemma 2: For any real vectors a, b and matrix P > 0 of compatible dimensions,

aTb+ bTa 6 aTPa+ bTP−1b. (19)

Lemma 3: (Schur Complement) Given constant matrices S1,S2,S3 where S1 = ST
1 and 0 < S2 = ST

2 , then

S1 + ST
3 S−1

2
S3 < 0 if and only if

[
S1 ST

3

S3 −S2

]
< 0 or

[
−S2 S3

ST
3 S1

]
< 0. (20)

Lemma 4: (S-procedure) Let J = JT, M and N be real matrices of appropriate dimensions, and F satisfy

(5). Then J +MFN +NTFTMT < 0 if and only if there exists a positive scalar ε such that J + εMMT +

ε−1NTN < 0 or, equivalently, 


J εM NT

εMT −εI 0

N 0 −εI


 < 0. (21)

Denote

Ũ =
UT
1 U2 + UT

2 U1

2
, Ū =

−UT
1 − UT

2

2
, Ṽ =

V T
1 V2 + V T

2 V1

2
, V̄ =

−V T
1 − V T

2

2
.

The following theorem presents a sufficient condition for the exponentially mean square stability of the

sliding motion dynamics (14).

Theorem 1: The system (14) is exponentially stable in the mean square if there exist a positive definite

matrix P > 0, positive scalars ǫ > 0 and ϕ1 > 0 , such that




−P − ϕ1Ũ −ϕ1Ū 2ATP 2ATPB ET
2 P 0 ǫNT

−ϕ1Ū
T 2ET

1 PE1 − ϕ1I 0 0 0 0 0

2PA 0 −P 0 0 2PM 0

2BTPA 0 0 −BTPB 0 2BTPM 0

PE2 0 0 0 −P 0 0

0 0 2MTP 2MTPB 0 −ǫI 0

ǫN 0 0 0 0 0 −ǫI




< 0, (22)

BTPE = 0. (23)

Proof: For system (14), we choose the Lyapunov functional by W(k) = xT(k)Px(k). Then, along the
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trajectory, we have

E{∆W|x(k)} =E{W(k + 1)|x(k)} −W(k)

=E{xT(k + 1)Px(k + 1)|x(k)} − xT(k)Px(k)

=E{(AKx(k) + E1g(x(k)) +E2x(k)ω(k))
T

× P (AKx(k) + E1g(x(k)) + E2x(k)ω(k))|x(k)} − xT(k)Px(k)

=xT(k)(AT
KPAK + ET

2 PE2 − P )x(k) + gT(x(k))ET
1 PE1g(x(k)) + 2xT(k)AT

KPE1g(x(k)).
(24)

By Lemma 2, it is easy to obtain

2xT(k)AT
KPE1g(x(k)) 6 xT(k)AT

KPAKx(k) + gT(x(k))ET
1 PE1g(x(k)), (25)

and

AT
KPAK = (A+∆A−B(BTPB)−1BTP (A+∆A))TP (A+∆A−B(BTPB)−1BTP (A+∆A))

6 2(A+∆A)TP (A+∆A) + 2ĀTPĀ,
(26)

where Ā is defined as Ā , −B(BTPB)−1BTP (A+∆A). To this end, we have

AT
KPAK 6 2(A+∆A)TP (A+∆A) + 2(A +∆A)TPB(BTPB)−1BTP (A+∆A). (27)

Notice that, when z = 0, inequality (6) is equivalent to
[

x(k)

g(x(k))

]T [
Ũ Ū

ŪT I

] [
x(k)

g(x(k))

]
6 0,

[
x(k)

h(x(k))

]T [
Ṽ V̄

V̄ T I

][
x(k)

h(x(k))

]
6 0.

(28)

Therefore, for some ϕ1 > 0,

E{∆W|x(k)} 6 E{∆W|x(k)} − ϕ1

[
x(k)

g(x(k))

]T [
Ũ Ū

ŪT I

][
x(k)

g(x(k))

]

= ξT(k)

[
2AT

KPAK +ET
2 PE2 − P − ϕ1Ũ −ϕ1Ū

−ϕ1Ū
T 2ET

1 PE1 − ϕ1I

]
ξ(k),

(29)

where ξ(k) ,
[
xT(k) gT(x(k))

]T
.

By Schur Complement,
[

2AT
KPAK + ET

2 PE2 − P − ϕ1Ũ −ϕ1Ū

−ϕ1Ū
T 2ET

1 PE1 − ϕ1I

]
< 0

⇐⇒




−P − ϕ1Ũ −ϕ1Ū
√
2AT

KP ET
2 P

−ϕ1Ū
T 2ET

1 PE1 − ϕ1I 0 0√
2PAK 0 −P 0

PE2 0 0 −P


 < 0.

(30)

It is easy to see that (30) is implied by



−P − ϕ1Ũ −ϕ1Ū 2(A +∆A)TP 2(A+∆A)TPB ET
2 P

−ϕ1Ū
T 2ET

1 PE1 − ϕ1I 0 0 0

2P (A+∆A) 0 −P 0 0

2BTP (A+∆A) 0 0 −BTPB 0

PE2 0 0 0 −P



< 0. (31)
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Now, rewrite matrix inequality (31) into the following form:




−P − ϕ1Ũ −ϕ1Ū 2ATP 2ATPB ET
2 P

−ϕ1Ū
T 2ET

1 PE1 − ϕ1I 0 0 0

2PA 0 −P 0 0

2BTPA 0 0 −BTPB 0

PE2 0 0 0 −P



+ M̄FN̄ + N̄TFTM̄T < 0, (32)

where

M̄ =
[
0 0 2MTP 2MTPB 0

]T
,

N̄ =
[
N 0 0 0 0

]
.

By Lemma 4, we can see that (32) is true if and only if there exists a ǫ > 0 such that:




−P − ϕ1Ũ −ϕ1Ū 2ATP 2ATPB ET
2 P

−ϕ1Ū
T 2ET

1 PE1 − ϕ1I 0 0 0

2PA 0 −P 0 0

2BTPA 0 0 −BTPB 0

PE2 0 0 0 −P



+ ǫ−1M̄M̄T + ǫNTN̄ < 0. (33)

It follows again from Lemma 4 that that (33) is equivalent to (22). Then, we have from (29) that E{∆W|x(k)} <
0 which indicates the sliding motion dynamics (14) is asymptotically mean square stable. Moreover, from

(22), it is seen that

Ω ,

[
2AT

KPAK + ET
2 PE2 − P − ϕ1Ũ −ϕ1Ū

−ϕ1Ū
T 2ET

1 PE1 − ϕ1I

]
< 0, (34)

from which we know that there must exist a sufficiently small scalar α satisfying 0 < α < λmax(P ) such that

Ω < −αI. Therefore, it follows that

E{∆W|x(k)} = E{W(k + 1)|x(k)} −W(k) 6 −αξT(k)ξ(k) 6 −αxT(k)x(k) 6 − α

λmax(P )
W(k). (35)

Then, the exponentially mean square stable of system (14) can be verified immediately from Lemma 2 and

Definition 1. The proof is complete.

By means of LMI, the following theorem establishes a unified framework within which the exponentially

mean square stability can be guaranteed together with the pre-specified H∞ noise attenuation level.

Theorem 2: Consider the system (14). For the pre-specified H∞ noise attenuation level γ > 0, if there exist

a positive definite matrix P > 0, positive scalars ǫ > 0, ϕ1 > 0 and ϕ2 > 0 satisfying



Υ11 −ϕ1Ū −ϕ2V̄ + Θ̄CTE3 Θ̄CTD 2ATP 2ATPB 0 ǫNT

∗ −ϕ1I + 2ET
1 PE1 0 0 0 0 0 0

∗ ∗ −ϕ2I + ET
3 E3 ET

3 D 0 0 0 0

∗ ∗ ∗ DTD − γ2I 0 0 0 0

∗ ∗ ∗ ∗ −P 0 2PM 0

∗ ∗ ∗ ∗ ∗ −BTPB 2BTPM 0

∗ ∗ ∗ ∗ ∗ ∗ −ǫI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ǫI




< 0,

(36)

BTPE = 0,

(37)
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where

Υ11 = ET
2 PE2 + Θ̄CTCΘ̄ +

n∑

i=1

σ2iC
T
i Ci − P − ϕ1Ũ − ϕ2Ṽ ,

then the system (14) is exponentially mean square stable and, meanwhile, the H∞ performance is achieved.

Proof: It is obvious that Theorem 2 implies Theorem 1, and therefore the system (14) is exponentially

mean square stable.

Next, for any ν(k) 6= 0, we have

E{yT(k)y(k)}
=E{(CΘx(k) + E3h(x(k)) +Dν(k))T(CΘx(k) + E3h(x(k)) +Dν(k))}
=E{xT(k)ΘCTCΘx(k) + 2xT(k)ΘCTE3h(x(k)) + 2xT(k)ΘCTDν(k)}

+ hT(x(k))ET
3 E3h(x(k)) + νT(k)DTDν(k) + 2νT(k)DTE3h(x(k)).

(38)

Defining Θ̃ , Θ− Θ̄, we obtain

E{xT(k)ΘCTCΘx(k)} = E{xT(k)(Θ̄ + Θ̃)CTC(Θ̄ + Θ̃)x(k)}
= xT(k)Θ̄CTCΘ̄x(k) + E{2xT(k)Θ̄CTCΘ̃x(k)} + E{xT(k)Θ̃CTCΘ̃x(k)}

= xT(k)Θ̄CTCΘ̄x(k) + xT(k)(

n∑

i=1

σ2iC
T
i Ci)x(k).

(39)

and

E{W(k + 1)|x(k)} −W(k) + E{yT(k)y(k)} − γ2E{νT(k)ν(k)}

=E{xT(k)(AT
KPAK + ET

2 PE2 + Θ̄CTCΘ̄ +

n∑

i=1

σ2iC
T
i Ci − P )x(k)

+ 2xT(k)AT
KPE1g(x(k)) + gT(x(k))ET

1 PE1g(x(k)) + 2xT(k)Θ̄CTE3h(x(k)) + 2xT(k)Θ̄CTDν(k)

+ hT(x(k))ET
3 E3h(x(k)) + νT(k)DTDν(k) + 2νT(k)DTE3h(x(k))} − γ2E{νT(k)ν(k)}

(40)

Taking (25) and (28) into consideration, for some ϕ1 > 0 and ϕ2 > 0, we have

E{W(k + 1)|x(k)} −W(k) + E{yT(k)y(k)} − γ2E{νT(k)ν(k)}
6E{W(k + 1)|x(k)} −W(k) + E{yT(k)y(k)} − γ2E{νT(k)ν(k)}

− ϕ1

[
x(k)

g(x(k))

]T [
Ũ Ū

ŪT I

][
x(k)

g(x(k))

]

− ϕ2

[
x(k)

h(x(k))

]T [
Ṽ V̄

V̄ T I

][
x(k)

h(x(k))

]
, E{η(k)TΥη(k)}.

(41)

Here,

Υ ,




Υ11 + 2AT
KPAK −ϕ1Ū −ϕ2V̄ + Θ̄CTE3 Θ̄CTD

∗ −ϕ1I + 2ET
1 PE1 0 0

∗ ∗ −ϕ2I + ET
3 E3 ET

3 D

∗ ∗ ∗ DTD − γ2I


 ,

η(k) ,
[
xT(k) gT(x(k)) hT(x(k)) νT(k)

]T
.



FINAL VERSION 10

Using Schur Complement, Υ < 0 is true if




Υ11 −ϕ1Ū −ϕ2V̄ + Θ̄CTE3 Θ̄CTD 2(A+∆A)TP 2(A +∆A)TPB

∗ −ϕ1I + ET
1 PE1 0 0 0 0

∗ ∗ −ϕ2I +ET
3 E3 ET

3 D 0 0

∗ ∗ ∗ DTD − γ2I 0 0

∗ ∗ ∗ ∗ −P 0

∗ ∗ ∗ ∗ ∗ −BTPB




< 0 (42)

which, by Lemma 4, is equivalent to (36), and therefore

E{W(k + 1)|x(k)} −W(k) + E{yT(k)y(k)} − γ2E{νT(k)ν(k)} < 0. (43)

Next, taking the sum on both sides of (43) from 0 to ∞ with respect to k leads to

∞∑

k=0

[
E{W(k + 1)|x(k)} −W(k) + E{yT(k)y(k)} − γ2E{νT(k)ν(k)}

]
< 0, (44)

or
∞∑

k=0

E{‖y(k)‖2} < γ2
∞∑

k=0

E{‖ν(k)‖2}+W(0) −W(∞). (45)

Since x(0) = 0 and the system (14) is exponentially mean square stable, we can easily obtain

∞∑

k=0

E{‖y(k)‖2} < γ2
∞∑

k=0

E{‖ν(k)‖2}, (46)

which completes the proof.

C. Computational Algorithm

Notice that the condition in Theorem 2 is presented as the feasibility problem of an LMI with an equal-

ity constraint. By means of the proposed method in [23], as the condition BTPE = 0 is equivalent to

tr[(BTPE)TBTPE] = 0, we first introduce the condition (BTPE)TBTPE 6 φI. By Schur Complement, the

condition can be expressed as [
−φI ETPB

BTPE −I

]
< 0. (47)

Hence, the original nonconvex feasibility problem can be converted into the following minimization problem:

minφ subject to (36) and (47). (48)

If this infinum equals zero, the solutions will satisfy the LMI (36) with the equality BTPE = 0. Thus, the

exponentially mean square stability and H∞ performance of system (14) are simultaneously achieved.

D. Reaching Condition Analysis

In this subsection, we will synthesize a sliding mode controller, with the pre-specified stochastic switching

function (10) and sliding surface (12), to meet the discrete-time sliding mode reaching condition. That is to

say, the trajectory of (1) starting from any initial state is globally driven onto the sliding surface (12) in finite

time with probability 1, and then results in a sliding motion within a band called quasi-sliding mode band

(QSMB) [14], along the sliding surface in the subsequent time.

To begin with, since the system parameter uncertainty ∆A and external disturbance f(x(k)) are both

assumed to be bounded, Da , BTP∆Ax(k) and Df , BTPBf(x(k)) will also be bounded. Denote dia and
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dif as the ith element in Da and Df , respectively. Suppose the lower and upper bounds on Da and Df are

known and given as follows:
diaL 6 dia 6 diaU ,

difL 6 dif 6 difU , i = 1, 2, · · · ,m.
(49)

where diaL diaU difL and difU are all known constants. Furthermore, we denote

D̄a =
[
d̄1a d̄1a · · · d̄ma

]T
, d̄ia =

diaU + diaL
2

,

D̃a = diag
{
d̃1a, d̃

2
a, · · · , d̃ma

}
, d̃ia =

diaU − diaL
2

,

D̄f =
[
d̄1f d̄1f · · · d̄mf

]T
, d̄if =

difU + difL

2
,

D̃f = diag
{
d̃1f , d̃

2
f , · · · , d̃mf

}
, d̃if =

difU − difL

2
, i = 1, 2, · · · ,m.

(50)

Remark 5: We should point out that the assumption on the upper and lower bounds of Da and Df are

standard for discrete-time SMC, see [14] and the references therein. Besides, the bounds of both Da and Df

might be time-varying or dependent on state x(k), which we will show in Section IV.

Next, we aim to improve the reaching condition proposed in [14] by proposing the following form for system

(1) with the sliding surface (12):

E{∆si(k)} = E{si(k + 1)− si(k)}
{

6 −ρλi · sgn[E{si(k)}] − ρqiE{si(k)} if E{si(k)} > 0

> −ρλi · sgn[E{si(k)}] − ρqiE{si(k)} if E{si(k)} < 0
(51)

where ρ represents the sampling period, λi > 0 and qi > 0 (i = 1, 2, · · · ,m) are properly chosen scalars

satisfying 0 < 1− ρqi < 1, ∀i ∈ {1, 2, · · · ,m}. We also can rewrite (51) into a compact form as follows:

E{∆s(k)} = E{s(k + 1)− s(k)}
{

6 −ρΛ · sgn[E{s(k)}] − ρQE{s(k)} if E{s(k)} > 0

> −ρΛ · sgn[E{s(k)}] − ρQE{s(k)} if E{s(k)} < 0
(52)

where
Λ = diag {λ1, λ2, · · · , λm} ∈ R

m×m,

Q = diag {q1, q2, · · · , qm} ∈ R
m×m.

Now we are ready to give the design technique of the robust SMC controller.

Theorem 3: Consider the uncertain nonlinear stochastic system (1) with the stochastic sliding surface (12)

where P is the solution to (36)-(37). If the SMC law is given as

u(k) =− (GΘ̄B)−1(ρΛ · sgn[GΘ̄x(k)] + (ρQ− I)GΘ̄x(k) +GΘ̄Ax(k)

+ (D̄a + D̄f ) + (D̃a + D̃f )sgn[GΘ̄x(k)]),
(53)

then the state trajectories of the system (1) are driven onto the pre-specified sliding surface (10) with proba-

bility 1.
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Proof: By (53), with the switching function defined in (10), we can easily obtain

E{∆s(k)} =E{s(k + 1)− s(k)}
=E{GΘx(k + 1)−GΘx(k))}
=GΘ̄((A+∆A)x(k) +Bu(k) +Bf(x(k))− x(k))

=GΘ̄((A+∆A)x(k)− x(k) +Bf(x(k)))

− (ρΛ · sgn[GΘ̄x(k)] + (ρQ− I)GΘ̄x(k) +GΘ̄Ax(k)

+ (D̄a + D̄f ) + (D̃a + D̃f )sgn[GΘ̄x(k)])

=BTP∆Ax(k) +BTPBf(x(k))

− ρΛ · sgn[BTPx(k)]− ρQBTPx(k)

− (D̄a + D̄f )− (D̃a + D̃f )sgn[B
TPx(k)]

=− ρΛ · sgn[E{s(k)}] − ρQE{s(k)}
+BTP∆Ax(k)− (D̄a + D̃asgn[E{s(k)}])
+BTPBf(x(k))− (D̄f + D̃f sgn[E{s(k)}])

(54)

and

E{s(k)} < 0 =⇒
{

BTP∆Ax(k) > D̄a + D̃asgn[E{s(k)}]
BTPBf(x(k)) > D̄f + D̃f sgn[E{s(k)}]

=⇒ E{∆s(k)} > −ρΛ · sgn[E{s(k)}]− ρQE{s(k)}.
(55)

Similarly, we can obtain

E{s(k)} > 0 =⇒ E{∆s(k)} 6 −ρΛ · sgn[E{s(k)}] − ρQE{s(k)}. (56)

Therefore, the reaching condition (52) for discrete-time sliding mode is satisfied. In other words, the trajectory

of system (1) will be, with probability 1, globally driven on the pre-specified sliding surface in finite time and

result in a non-increasing sliding motion within the quasi-sliding mode band afterwards. The proof ends.

Remark 6: We point out that it is not difficult to extend the present results to more general systems

that include polytopic parameter uncertainties, stochastic disturbances and constant or time-varying time

delays by using the approach proposed and the LMI framework developed. The reason why we discuss

the simplified system (1)-(2) is to make our theory more understandable and also to avoid unnecessarily

complicated notations.

E. Some Discussions

First, let us discuss the issue of worst-case analysis of the robustness. In this paper, we have considered

three kinds of “perturbations”, i.e., the parameter uncertainties ∆A, the external disturbances ν(k) and the

packet losses. For ∆A, it has been shown that, as long as the norm-bounded condition (4) holds, our main

results are true no matter how ∆A varies within the bounded set. In this sense, we have actually dealt

with the worst-case analysis with respect to ∆A. For ν(k), we have introduced the requirement (Q2), H∞

performance constraint, to account for the disturbance rejection attenuation level. H∞ performance, as is well

known, can be understood as the worst-case property (“best out of the worst”) as long as the disturbance ν(k)

has bounded energy. Therefore, our main results are true, i.e., the disturbance rejection attenuation level is

guaranteed no matter how ν(k) varies within an energy-bounded set.

Second, let us discuss the practical stability/boundedness issue. In this paper, the proposed switching

function is actually a stochastic difference equation. In case there is a stochastic disturbance, it would be

more reasonable to deal with the stability in a probabilistic way rather than the absolute stability. In fact,



FINAL VERSION 13

one of the novelties of this paper lies in the stochastic analysis of the sliding mode behavior. Although the

stability in probability 1 (considered in this paper) is weaker than the absolute stability, it has been widely

used in stochastic control area, see e.g. [2, 25,45]. For example, in [45], the stability of the stochastic system

is introduced in a probabilistic way, and the designed controller is also said to be able to stabilize the system

in a probabilistic sense. Accordingly, in this paper, we propose to discuss the sliding mode control problem

for the stochastic nonlinear system in a probabilistic way (with probability 1).

In order to show how the stability performances are influenced by the stochastic factors, we have added

two figures in the simulation part to illustrate the worst-case (that is, all the data packets are lost during the

sampling hence no valid signal can be used for feedback) response. It can be seen that the system is not stable

when the states are completely lost.

IV. An Illustrative Example

In this section, we present an illustrative example to demonstrate the effectiveness of the proposed algorithm.

The nominal system matrix A is taken from the model of an F-404 aircraft engine system in [10]. Note that

this example is actually a special case of the physical models studied in [6, 10, 29, 42]. Moreover, in order to

make the model more realistic and more close to the real-world engineering practices, we add the stochastic

noises, the data packet loss and the external disturbances caused by the complex and time-varying working

conditions in the system. After discretization, the system is as follows:





x(k + 1) =







0.0307 0 0.0557

0.0333 0.2466 −0.0091

0.0071 0 0.0130


+




0.01

0.02

0


 sin(0.6k)

[
0 0.01 0

]

x(k)

+




0.1817 0.4286

0.1597 0.0793

0.1138 0.0581



(
u(k) + f(x(k))

)
+




0.03 0 −0.01

0.02 0.03 0

0.04 0.05 −0.01


 g(x(k))

+




0.015 0 −0.01

0.01 0.015 0

0.02 0.025 −0.01


x(k)ω(k),

y(k) =

[
0.2 0 −0.1

0.1 0.15 0

]
Θx(k) +

[
−0.01 0 0.03

0.01 0.02 0

]
h(x(k)) +

[
0.015

0.02

]
ν(k).

(57)

Let

f(x(k)) =

[
0.5 sin(x1(k))

0.6 cos(x3(k))

]
,

g(x(k)) = 0.5(U1 + U2)x(k) + 0.5(U2 − U1) sin(x(k))x(k),

h(x(k)) = 0.5(V1 + V2)x(k) + 0.5(V2 − V1) cos(x(k))x(k),

(58)

where
sin(x(k)) , diag{sin(x1(k)), sin(x2(k)), sin(x3(k))},
cos(x(k)) , diag{cos(x1(k)), cos(x2(k)), cos(x3(k))},
U1 = diag{0.1, 0.2, 0.5}, U2 = diag{0.1, 0.6, 0.7},
V1 = diag{0.3, 0.2, 0.8}, V2 = diag{0.4, 0.5, 0.6}.

(59)
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In addition, we assume the probabilistic density functions of θ1, θ2 and θ3 in [0 1] are described by

̺1(s1) =





0.8 s1 = 0

0.1 s1 = 0.5

0.1 s1 = 1,

̺2(s2) =





0.7 s2 = 0

0.2 s2 = 0.5

0.1 s2 = 1,

̺3(s3) =





0 s3 = 0

0.1 s3 = 0.5

0.9 s3 = 1,

(60)

from which the expectations and variances can be easily calculated as µ1 = 0.15, σ21 = 0.1025, µ2 = 0.2,

σ22 = 0.11, µ3 = 0.95 and σ23 = 0.0225.

Choosing γ = 0.8 and using Matlab LMI Toolbox to solve problem (48), we have

P =




0.075173 0.020922 −0.060289

0.020922 0.18556 −0.091766

−0.060289 −0.091766 0.19063




and φ = 9.000011 × 10−7 (hence the constraint BTPE = 0 is satisfied). Choose ρ = 0.05, λj = 1 and

qj = 1 (j = 1, 2). Moreover, In order to design the explicit SMC controller, we suppose BTP∆Ax(k) and

BTPBf(x(k)) are bounded by the following conditions:

diaL = −‖BTPM‖‖Nx(k)‖, diaU = ‖BTPM‖‖Nx(k)‖,
difL = −0.5‖BTPB sin(x(k))‖, difU = 0.5‖BTPB sin(x(k))‖.

(61)

Then, it follows from Theorem 3 that the desired SMC law can be set up with all known parameters. The

simulation results are shown in Fig. 1 to Fig. 4, which confirm that the desired requirements are well achieved.

V. Conclusions

A robust SMC design problem for a class of uncertain nonlinear stochastic systems with multiple data packet

losses has been studied. Both matched and unmatched nonlinearities have been taken into consideration. The

multiple data packet losses are assumed to happen in a random way, and the loss probability of each individual

state variable is governed by a corresponding individual stochastic variable obeying a certain probabilistic

distribution in the interval [0 1]. We also have introduced, for the first time, a stochastic switching function

for the SMC problem of discrete-time stochastic systems. By means of LMI, a sufficient condition for the

exponentially mean square stability as well as pre-specified H∞ performance index of the system dynamics

on the specified sliding surface has been derived. By the reaching condition proposed in this paper, an SMC

controller has been designed to globally drive the state trajectory onto the specified surface with probability

1, which gives rise to a non-increasing zigzag motion along the surface. An illustrative numerical example has

been given to show the applicability and effectiveness of the proposed method in this paper.
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Fig. 1. The state trajectories x(k).
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Fig. 2. The signal ∆s(k).
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Fig. 3. The state trajectories when the states are completely lost.
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Fig. 4. The signal ∆s(k) when the states are completely lost.
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Fig. 5. The noise ω(k).
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Fig. 6. The disturbance ν(k).


