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Abstract: In this paper, the control problem is investigated for discrete time-varying delayed systems
with stochastic uncertainty, external disturbance, and two-channel packet dropouts. Sliding mode
functions with packet loss probabilities are proposed for the packet loss problem in the sensor–
controller channel and the controller–actuator channel. Furthermore, by employing the Lyapunov–
Krasovskii functional, some new stability conditions are established in terms of solvable linear matrix
inequalities (LMIs), and H∞ performance is analyzed for the sliding mode motion of the system.
Meanwhile, a sliding mode controller is designed to drive the system state to the pre-designed sliding
surface. Moreover, the designed controller can be robust for two-channel packet dropouts, time-
varying delays, stochastic uncertainty and external disturbance. Finally, two numerical examples are
given to demonstrate the feasibility of the proposed theoretical method.

Keywords: networked control system; sliding mode control; packet dropouts; discrete delayed
systems; stochastic uncertainty; sensor

1. Introduction

Over the last few decades, the emergence of networked control systems (NCSs) has
largely solved the shortcomings of traditional control systems which are not easily scalable,
inflexible, and weak against interference [1–3]. They have a wide range of applications
in modern science, such as robot manufacturing [4], transport [5], and power transmis-
sion. However, the networked control system, which connects the original components
to the communication network, inevitably introduces new problems. For example, re-
sources are transmitted in the networked control system through the Internet. During
this data transmission, the nodes will collide with each other, and competition failure or
network congestion can result in packet order confusion, time delays [6–8], and even packet
dropouts [9–11], due to the limitations of channel capacity or information processing speed.
The sensor also has packet loss [12,13], which brings serious negative impacts that cannot
be ignored. Therefore, in order to make further progress in networked control, the impact
of packet dropout and time-varying delays on system stability must be reduced.

In practice, networked control systems are widely used in power systems [14], which
can solve the problem of power system security control. The delay of data directly leads
to the phase lag of the controlled system, affecting the dynamic performance and stability
of the controlled system. Therefore, it is necessary to adopt appropriate network control
technology to minimize the delay of information networks. In fact, a great deal of research
has been carried out on networked control systems containing packet loss and time delays.
The stochastic system approach [15] and the deterministic approach [16] are the two
most commonly used methods to study the relationship between packet loss rate and
NCS performance. The stochastic system approach generally uses Markov chains or
Bernoulli random sequence approximations to describe the packet loss process of the system.
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Lu [17] proposed an improved model predictive tracking control to handle networked
control systems under random packet loss and uncertainty, introducing a new state space
model where tracking errors and state variables are combined and optimized, and better
control performance is obtained. Shah [18] took the real-time network medium and packet
loss into account, and put forward a new method for designing discrete-time sliding
mode controllers using the Thiran’s delay approximation. In terms of controller, the main
controllers used in the system include feedback control [19], H∞ control [20], predictive
control [21], optimal control [22], and sliding mode control [23]. Among the above methods,
the advantage of sliding mode control (SMC) is that sliding mode can be implemented
completely independently of system external disturbances and parameter uptake under
certain conditions. Sliding mode control is a widely used method that has a long history
and has received a lot of attention [24–26].

The basic principle of SMC is to drive the system state to a pre-designed sliding surface
and remain there for all subsequent time by correctly constructing a discontinuous control
law. Therefore, a large number of methods have been provided to deal with the SMC
problem for different types of systems. Zhan [27] investigated the problem of optimal
tracking performance with packet loss and channel noise under channel input power
constraints, exploring the conclusions related to how the packet loss probability and channel
noise of the communication channel fundamentally limit the tracking capability of the
control system. Niu [28] constructed discrete-time integral sliding surfaces involving fallout
probabilities; the accessibility of the sliding surface was analyzed by means of the discrete-
time stochastic Lyapunov method, and Niu also presented a method for estimating packet
loss when generating system state information between sensors and controllers. Numerous
studies have been published on sliding mode control systems with packet loss and time
delays. In addition, the presence of uncertainties, external disturbances and non-linearity in
the system can increase the complexity of the system analyses and modelling, especially in a
system with two-channel packet dropouts. Zhang [29] investigated the sliding mode control
problem for a class of discrete delayed nonlinear systems subject to randomly varying
non-linearity with uncertain occurrence probabilities, and verified the effectiveness of the
SMC technique. The effect of external perturbations on this system was further investigated
and the feasibility was verified by Zhang [30]. However, none of the above studies have
considered the effect of two-channel packets dropouts on the system. Zhang [31] presented
a solution for detecting fault signals in uncertain incremental operator systems with two-
channel packet dropouts and time-varying delays. Zhang [32] considered the presence of
two-channel packet dropouts, uncertainty, and external disturbance in networked control
systems, and proposed a novel integral sliding surface, but they did not take time delays and
stochastic uncertainty into account in the system. Accordingly, it is necessary and important
to consider two-channel packet dropouts, time-varying delays, external disturbances, and
stochastic uncertainty in sliding mode control systems simultaneously.

Motivated by the above discussions, in this paper, a robust sliding mode controller is
proposed to study the control problem of making the system stable for discrete networked
control systems with two-channel packet dropouts, randomly occurring uncertainties, time
delays, and external disturbance. Due to the limited bandwidth of the communication
channels, sensor–controller and controller–actuator random packet dropouts may occur
simultaneously in the network environment. Therefore, the system considered in this paper
is more comprehensive and general. The main contributions can be summarized as follows:
(1) Compared with the existing literature, the model proposed is more general in this paper.
The parameter uncertainties, time-varying delays, external disturbance and two-channel
packet dropouts are all considered simultaneously, which is more relevant to the actual
situation. (2) Sliding surface parameters are proposed to ensure asymptotic stability and
H∞ performance of the system in the sliding phase. (3) The sliding mode controller is
designed to ensure relatively ideal system dynamics and robustness to two-channel packet
dropouts, unknown parameter perturbations and external disturbances.
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The arrangement of this paper is as follows. Section 2 introduces the related work
on NCSs and SMC. Section 3 introduces the control system model. Section 4 proposes a
sliding surface that conforms to the system. A design of the robust sliding mode controller
is presented in Section 5. Numerical simulation results are shown in Section 6. Section 7
provides some conclusions.

2. Related Work

This section briefly reviews networked control systems and sliding mode control
systems, focusing on discrete systems under the influence of many factors and the design
of sliding mode controllers.

Chen [33] used a logical packet processor (DPP) to resolve the data packet disorder
and data packet dropout, considered it as a special case of the time delay, and took into
account time delays or data packet dropouts happening in both sensor-to-controller and
controller-to-actuator channels simultaneously. However, the author did not considered
the effect of uncertainty on the system and whether the system can be stable for a finite
period of time. In many papers, the time delay of the system has been established as a
Markov chain model. A system model has been presented for deriving channel access
delay using Markov chain model [34], and Abubakar [35] used this chain model to define
channel access delay in multichannel vehicular environments. Sensor-to-controller and
controller-to-actuator random delays have been modeled as a Markov chain [36]; Bahreini
presented a robust finite-time fault-tolerant controller for a class of uncertain NCSs with
network induced random delays and actuator faults. Fault-tolerant controllers have been
designed to ensure system stability. However, the external disturbance missing from this
paper can also have a large impact on the system [37].

Sliding mode control (SMC) systems have been exploited to solve robust control prob-
lems of a large range of complex systems. Wang [38] presented a sliding mode dynamic
output feedback controller design for Markovian jump systems (MJSs) under a commu-
nication network. The MJS model can model abrupt parameter and structural changes
caused by the network. However, it cannot modeled system effects from packet loss and
time delay. The SMC strategy has also been used to address the exponential stability of
the switching system through an event-triggered scheme [39]; a significant advantage of
event-triggered solutions is their ability to reduce redundant transmissions. However, the
need for accessible system outputs have limited their practical applicability. In addition,
compound controllers combined with the static output feedback of the SMC cannot elim-
inate the effects of external disturbances on the system [40], and conventional full-state
feedback controllers [41] cannot be used when the system state cannot be fully measured.

3. System Description and Preliminaries

The structure of a class of discrete uncertain system with time-varying delays and
two-channel packet dropouts is shown in Figure 1, where time delays cannot be ignored,
and the breakpoints of the two channels represent the condition of packet dropouts. The
sensor and actuator are time-driven, while the controllers are event-driven. For better
processing of the signals, both A/D converters and D/A converters are needed before and
after the controller, respectively. The control signal and feedback signal of the system are
very important. These can adjust the state of the system in time and ensure the stability of
the system. Here, we describe the discrete system model as follows:

xk+1 = (A + αk∆A)xk + (Ad + βk∆Ad)xk−dk
+ Buk + Dωk,

zk = Cxk + Fωk,
xk = φk, k = −dM,−dM + 1, . . . , 0,

(1)

where xk ∈ Rn, uk ∈ Rm, zk ∈ Rp denote the system state vector, the control input, and
the control output, respectively; φk ∈ Rq is the external disturbance; φk is the state of the
previous moment when the time delay occurs; dk ∈ [dm, dM] is the time-varying delays,
where dm and dM are known upper and lower bounds, respectively; αk, βk ∈ R are random
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variables, and ∆A, ∆Ad are mismatched system parameter perturbation. Moreover, A, Ad,
B, C, D, and F are known coefficient matrices with appropriate dimensions. The matrix B
is assumed to be full column rank.
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In this paper, we introduce the following assumptions.
(1) The matrices ∆A and ∆Ad represent the mismatched norm-bounded uncertainties

satisfying:
[ ∆A ∆Ad ] = [ H Hd ]Fk N, (2)

where H, Hd, and N are known matrices, Fk is unknown matrix with FT
k Fk ≤ I.

(2) The random variable αk, βk ∈ {0 , 1} is a Bernoulli white noise sequence, the
probability distribution of αk, βk is Pr{αk = 1} = α, Pr{βk = 1} = β, respectively, where
α, β ∈ [0, 1].

(3) The packet dropout distribution of the two channels is assumed to obey the two-
level Bernoulli random process. Denote x̂k as the sensor signal that reaches the controller
and ûk as the control signal that reaches the actuator. They are expressed as follows:{

x̂k = (1− ρk)xk + ρkxk−1,
ûk = (1− θk)uk + θkuk−1,

(3)

where ρk, θk ∈ {0, 1} are parameters used to describe the packet dropout state of the
two channels, when ρk = 0 indicates that the date transmission is normal in the sensor–
controller channel, and ρk = 1 means the packet is lost. Parameter θk is the counterpart of
ρk in controller–actuator channel. The probability distribution of ρk, θk is{

Pr{ρk = 1} = ρ, Pr{ρk = 0} = 1− ρ,
Pr{θk = 1} = θ, Pr{θk = 0} = 1− θ,

(4)

where 0 ≤ ρ < 1, 0 ≤ θ < 1 are known positive constants, to denote the probability that the
packet will be transmitted successfully from sensor to controller, and controller to actuator,
respectively.

4. Design of Robust Sliding Surface and Appropriate Controller

The discrete system model studied in this paper includes these factors of time de-
lays, two-channel packet dropouts, stochastic uncertainty, and external disturbance, to
suppress the impact of packet dropouts on system stability for two channels. Similarly to
Zhang et al. [32], we define the following sliding surface with packet dropout compensa-
tion function:

sk = (1− ρ)Gxk + ρGAxk−2 + θGBuk−2, (5)
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where G is the sliding surface parameter matrix to be designed, that GB is non-singular, we
select G = BT P with P > 0 to ensure the non-singularity of GB. It can be obtained from
Equations (1) and (5) that,

sk+1 = (1− ρ)G(A + α∆A)xk + (1− ρ)G(Ad + β∆Ad)xk−dk
+(1− ρ)GBuk + (1− ρ)GDωk + ρGAxk−1 + θGBuk−1.

(6)

Note that the ideal quasi-sliding mode satisfying

sk+1 = sk = 0. (7)

Then, the equivalent controller can be derived from Equations (6) and (7) as follows:

ueq = −(GB)−1[G(A + α∆A)xk + G(Ad + β∆Ad)xk−dk
+ GDωk + λ1GAxk−1]

−λ2uk−1,
(8)

where λ1 = ρ
1−ρ , λ2 = θ

1−ρ . Substituting Equation (8) into (1), the sliding mode dynamics
equation is obtained as

xk+1 = (A + α∆A− ∆A)xk + (Ad + β∆Ad − ∆Ad)xk−dk
− λ1 Axk−1

−λ2Buk−1 + Dωk + (αk − α)∆Axk + (βk − β)∆Adxk−dk
,

(9)

where ∆A = B(GB)−1G(A + α∆A), ∆Ad = B(GB)−1G(Ad + β∆Ad), A = B(GB)−1GA,
D =D− B(GB)−1GD.

Definition 1. The system (9) is said to be admissible with an H∞-norm bound γ, if the sys-
tem with ωk = 0 is admissible and under the zero-initial conditions the output zk satisfies
∞
∑

k=0
E{‖zk‖2} ≤ γ2

∞
∑

k=0
‖ωk‖2.

Lemma 1 ([42]). For any real vector a, b, and matrix P > 0 of appropriate dimensions, we have

aTb + bTa ≤ aT Pa + bT Pb. (10)

Lemma 2 ([43]). Give appropriate dimension constant matrices S1, S2, S3, where S1 = ST
1 and

0 < S2 = ST
2 , then S1 + ST

3 S−1
2 S3 < 0 if and only if[
S1 ST

3
∗ −S2

]
< 0 or

[
−S2 S3
∗ S1

]
< 0. (11)

Lemma 3 ([44]). Q is the real symmetric matrix, let Q = QT , M, and N be real matrices of
compatible dimension. Then, Q + HFN + NT FT HT < 0 for all F satisfying FT F ≤ I, if and only
if there exists a constant ε > 0 such that Q + εHHT + ε−1NT N < 0 or, equivalently, Q εH NT

εHT −εI 0
N 0 −εI

 < 0. (12)

Theorem 1. The sliding mode dynamics (9) with ωk = 0 is robustly asymptotically stable in mean
square sense if there exist matrices P > 0, Q > 0, R > 0, Λ > 0, and ε > 0 satisfying

Ψ =


Ψ11 Ψ12 Ψ13 Ψ14
∗ Ψ22 0 Ψ24
∗ ∗ Ψ33 Ψ34
∗ ∗ ∗ Ψ44

 < 0, (13)
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where

Ψ11 = ∏̃11, Ψ12 = ∏̃12, Ψ13 = ∏̃13, Ψ22 = ∏22, Ψ33 = ∏33, Λ = [(GB)−1]
T

Λ(GB)−1,

∏̃11 =


−P + R + (dM − dm + 1)Q 0 0

√
2ξ AT P

√
2ξAT PB

∗ −Q 0 0 0
∗ ∗ −R 0 0
∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ −BT PB

,

∏̃13 =


0 0 0 0 0√

ξ Ad
T PB 0 0 0 0

0
√

gAT PB
√

gAT PB 0 0
0 0 0 0 0
0 0 0

√
hBT P

√
1− hBT PB

, ∏̃12 =

 ∏1
∏2

03×5

,

Ψ14 =


0 0 εNT 0
0 0 0 εNT

0 0 0 0√
2ξαPH 0 0 0√

2ξαBT PH 0 0 0

, Ψ24 =



√
αPH 0 0 0√

ξαBT PH 0 0 0
0

√
2ξβPHd 0 0

0
√

2ξβBT PHd 0 0

0
√

βPHd 0 0

,

Ψ34 =

[
Ψ∗34
04×4

]
, Ψ∗34 = [ 0

√
ξβBT PHd 0 0 ], Ψ44 = diag{−εI,−εI,−εI,−εI},

∏1 = [ 0
√

ξ AT PB 0 0 0 ], ∏2 = [ 0 0
√

2ξAd
T P

√
2ξ Ad

T PB 0 ],

∏22 = diag
{
−P,−Λ−1,−P,−BT PB,−P

}
, α = α(1− α), β = β(1− β)

∏33 = diag
{
−Λ−1,−BT PB,−Λ−1,−P,−Λ−1

}
, ξ = 2 + λ1 + λ2,

g = λ1
2 + 2λ1 + λ1λ2, h = λ2

2 + 2λ2 + λ1λ2.

Proof of Theorem 1. Please see Appendix A. �

Remark 1. In matrices Λ = [(GB)−1]
T

Λ(GB)−1 and G = BT P, Λ and G are unknown, which
leads to the matrix inequality being non-linearly unsolvable. Therefore, it is not possible to directly
calculate Λ and G, respectively, but Λ and P can be obtained by Equation (13), and then Λ can be

calculated by Λ = [(GB)−1]
T

Λ(GB)−1.

The following theorem further analyzes the admissibility of system (9) with an H∞-
norm bound.

Theorem 2. For a given scalar γ > 0, the sliding mode dynamics (9) is robustly mean-square
asymptotically stable, if there exist matrices P > 0, Q > 0, R > 0, Λ > 0, and scalar ε > 0
satisfying

Ξ =


Ξ11 Ξ12 Ξ13 Ξ14
∗ Ξ22 0 Ξ24
∗ ∗ Ξ33 0
∗ ∗ ∗ Ξ44

 < 0, (14)



Sensors 2022, 22, 1965 7 of 18

where

Ξ11 =



−P + R + (dM − dm + 1) 0 0 CT F
√

2ξAT P
√

2ξ AT PB
∗ −Q 0 0 0 0
∗ ∗ −R 0 0 0
∗ ∗ ∗ −γ2 I + FT F 0 0
∗ ∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ ∗ −BT PB


,

Ξ12 =

[
Ξ̂12
04×6

]
, Ξ̂12 =

 0
√

ξAT PB 0 0 0 0

0 0
√

2ξ Ad
T P

√
2ξAd

T PB 0
√

ξAd
T PB

,

Ξ13 =


02×7
Ξ13
01×7
Ξ̂13

, Ξ̂13 = [ 0 0 0 0 0
√

hBT P
√

1− hBT PB ],

Ξ13 =

[ √
gAT PB

√
gAT PB 0 0 0 0 0

0 0
√

2ξDT P
√

2ξDT PB
√

ξDT PB 0 0

]
,

Ξ14 =



0 0 εNT 0
0 0 0 εNT

0 0 0 0
0 0 0 0√

2ξαPH 0 0 0√
2ξαBT PH 0 0 0


,

Ξ24 =



√
αPH 0 0 0√

ξαBT PH 0 0 0

0
√

2ξβPHd 0 0

0
√

2ξβBT PHd 0 0

0
√

βPHd 0 0

0
√

ξβBT PHd 0 0


,

Ξ22 = diag
{
−P,−Λ−1,−P,−BT PB,−P,−Λ−1

}
, Ξ44 = diag{−εI,−εI,−εI,−εI},

Ξ33 = diag
{
−Λ−1,−BT PB,−P,−BT PB,−Λ−1,−P,−Λ−1

}
,

ξ = 3 + λ1 + λ2g = λ1
2 + 3λ1 + λ1λ2h = λ2

2 + 3λ2 + λ1λ2.

Proof of Theorem 2. Please see Appendix B. �

Corollary 1. It should be noted that the result is shown as a feasible solution for the system stability
problem in the presence of two-channel packet dropouts, time delays, stochastic uncertainty and
disturbances in Theorem 2. To illustrate the system’s performance with the same packet loss rates
and H∞ performance index γ, then the feasibility problem inequality (14) can be converted into the
minimization problem:

minγ2 s.t.LMI(14) (15)
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5. Design of Sliding Mode Controller

Based on the definition of the discrete arrival conditions presented in [30], our goal is
to synthesize the desired sliding mode controller. The necessary performance requirements
are guaranteed if the following reach conditions hold{

∆sk = sk+1 − sk ≤ −TUsgn[sk]− TVsk, if sk > 0
∆sk = sk+1 − sk ≥ −TUsgn[sk]− TVsk, if sk < 0

(16)

where T is the sampling period, U = diag{µ1, µ2, . . . µl} and V = diag{ν1, ν2, . . . νl}, where
µi > 0 and νi > 0 are properly chosen scalars satisfying 0 < 1− Tvi < 1 (i = 1, 2, . . . , l).

Uncertain terms (1− ρ)αkG∆Axk, (1− ρ)βkG∆Adxk−kd
, and (1− ρ)GDωk exist in (6).

Compensation must be made during controller design in order to achieve relatively desirable
reach-phase performance. Then, a sliding mode controller is proposed based on the uncer-
tainty upper bound. Set ∆a(k) = (1− ρ)αkG∆Axk, ∆d(k) = (1− ρ)G ·(Ad + βk∆Ad)xk−dk

,
and ∆ω(k) = (1− ρ)GDωk which are assumed to be bounded. We suppose that there

exist known bounds δi
a, δ

i
a, δi

d, δ
i
d, δi

ω, and δ
i
ω(i = 1, 2, . . . , l) satisfying δi

a < δi
a(k) < δ

i
a,

δi
d < δi

d(k) < δ
i
d, δi

ω < δi
ω(k) < δ

i
ω, where δi

a(k), δi
d(k), and δi

ω(k)(i = 1, 2, . . . , l) are the ith
element in ∆a(k), ∆d(k), and ∆ω(k), respectively. Define

∆̂a = [ δ̂1
a δ̂2

a . . . δ̂l
a ]

T , δ̂i
a =

δ
i
a+δi

a
2 ,

∆̂d = [ δ̂1
d δ̂2

d . . . δ̂l
d ]

T , δ̂i
d =

δ
i
d+δi

d
2 ,

∆̂ω = [ δ̂1
ω δ̂2

ω . . . δ̂l
ω ]

T , δ̂i
ω = δ

i
ω+δi

ω
2 ,

∆a = daig{δ̃1
a , δ̃2

a , . . . , δ̃l
a

}
, δ̃i

a =
δ

i
a−δi

a
2 ,

∆d = daig{δ̃1
d , δ̃2

d , . . . , δ̃l
d

}
, δ̃i

d =
δ

i
d−δi

d
2 ,

∆ω = daig{δ̃1
ω, δ̃2

ω, . . . , δ̃l
ω

}
, δ̃i

ω = δ
i
ω−δi

ω
2 .

Then, we can construct a discrete-time robust sliding mode controller and ensure its
accessibility.

Theorem 3. For system (1) and the sliding mode function (5), the sliding mode control law (17) is
chosen so that the system can reach the sliding mode surface (6):

uk = − 1
1−ρ (GB)−1[TUsgn[sk] + (TV − I)sk + GAx̂k + θGBuk−1

+(∆̂a + ∆̂d + ∆̂ω) + (∆a + ∆d + ∆ω)sgn[sk]
]
.

(17)

Proof of Theorem 3. By substituting (17) into (6), we can obtain

∆sk = (1− ρ)G(A + α∆A)xk + (1− ρ)G(Ad + β∆Ad)xk−dk
+(1− ρ)GBuk + (1− ρ)GDωk + ρGAxk−1 + θGBuk−1 − sk
= −TUsgn[sk]− TVsk + ∆a(k) + ∆d(k) + ∆ω(k)
−(∆̂a + ∆̂d + ∆̂ω)− (∆a + ∆d + ∆ω)sgn[sk].

(18)

It is easy to verify that the convergence law condition (16) is satisfied, so that the
sliding surface (5) is accessible, and the theorem is proved. �

6. Numerical Example

In this section, we will give examples which drive the effectiveness of the results
obtained in the previous sections.



Sensors 2022, 22, 1965 9 of 18

Example 1. Consider the following uncertain system in the form of Equation (1):

A =

 0.01 −0.01 0
0 0.012 0.03

0.003 0 −0.005

, Ad =

 0.007 0 −0.04
0.02 0.01 0
0.02 0.04 −0.05

, B =

 0.01 0.04
0.01 0.12
0.04 0.01

,

C =

[
0.02 0 −0.01
0.01 0.15 0

]
, D =

 0.03
−0.02
0.003

, F =

[
−0.01

0.1

]
.

The parameters for packet dropouts, parameter perturbation, time-varying delays, and external
perturbation are described as

HT = [ 0.4 0.02 0.1 ], HT
d = [ 0.01 −0.1 0.1 ], N = [ 0.01 −0.5 −0.1 ],

α = 0.75, β = 0.78, ρ = 0.2, θ = 0.2, dm = 2, dM = 5, γ = 0.12, ωk = e−k cos k,

Fk = 0.2 sin(k).

Let T = 0.01, µi = vi = 1 (i = 1, 2), and

δi
a = −‖GH‖ · ‖Nxk‖, δ

i
a = ‖GH‖ · ‖Nxk‖, δi

ω = −1, δ
i
ω = 1,

δi
d = −‖GAdxk−dk‖ − ‖GHd‖ · ‖Nxk−dk

‖, δ
i
d = ‖GAdxk−dk

‖+ ‖GHd‖ · ‖Nxk−dk
‖.

Then, the sliding surface parameter matrix can be obtained by solving LMI (28), that is

P =

 0.1192 0.0092 −0.1007
0.0092 0.5202 −0.0187
−0.1007 −0.0187 0.4457

, Q =

 0.0163 −0.0047 −0.0130
−0.0047 0.0527 −0.0112
−0.0130 −0.0112 0.0454

,

R =

 0.0237 0.0137 −0.0257
0.0137 0.0195 −0.0046
−0.0257 −0.0046 0.0942

, Λ =

[
0.0063 0.0321
0.0321 0.2909

]
, ε = 0.1319.

Then, we can obtain G = BT P =

[
−0.0027 0.0045 0.0166
0.0049 0.0626 −0.0018

]
.

Given the initial conditions, the simulation results can be given in Figures 1–4. Among
them, Figure 2 shows the state responses of the system where x1,k, x2,k, and x3,k converge to
a small neighborhood of zero quickly, indicating that the considered system is H∞ admissi-
ble. The sliding mode function sk and control signal uk are presented in Figures 3 and 4,
respectively. Figure 5 shows the time delays dk varying with time. From the following
simulations, we can conclude that the control scheme is effective.

Example 2. The coefficient matrix of the system is the same as that in Example 1. The difference is
ρ = 0.4, then sliding surface parameter matrix can be obtained by solving LMI (28), that is

P =

 0.1016 −0.0038 −0.0947
−0.0038 0.4800 −0.0149
−0.0947 −0.0149 0.4090

, Q =

 0.0143 −0.0054 −0.0119
−0.0054 0.0476 −0.0109
−0.0119 −0.0109 0.0405

,

R =

 0.0190 0.0084 −0.0240
0.0084 0.0130 −0.0057
−0.0240 −0.0057 0.0719

, Λ =

[
0.0038 0.0231
0.0231 0.2747

]
, ε = 0.1220.

Then, we can obtain G = BT P =

[
−0.0028 0.0042 0.0153
0.0027 0.0573 −0.0015

]
.
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Figures 6–8 show that the controller designed in this paper can keep the system in a
stable state under different packet loss rates.
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Remark 2. External disturbance and time delays are not considered in references [29,32], re-
spectively. Meanwhile, the references [29,30,32] do not consider stochastic uncertainty, and refer-
ences [29,30] ignore the two-channel packet dropouts. In Table 1, the model of this paper contains
more influencing factors, and it is more general than references [29,30,32].

Table 1. Model comparisons.

Model This Paper [29] [30] [32]

Time delays
√ √ √

×
Stochastic uncertainty

√
× × ×

External disturbance
√

×
√ √

Two-channel packet dropouts
√

× ×
√

Where “
√

” means that the model contains this component, and “×” means that the model does not contain
this component.

7. Conclusions

In this paper, the robust H∞ SMC stability problem has been discussed for uncertain
time-varying delays systems with stochastic uncertainty, external disturbance, and two-
channel packet dropouts. In order to suppress the effects of packet dropouts on system
stability, a robust sliding surface was applied, which proved to be more robust against
two-channel packet dropouts, stochastic uncertainty, external disturbances, and time delays.
Then, sufficient conditions have been gained to ensure the robust mean-square asymptotic
stability of the sliding mode dynamics with the H∞ performance. Furthermore, a sliding
mode controller with an uncertainty compensation term is proposed, which can inhibit
the influence of uncertainties on systems. Finally, two numerical examples have been
given to demonstrate the feasibility of the obtained H∞ SMC scheme. In the future, we
will investigate Markov jump systems with two channels—the sensor–controller channel,
and the controller–actuator channel packet dropouts—and the non-fragile control of two-
channel packet dropouts. We can also study the problem of robust fault detection in
networked control systems. Considering the packet dropout compensation, when there
are time delays, two-channel packet dropouts, and quantization errors, we can construct
corresponding fault detection filters to detect the system faults as well as more practical
controllers to discuss more complex systems.
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Nomenclature
The relevant notations employed are standard, P, Q, R, Λ are the symmetric matrices required

by this paper, respectively. ε is the positive number to be calculated in this paper. Some other details
are shown as follows.

Rn The n-dimensional Euclidean space
MT/M−1 The transposition/inverse of matrix M
* The entries caused by symmetry
Pr{·} The occurrence probability of the event ‘·’
E{x} The expectation of x
‖ · ‖ The Euclidean norm
X > 0 The matrix X is positive definite
diag{· · · } The block diagonal matrix
I The identity matrix with compatible dimension

Appendix A. Proof of Theorem 1

The Lyapunov–Krasovskii functional is designed as follows:

Vk =
3

∑
i=1

Vi·k, (A1)

where

V1·k = xT
kPxk + xT

k−1Rxk−1 +uT
k−1Λuk−1,V2·k =

k−1
∑

j=k−dk

xT
jQxj,V3·k =

−dm
∑

j=−dM+1

k−1
∑

i=k+j
xT

iQxi,

with P > 0, R > 0, Λ > 0 and Q > 0 are matrices to be determined. Then, along the trajec-
tory of system (9), we have

E{∆Vk} =
3

∑
i=1

E{∆Vi·k}, (A2)

where

E{∆V1·k}
= E

{
xT

k+1Pxk+1 + xT
k Rxk + uT

k Λuk − xT
k Pxk − xT

k−1Rxk−1 − uT
k−1Λuk−1

}
= E{xT

k (Ã− ∆A)
T

P(Ã− ∆A)xk + 2xT
k (Ã− ∆A)

T
P(Ãd − ∆Ad)xk−dk

−2λ1xT
k (Ã− ∆A)

T
PAxk−1 − 2λ2xT

k (Ã− ∆A)
T

PBuk−1

+xT
k−dk

(Ãd − ∆Ad)
T

P(Ãd − ∆Ad)xk−dk
− 2λ1xT

k−dk
(Ãd − ∆Ad)

T
PAxk−1

−2λ2xT
k−dk

(Ãd − ∆Ad)
T

PBuk−1 + λ2
1xT

k−1 AT PAxk−1

+2λ1λ2xT
k−1 AT PBuk−1 + λ2

2uT
k−1BT PBuk−1 + αxT

k ∆AT P∆Axk
+βxT

k−dk
∆AT

d P∆Adxk−dk
+ xT

k ÃTGTΛGÃxk + 2xT
k ÃTGTΛGÃdxk−dk

+2λ1xT
k ÃTGTΛGAxk−1 + 2λ2xT

k ÃTG̃TΛuk−1 + xT
k−dk

Ãd
TGTΛGÃdxk−dk

+2λ1xT
k−dk

Ãd
TGTΛGAxk−1 + 2λ2xT

k−dk
Ãd

TG̃TΛuk−1

+λ2
1xT

k−1 ATGTΛGAxk−1 + 2λ1λ2xT
k−1 ATG̃TΛuk−1

+λ2
2uT

k−1Λuk−1 + xT
k Rxk − xT

k Pxk − xT
k−1Rxk−1 − uT

k−1Λuk−1},

(A3)

where Ã = A + α∆A, Ãd = Ad + β∆Ad.
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By using the elementary matrix inequality technique, it follows that

2xT
k (Ã− ∆A)

T
P(Ãd − ∆Ad)xk−dk

≤ xT
k (Ã− ∆A)

T
P(Ã− ∆A)xk + xT

k−dk
(Ãd − ∆Ad)

T
P(Ãd − ∆Ad)xk−dk

≤ 2xT
k ÃT PÃxk + 2xT

k ÃTGT(GB)−1GÃxk + 2xT
k−dk

Ãd
T PÃdxk−dk

+2xT
k−dk

Ãd
TGT(GB)−1GÃdxk−dk

,

(A4)

and by applying Lemma 1, it follows that

−2λ1xT
k (Ã− ∆A)

T
PAxk−1

≤ λ1xT
k (Ã− ∆A)

T
P(Ã− ∆A)xk + λ1xT

k−1 AT PAxk−1

≤ 2λ1xT
k ÃT PÃxk + 2λ1xT

k ÃTGT(GB)−1GÃxk + λ1xT
k−1 AT PAxk−1.

(A5)

The other terms are deduced in the same way. Hence, substituting Equations (A4) and (A5)
into (A3) yields

E{∆V1·k}
= E{2ξxT

k ÃT PÃxk + 2ξxT
k ÃTGT(GB)−1GÃxk + αxT

k ∆AT P∆Axk
+ξxT

k ÃTGTΛGÃxk + 2ξxT
k−dk

Ãd
T PÃdxk−dk

+ xT
k Rxk − xT

k Pxk

+2ξxT
k−dk

Ãd
TGT(GB)−1GÃdxk−dk

+ βxT
k−dk

∆AT
d P∆Adxk−dk

+ξxT
k−dk

Ãd
TGTΛGÃdxk−dk

+ gxT
k−1 AT PAxk−1 − xT

k−1Rxk−1

+gxT
k−1 ATGTΛGAxk−1 + huT

k−1BT PBuk−1 + huT
k−1Λuk−1 − uT

k−1Λuk−1

}
.

(A6)

Similarly, it can be inferred that

E{∆ V2·k} ≤ E

{
xT

k Qxk − xT
k−dk

Qxk−dk
+

k−dm

∑
j=k−dM+1

xT
j Qxj

}
. (A7)

E{∆V3·k} = E

{
(dM − dm)xT

k Qxk −
k−dm

∑
j=k−dM+1

xT
j Qxj

}
. (A8)

Thus,

E{∆ Vk}
≤ E{2ξxT

k ÃT PÃxk + 2ξxT
k ÃTGT(GB)−1GÃxk + αxT

k ∆AT P∆Axk
+ξxT

k ÃTGTΛGÃxk + xT
k Rxk − xT

k Pxk + (dM − dm + 1)xT
k Qxk

−xT
k−dk

Qxk−dk
+ 2ξxT

k−dk
Ãd

T PÃdxk−dk
+ 2ξxT

k−dk
Ãd

TGT(GB)−1GÃdxk−dk

+βxT
k−dk

∆AT
d P∆Adxk−dk

+ ξxT
k−dk

Ãd
TGTΛGÃdxk−dk

+gxT
k−1 AT PAxk−1 + gxT

k−1 ATGTΛGAxk−1 + huT
k−1BT PBuk−1

+huT
k−1Λuk−1 − xT

k−1Rxk−1 − uT
k−1Λuk−1

}
= E{ηT

k ΩηK} < 0,

(A9)

where
ηk = [ xT

k xT
k−dk

xT
k−1 uT

k−1 ]
T

,

Ω = diag{Ω11, Ω22, Ω33, Ω44},

Ω11 = 2ξ ÃT PÃ + 2ξ ÃTGT(GB)−1GÃ + α∆AT P∆A + ξ ÃTGTΛGÃ− P + R
+(dM − dm + 1)Q,

Ω22 = 2ξ ÃT PÃ + 2ξ ÃTGT(GB)−1GÃ + β∆AT
d P∆Ad + ξ ÃTGTΛGÃ−Q,

Ω33 = gAT PA + gATGTΛGA− R,
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Ω44 = hBT PB + hΛ−Λ.

Subsequently, noting G = BT P and employing Lemma 2, Ω < 0 is equivalent to

∏ =

 ∏11 ∏12 ∏13
∗ ∏22 0
∗ ∗ ∏33

 < 0, (A10)

where

∏11 =


−P + R + (dM − dm + 1)Q 0 0

√
2ξ ÃT P

√
2ξ ÃT PB

∗ −Q 0 0 0
∗ ∗ −R 0 0
∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ −BT PB

,

∏12 =
[

∏12
_
∏12

]
, ∏12 =

[ √
α∆AT P

√
ξ ÃT PB

04×1 04×1

]
,
_

∏12 =

 01×3
∏∗12
03×3

,

∏∗
12 = [

√
2ξ Ãd

T P
√

2ξ Ãd
T PB

√
β∆Ad

T P ],

∏22 = diag{−P,−Λ−1,−P,−BT PB,−P}, ∏33 = diag{−Λ−1,−BT PB,−Λ−1,−P,−Λ−1},

∏13 =


0 0 0 0 0√

ξ Ãd
T PB 0 0 0 0

0
√

gAT PB
√

gAT PB 0 0
0 0 0 0 0
0 0 0

√
hBT P

√
1− hBT PB

.

By using the Schur complement, rewrite matrix ∏ by

∏ = ∏̃ + ĤF̂N̂ + N̂T F̂T ĤT , (A11)

where

∏̃ =

 ∏̃11 ∏̃12 ∏̃13
∗ ∏22 0
∗ ∗ ∏33

, ∏̃12 =

 ∏1
∏2

03×5

, Ĥ =

[
Ĥ11 0

0 Ĥ22

]
, N̂ =

[
εNT 0 01×13

0 εNT 01×13

]
,

∏̃11 =


−P + R + (dM − dm + 1)Q 0 0

√
2ξ AT P

√
2ξAT PB

∗ −Q 0 0 0
∗ ∗ −R 0 0
∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ −BT PB

,

∏1 = [ 0
√

ξ AT PB 0 0 0 ], ∏2 = [ 0 0
√

2ξ Ad
T P

√
2ξAd

T PB 0 ],

∏̃13 =


0 0 0 0 0√

ξ Ad
T PB 0 0 0 0

0
√

gAT PB
√

gAT PB 0 0
0 0 0 0 0
0 0 0

√
hBT P

√
1− hBT PB

,

Ĥ11 = [ 0 0 0
√

2ξαPH
√

2ξαBT PH
√

αPH
√

ξαBT PH ]
T

,

Ĥ22 = [
√

2ξβPHd
√

2ξβBT PHd

√
βPHd

√
ξβBT PHd 0 0 0 0 ]

T
.
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By using Lemmas 2 and 3, it is obtained that Ψ < 0 can guarantee matrix ∏ < 0; then,
we can guarantee matrix Ω < 0; then, E{∆Vk} < 0. Therefore, it can be concluded that the
sliding mode dynamics (9) are robustly asymptotically stable in a mean square sense. Then,
the proof of Theorem 1 is complete.

Appendix B. Proof of Theorem 2

We will handle the H∞ performance of the dynamics. The same Lyapunov–Krasovskii
functional is chosen as in Theorem 1. By a similar approach, we can obtain the following
inequality,

E{∆Vk} ≤ E
{

η̃T
k Θη̃k

}
, (A12)

where
η̃k = [ ηT

k ωT
k ]

T ,

Θ = diag{Θ11, Θ22, Θ33, Θ44, Θ55},

Θ11 = 2ξ ÃT PÃ + 2ξ ÃTGT(GB)−1GÃ + ξ ÃTGTΛGÃ + α∆AT P∆A− P + R
+(dM − dm + 1)Q,

Θ22 = 2ξ Ãd
T PÃd + 2ξ Ãd

TGT(GB)−1GÃd + ξ Ãd
TGTΛGÃd + β∆Ad

T P∆Ad −Q,

Θ33 = gATGTΛGA + gATGT(GB)−1GA− R,Θ44 = hΛ + hBT PB−Λ,

Θ55 = 2ξDT PD + 2ξDTGT(GB)−1GD + ξDTGTΛGD.

The following index is introduced to deal with the H∞ performance analyses of the
sliding mode dynamics (9), assuming φk = 0, which leads to

Γn = E{
n
∑

k=0
[zT

k zk − γ2ωT
k ωk]}

= E{
n
∑

k=0
[zT

k zk − γ2ωT
k ωk + ∆Vk]−Vn−1}

≤ E
{

η̃T
k Θη̃

}
,

(A13)

where

Θ =


Θ11 0 0 0 Θ15
∗ Θ22 0 0 0
∗ ∗ Θ33 0 0
∗ ∗ ∗ Θ44 0
∗ ∗ ∗ ∗ Θ55

,

Θ11 = 2ξ ÃT PÃ + 2ξ ÃTGT(GB)−1GÃ + α∆AT P∆A + ξ ÃTGTΛGÃ− P + R + CTC
+(dM − dm + 1)Q,

Θ22 = 2ξ Ãd
T PÃd + 2ξ Ãd

TGT(GB)−1GÃd + ξ Ãd
TGTΛGÃd + β∆Ad

T P∆Ad −Q,

Θ33 = gATGTΛGA + gATGT(GB)−1GA− R,Θ44 = hΛ + hBT PB−Λ,

Θ55 = 2ξDT PD + 2ξDTGT(GB)−1GD + ξDTGTΛGD + FT F− γ2 I, Θ15 = CT F.

We can obtain that Θ < 0 is equivalent to (14), and it yields Γn < 0, which results in
‖zk‖2

2 < γ2‖ωk‖2
2, completing the proof of Theorem 2.
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