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Cláudio T. Silva
1

1University of Utah
2University of Konstanz

Abstract

Defining sharp features in a given 3D model facili-

tates a better understanding of the surface and aids vi-

sualizations, reverse engineering, filtering, simplifica-

tion, non-photo realism, reconstruction and other ge-

ometric processing applications. We present a robust

method that identifies sharp features in a point cloud

by returning a set of smooth curves aligned along the

edges. Our feature extraction is a multi-step refinement

method that leverages the concept of Robust Moving

Least Squares to locally fit surfaces to potential fea-

tures. Using Newton’s method, we project points to

the intersections of multiple surfaces then grow poly-

lines through the projected cloud. After resolving gaps,

connecting corners, and relaxing the results, the al-

gorithm returns a set of complete and smooth curves

that define the features. We demonstrate the benefits

of our method with two applications: surface meshing

and point-based geometry compression.

1. Introduction

Digital scanner technology has become more afford-
able and accurate, increasing its popularity and utility.
These scanners collect a dense sampling of points, with
mechanical probes or lasers, to generate a virtual rep-
resentation of a physical form. Consequently, geomet-
ric processing of point clouds is becoming increasingly
important.

The preservation of sharp features is a primary concern
for many geometric computations and modeling appli-
cations. In this context, a feature is described as the
discontinuity in the surface normals evaluated on the
model. In such regions the G1 continuity is not main-
tained. Identification of these edges facilitates a better
understanding of the model improving filtering [6, 20],
reconstruction [17], refinement or resampling [4], sim-
plification [8], smoothing and visualization [2] methods.

Features can be computed through the investigation of

changes in the normals of neighboring discrete surface
data, i.e. polygonal facets or vertices. The most simple
method is to implement a threshold test that identi-
fies potential feature edges where normals differ above
some tolerance level across adjacent samples. However,
the implementation of such detection techniques is not
straightforward, since in most cases, normals and con-
nectivity are not provided in point data sets and their
reconstruction is a nontrivial problem, especially when
sharp features must be preserved.

The noise inherent in scanned models presents a sec-
ond major challenge to feature edge extraction in point
clouds. The identification of feature lines is compli-
cated in the presence of noise due to the fact that the
large surface gradients appearing in regions with sharp
features are similar to those found in noisy areas.

In this paper, we present an algorithm to define a set
of curves that are aligned along the feature edges of a
point cloud. Based upon the framework of Robust Mov-

ing Least Squares (RMLS) surfaces [7], we first select
a number of potential feature points that are identified
by the RMLS operator to be near to possible features.
One issue with the RMLS is the inability to recon-
struct smooth features. The projection method pro-
duces jagged edges that cannot be used without further
processing to construct smooth feature curves. There-
fore, we propose to apply a smoothing method on the
RMLS projected feature points using a technique based
on principal component analysis (PCA), followed by a
feature growing strategy that constructs a set of poly-
lines. Finally, we account for poor sampling quality
by proposing a technique to connect the multiple ex-
tracted polylines across gaps to create a complete set
of feature curves. The pipeline is illustrated in Fig. 1.

The advantage of our approach is that in contrast to
previous work [10], our input data consists of a set of
unorganized points (possibly affected by noise) that ap-
proximate the original surface. We also assume that no
attribute information, e.g., normal vectors, are given
a priori. The output feature curves are described as
smooth and complete, which, in the presence of closed
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Figure 1. Overview of our feature extraction pipeline; from left to right: original point cloud; candidate

points identified to be close to possible features; candidate points projected onto the intersection of

RMLS surfaces; smoothed projected points; reconstructed polylines that identify the sharp features (with

normal vectors for the defining surfaces).

loops, allows us to extract surface patches that are en-
closed by the polylines. Furthermore, we show that
this information can be used to improve previously de-
veloped techniques that operate on point-sampled ge-
ometry, e.g., surface meshing and compression.

In Section 2, we review related work in the field of fea-
ture line extraction on mesh- and point-based models.
Section 3 describes our feature extraction pipeline. In
Section 4, we apply our results to improve surface re-
construction and the compression of point-based mod-
els. Section 5 presents experimental results, and we
conclude the paper with final remarks and future work
in Section 6.

2. Related Work

2.1 Mesh-Based Feature Extraction

Multiple techniques have investigated the identification
of feature edges on polygonal models. Hubeli et al. [11]
create a multi-resolution framework and normal-based
classification operators to define a set of edges on which
a thinning process extracts feature lines. Watanabe
et al. [19] use discrete differential geometry operators
to compute approximations of the mean and Gaus-
sian curvatures. Whereas, Hildebrandt et al. [10] use
anisotropic filtering on discrete differential geometric
approximations of third order derivatives of the sur-
face mesh. Both techniques [10, 19] build a set of fea-
ture edges from the extrema triangles. Attene et al. [4]
identify chamfer triangles to reconstruct sharp features
on meshes. They insert new vertices on the edges and
faces of these triangles and project the points to the
intersection of planes fit to the surrounding surfaces.

The underlying assumption of connectivity and nor-
mals associated with the vertices of the mesh is not
available for point-based models. In order to extract
feature lines from point clouds using these techniques, a
connectivity construction method (surface reconstruc-
tion) must be applied in a preprocessing step. The
construction of connectivity is non-trivial, computa-
tionally expensive, and moreover, the success of feature
extraction relies on the ability of the polygonal meshing
procedure to accurately build the sharp edges.

2.2 Point-Based Feature Extraction

Feature line extraction from point-based models is not
straightforward in the absence of connectivity and nor-
mal information. Pauly et al. [16] use covariance anal-
ysis of the distance-driven local neighborhoods to flag
potential feature points. By varying the radius of the
neighborhoods, they develop a multi-resolution scheme
capable of processing noisy input data. Gumhold et
al. [9] construct a Riemann graph over local neighbor-
hoods and use covariance analysis to compute weights
that flag points as potential creases, boundaries, or cor-
ners. Both techniques [9,16] connect the flagged points
using a minimum spanning tree and fit curves to ap-
proximate sharp edges. Demarsin et al. [5] compute
point normals using principal component analysis and
segment the points into groups based on the normal
variation in local neighborhoods. A minimum span-
ning tree is constructed between the boundary points
of the assorted clusters, which is used to build the final
feature curves.

These techniques are capable of extracting features on
point clouds by connecting existing points; however,
their accuracy depends on the sampling quality of the



input model. In contrast to their work, our method
relies on projecting points onto sharp edges, yielding
more accurate approximations of features in the origi-
nal surface.

Jenke et al. [12] identify sharp features to improve
their Bayesian statistic based reconstruction algorithm.
While their method uses a similar curvature test
to identify potential edge regions, their classification
method limits identification to complete edges. We are
able to define edges that dissipate as the two defining
surfaces smooth towards a single surface. Additionally,
our classification method is computed on the original
data set; whereas, [12] performs a optimized smoothing
on the geometry.

3. Feature Extraction Algorithm

3.1. Preliminaries

Our method operates on an unorganized set of points
P = {(x, y, z)T } ⊂ R

3 that sample some original sur-
face S. Note that we do not rely on attributes, such
as associated point normal vectors or connectivity in-
formation. Given P, we set S to be the Moving Least

Squares (MLS) surface defined by a projection operator
Ψ that is applied to an arbitrary point p ∈ R

3 in order
to project it onto the surface, Ψ(p) ∈ S. Each point on
the surface projects onto itself, S = {p | p = Ψ(p)}.

There are several options of selecting the projec-
tion operator Ψ. Most variants implement the
projection of a point p ∈ R

3 through finding a
plane H that approximates a local neighborhood
around p in the set P. Specifically, the plane H
is defined by a point q ∈ R

3 and a normal n,
H = H(n, q) = {x ∈ R

3 | 〈x − q, n〉 = 0, ‖n‖ = 1}, and
found, such that the sum of weighted squared distances
of points in P to the plane H, is minimized:

(n, q) = arg min
(n,q)

∑

p∈P

〈n, p − q〉2θ(‖p − q‖), (1)

where θ(·) is a exponentially decreasing weighting func-

tion, e.g., θ(s) = e−s2/h2

, which assigns larger weights
to points near q. The parameter h defines the spatial
scale of θ. Once H is found, it serves as a reference
for a local Cartesian coordinate system with origin in
q and two span vectors that are orthogonal to n. Then,
a bivariate polynomial g of a given degree is fit in order
to find the projected point Ψ(x), which is above q and
on the surface S. This polynomial fitting corresponds
to finding

arg min
g

∑

p∈P

‖p − pg‖
2θ(‖p − q‖), (2)

(a) (b)

(c) (d)

Figure 2. RMLS sub-neighborhoods are computed

independently for each point, which creates jagged

edges, (a) and (b), due to the fact that nearby points

may construct different neighborhoods; this leads

to a disagreement on the configuration of the in-

tersecting surfaces, (c) and (d).

where pg denotes the projection of p onto the polyno-
mial g in direction of the plane normal n. The func-
tion θ(·) again is the exponentially decreasing weight-
ing function. Originally proposed by Levin [14], MLS
surfaces have been improved in many ways [1–3,7].

The MLS projection relies on the minimization of (1)
and (2), which includes Gaussian weighting of points
in the local neighborhoods. This weighting leads to a
smoothing effect that corrects noise and outliers in the
set P, but simultaneously removes sharp features. The
RMLS variant [7] was developed to solve this problem
by considering iteratively constructed neighborhoods
based on statistical analyzes of the corresponding point
distributions. In particular, they use least median of
squares, which is a regression method to minimize the
median of absolute residuals between the point set and
the fit. Their forward search algorithm grows multi-
ple MLS neighborhoods in order to find smooth, flat,
and outlier free regions (sub-neighborhoods) for the fi-
nal MLS projection.

This approach is inherently capable of detecting noise
by disregarding outliers during the surface fitting
phase, and defines sharp features. Moreover, it re-
duces the smoothing effect of the traditional MLS pro-
jection and improves numerical stability. However,
the drawback is that the clustering is computed in-



Figure 3. The residual r(p) is computed as the max-

imum distance between the points in the neighbor-

hood around p and the polynomial fit f , whereas

the distances are considered in direction of the

plane normal n.

dependently for all points, which may lead to situ-
ations where nearby points do not grow to identical
sub-neighborhoods, resulting in jagged edges. Figures
2a and 2b illustrate the occurrence of jagged edges,
created by the RMLS projection. Figures 2c and 2d
show two different sub-neighborhood constructions for
one set of points that leads to different configurations
of the feature region.

To overcome this problem, we propose to apply a
smoothing procedure to the RMLS projected points.
The goal of the following five-step algorithm is to ex-
tract smooth and complete curves that approximate
the features well:

(1) Extract points from P that are near potential fea-
tures,

(2) Use RMLS to fit multiple surfaces to the neighbor-
hoods of these points and project each point to its
nearest intersection between the surfaces,

(3) Smooth the projected points using covariance
analysis of adaptively grown neighborhoods,

(4) Create an initial set of feature lines by grow-
ing polylines that approximate the smoothed pro-
jected points,

(5) Analyze the end points of the feature polylines to
complete gaps and connect to corner points.

The following subsections discuss the algorithmic de-
tails of each of the five steps.

3.2. Identifying Potential Edge Regions

To identify potential edge regions, we adopt the
method of Fleishman et al. [7]. Specifically, given a
point p ∈ P, they consider the neighborhood N (p) ⊂ P
that is used for the polynomial fit of the MLS pro-
jection. Considering the polynomial f over the refer-
ence plane H that is defined by point q and normal n,

(a) (b)

Figure 4. Identification of potential feature points

for the Fandisk model; the threshold τ is used to

adjust the number of points retained near poten-

tial features; the automatically computed thresh-

old τ = 0.057 (a) and a manually adjusted threshold

τ = 0.014 (b).

they evaluate the maximum polynomial residual r in a
neighborhood around p,

r(p) = max
x∈N (p)

‖x − xf‖,

where xf corresponds to the projection of x onto f in
direction of the plane normal n, see Fig. 3.

For sharp features, r becomes reasonably large because
many point sampled along the sharp edge lift away
from the polynomial. Based on this observation, they
straightforwardly define any point p ∈ P to be a po-
tential feature point, if r(p) > τ for some user defined
threshold τ . Note that strong outliers will also record
large r; however, they are eliminated during the RMLS
projection stage.

This approach relies on an appropriate selection of the
threshold τ . We extend the pipeline in [7] by using
an automatic computation method, which produces an
adaptive threshold. In particular, we found that setting
τ to the mean residual value taken over all points in P,
τ = 1

|P|

∑
p∈P r(p), leads to satisfying results. More-

over, we allow the user to modify τ manually, using an
interactive tool. Figure 4 shows the Fandisk model af-
ter identifying potential feature points using different
values for the threshold τ . The output of the identi-
fication procedure is a set of potential feature points,
i.e. F = {p ∈ P | r(p) > τ}.

3.3. Projecting Points to Edges

We use the RMLS procedure to project the points
p ∈ F towards the features. The output of the pro-
cedure is the definition of a number of surfaces fit to
the points in the neighborhood around p. This number
describes the feature types in the region.



If RMLS returns a single surface, then this implies that
no feature was detected and the high residual was pro-
duced by outliers. Two surfaces indicate the presence
of a sharp feature. We now use Newton’s method, as
in [16], to project p onto the intersection of the two sur-
faces closest to p, yielding an edge point e. Note that
e does not correspond to the RMLS projected point,
it is rather the result of the Newton projection seeded
at the RMLS projection of p. If three or more surfaces
are found, then there are multiple sharp features and a
corner point c is produced in addition to an edge point
e. At this stage, the output of the projection procedure
is a feature point cloud F (p) that we compose of edge
points E(p) and corner points C(p), F (p) = E(p) ∪ C(p).

The RMLS projection stage results in multiple corner
points projected to each region formed by three or more
intersecting surfaces. This is due to the occurrence of
jagged edges as described in section 3.1. The goal is to
group close corner points to retrieve a single point iden-
tifying the feature corner. We achieve this by weighting
the corner points to prioritize their importance during
the projection stage.

Specifically, for each corner point ci ∈ C(p) that was
projected from pi ∈ F (p), we consider the correspond-
ing projection to the two closest surfaces, ei ∈ E(p).
We now assign a weight wi to the point ci being in-
versely proportional to the distance between ci and ei,
wi = 1/‖ci − ei‖. The figure shows two close corner
points ci and cj with different weights. We now group

the corner points C
(p)
k ⊂ C(p) by considering neigh-

borhoods of a predefined feature radius ǫ and select

ĉ ∈ C
(p)
k that is the clos-

est to the weighted average
of the corner points in the
group. All other points in

C
(p)
k are defined to be edge

points and are moved from
C(p) to E(p).

3.4. Smoothing the Feature Points

The output of the projection procedure is a set of points
F (p) that are expected to identify the sharp features.
However, the points in F (p) are affected by noise, since
they were obtained using the RMLS operator, which
tends to produce jagged edges. Inspired by [13], we
implement a smoothing filter based on the covariance
analysis of points in local neighborhoods.

Specifically, given p ∈ F (p), we consider the set of k
feature points in the δ-neighborhood of p identified by
N (p) = {pi ∈ F (p) | ‖pi − p‖ ≤ δ}, i = 1, . . . , k. We

(a)

(b)

Figure 5. Feature cloud smoothing using different

neighborhood sizes δ.

now compute the 3 × 3 covariance matrix

C = (p1 − p̄, . . . , pk − p̄) · (p1 − p̄, . . . , pk − p̄)T ,

where p̄ is the mean, p̄ = 1
k

∑k
i=1 pi. We solve the

eigensystem Cxi = λixi, i ∈ {0, 1, 2} and assume
(without loss of generality) that λ0 ≥ λ1 ≥ λ2. The
eigenvector x0 that corresponds to the largest eigen-
value λ0 is expected to be aligned with the feature line
in the neighborhood N (p). We achieve a smoothing ef-
fect by projecting feature points p onto the line defined
by the mean p̄ and the eigenvector x0, yielding p′.

The overall smoothing performance is determined by
the neighborhood size δ, see Fig. 5. In order to ob-
tain stable smoothing in the presence of noise and high
curvature, we adopt the adaptive neighborhood growth
scheme in [13]. This method is based on a statistical
analysis of point distributions on the plane.

In particular, given a point p, the algorithm fits a lo-
cal plane to points pi in the neighborhood N (p) and
projects them onto the plane that is defined by the
two eigenvectors, which correspond to the two largest
eigenvalues. The resulting point set (in R

2) is then
interpreted in terms of a distribution of two random

variables, X and Y , which can be analyzed by statisti-
cal methods. The cross-correlation coefficient of X and
Y is defined by ρ(X, Y ) = cov(X,Y )

σ(X)σ(Y ) , where cov(X, Y ) is

the covariance of X and Y , and σ(·) is the standard de-
viation. Large absolute values for ρ indicate that there
is a linear relationship between X and Y , meaning that
the points in N (p) are distributed along a feature line.

Given p, the adaptive neighborhood growth algorithm
increases the neighborhood N (p) by iteratively adding
points closest to p from F (p) until a sufficiently large
correlation coefficient ρ is found. In practice we found



(a) (b)

Figure 6. The distance to the nearest corner point

also caps the neighborhood size for the smoothing

to reduce the number of points considered that

belong to another feature (shown in red).

that |ρ| ≥ 0.7 leads to adequate results. The neighbor-
hood growing procedure is terminated when a user-
defined correlation is reached. Moreover, neighbor-
hoods are not grown beyond identified corner points
(Fig. 6), since the neighborhood is likely to start cap-
turing multiple features, which complicates the identi-
fication of the feature lines.

Given the set of projected feature points F (p), the out-
put of the smoothing procedure is the set of smoothed
feature points denoted by F (s) that is again decom-
posed into edge points E(s) and corner points C(s).

3.5. Feature Polyline Propagation

At this stage of the pipeline, the set of feature points
F (s) is unorganized and contains no topological infor-
mation. In many practical applications, however, con-
tinuous feature curves are desired. The goal of the fea-
ture polyline propagation technique is to approximate
the feature points F (s) with a set of polylines. The
user defines the maximum allowable segment length
smax as an input parameter to control the coarseness
of the feature polylines.

We build a polyline construction algorithm based on
Lee’s method [13], which works as follows. The feature
polyline is initialized at a seed point p, where the PCA
for points in the neighborhood N (p) ⊂ F (s) with radius
smax is computed, Fig. 7(a). All points pi ∈ N (p) are
projected onto the line defined by p and the eigenvec-
tor that corresponds to the largest eigenvalue of N (p),
yielding points p′i. The two points pj , pk ∈ N (p) with
the furthest corresponding projections p′j and p′k in op-
posite directions from p are considered to be endpoints
of two new segments in the feature, Fig. 7(b,c). The
procedure is repeated with pj and pk, Fig. 7d, until no
more points are found for new connections.

(a) (b) (c) (d)

Figure 7. Curve growing starts at a seed point,

finds all points in a user specified radius, projects

them to the major eigen axis, and connects to the

furthest points. The processed points are removed

and the method is repeated.

For our models we found that best results are achieved
by starting the feature growing procedure at edge
points that are preferably far away from corner points.
Our implementation maintains a priority queue that
sorts all edge points p ∈ E(s) according to their distance
to the closest corner point q ∈ C(s). As long as the
queue is not empty, there are unvisited feature points
remaining. To create a new feature line, we remove the
first element from the queue, followed by applying the
propagation algorithm as described above. Once the
feature points are connected, we remove the elements
from the queue that correspond to points within the
neighborhoods N (p) of processed points p.

Although, the polyline growing scheme replaces the
points with curve approximations, it is not yet com-
plete due to gaps that occur in regions with poor sam-
ple quality. We observed that in these regions there
are multiple separated polylines that describe single
features. The next stage of our pipeline addresses this
problem by connecting close feature curves to produce
complete polylines.

3.6. Completing Feature Curves

The final stage cleans the feature polyline representa-
tions in order to produce complete and smooth curves
along the sharp edges of the model. This procedure
visits all end points of feature polylines to search for
gaps between multiple polylines and regions where new
corners have to be constructed. Moreover, polylines
are smoothed in order to create complete and smooth
feature representations.

Our feature completion method is driven by a direc-
tional search approach. As illustrated in Fig. 8, we
consider the tangent vector that is evaluated for an
endpoint by fitting a cubic polynomial to the last four



(a)

(c) (b)

Figure 8. Feature completion requires an analysis

of the endpoints of each feature curve to determine

if it must fill a gap between multiple features (a),

split a single feature into two thus forming a new

corner point (b), or be left alone unattached (c).

points of each end of the feature polyline. An alter-
native approach is to evaluate the direction of the last
segment of the feature curve; however, we found that
the cubic fitting leads to better results.

For each end point p, we search for other feature points
that are within the cone formed by the tangent vector
at p and a predefined aperture angle. We search for the
three cases in Fig. 8: gap completion (a), corner cre-

ation (b), and endpoint identification (c). The search
algorithm finds the closest vertex of the feature poly-
lines that exists within the volume of the search cone
that is within the distance αsmax. The scalar α should
be adjusted based on the sampling quality along the
features of the cloud. In practice we found that α = 7
accommodates well for the sampling of the models in
this paper.

Figure 8(a) shows an example for the case of gap com-
pletion, which occurs due to poor sampling quality,
i.e. the distance between two end points is larger than
smax. To resolve this problem, we merge any two poly-
lines with endpoints that are within αsmax distance
to each other and corresponding tangent vectors that
point to opposing directions within the aperture angle.

Corner creation occurs if the end point of a polyline
projects to an interior point p of another feature line,
Fig. 8(b). To prevent the production of two corner
points, we split the corresponding line segment, insert
a new corner point at p, and reconnect the involved
line segments accordingly. This case resolves situa-
tions where a single polyline missed a corner during
the growing process.

The last case, Fig. 8c, occurs if a feature line dissipates
as detected on the Fandisk model. If no vertices of
feature lines are found during the directional search,
then we declare the end point to belong to a dissipating
feature edge, and no connection operation is performed.

After the endpoints have been resolved the feature
curves are considered complete. Perturbations are
smoothed from the feature polylines by fixing the end-
points and applying Laplacian smoothing on the inter-
nal vertices weighted by inverse distances to the target
point. This process is limited to 1 or 2 passes to min-
imize shrinking on the features. Finally, we consider
the feature polylines to be complete and smooth.

4. Applications

The output of our method is a set of connected and
smoothed polylines that identify the sharp features of
a point-sampled surface. We are also able to extract
surface patches that are bounded by the feature lines.
In this section, we will show the benefits of applying the
feature line information as input data for methods that
rely on point sets. We focus on surface reconstruction
and shape compression.

We demonstrate the effectiveness of our feature ex-
traction technique using point models that represent
machine parts with sharp edges, such as the Quarter
Piston model, the Ra model, the Scallop model, and
the well-known Fandisk model. We emphasize that all
data sets consist only of a set of 3D points. We do not

assume associated normal vectors for the geometry.

4.1. Surface Reconstruction

Triangle meshes are a popular representational form
for models that are commonly used in geometry pro-
cessing. The algorithms leverage additional informa-
tion inherent in mesh models versus point set surfaces,
mainly connectivity, to compute discrete differential
operations. Often, the robustness and efficiency of the
algorithms are dependent on the quality of the input
mesh. This demand for high quality mesh structures
has motivated much of the development in surface con-
struction and remeshing algorithms.

Schreiner et al. [18] extend the approach in [17] and
proposed an advancing-front algorithm that produces
high quality meshes from many different types of source
models, including point-set surfaces. Their approach is
based on defining a guidance field, based on local curva-
ture information to determine the size of the triangles.
Precomputing a specific guidance field allows the tri-
angulation scheme to adapt to areas of high curvature,
shrinking the allowable triangle size as the advancing
fronts grow towards such regions.

The algorithm uses MLS for projection and curva-
ture computations on point clouds. Consequently,



Figure 9. Results obtained by applying the mesh-

ing technique in [18] to Scallop (top), Quarter Pis-

ton (middle), and Ra (bottom); the left half of each

closeup view shows meshes obtained by the tra-

ditional method; the corresponding right halves

show the meshes after initializing the input of [18]

with feature lines extracted with our method.

their method adaptively shrinks the triangle sizes near
sharp features and produces rounded edges. Extending
their projection and guidance field computations by us-
ing RMLS enables reconstructions with sharp features;
however, as previously discussed, this creates jagged
edges and additional computational costs.

In response to this problem, we guide the method by
including the extracted feature curves with evaluated
normals for the two meeting surfaces. Using these fea-
ture lines as the initial polylines of the advancing front,
the remeshing system is able to generate a triangle
mesh with sharp features without changing the MLS
methods. Consequently, the projection computation
is not effected, while the algorithm automatically pro-
duces models with smooth sharp features, Fig. 9.

Moreover, the feature lines aid the computation of a
better guidance field. Previously, sharp features com-
pute large curvature values such that the guidance field

(a) (b)

Figure 10. The partition of Quarter Piston using

the traditional patch composition method in [15]

(a); partition with initial segmentation (b).

scales the triangles to a very small size to capture an
MLS smoothed region. By initializing the advancing
front to the feature edges, it is known that curvature
values computed here are misleading; therefore, larger
triangles can be used to approximate the surface grown
from the sharp edges. The mesh reconstructed using
the feature polylines has a significantly reduced final
triangle count, Fig. 9.

4.2. Surface Compression

Surface compression is an elementary problem in ge-
ometry processing, the goal of which is to represent
3D models compactly for the purpose of space efficient
storage and fast transmission. The task of the encoder
is to transform a specific surface representation into a
compact bit stream, which can be decoded at the re-
ceiver side in order to reobtain the original model or
an approximation of it, if the encoding is lossy.

In [15] it was shown that a point model can be com-
pressed by decomposing the input surface into a num-
ber of patches, which are parameterized as height fields
over planar domains and resampled on regular grids.
The resulting images with arbitrary regions of support
are encoded using state-of-the-art wavelet compression
of shaped images. One key feature in their method is
the surface parameterization that is based on a split-
merge partitioning procedure. In the first step, the
surface is recursively subdivided until all patches meet
some prescribed surface flatness constraint. In the con-
sequent phase, adjacent patches are merged as long as
the resulting patches show height field properties.

Although their method yields a high rate-distortion
performance, the approximation quality depends heav-
ily on the structure of the surface partition. Especially
for models with sharp features, the constructed par-
titions show patches that contain the features, rather
than identifying the features as patch boundaries. The
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Figure 11. Rate distortion performance for Fandisk (top row) and Quarter Piston (bottom row); the left

figure shows the original model, followed by two decodings for different rates; the rate-distortion curves

show that the compression performance is significantly increased by applying the partitioning in [15]

based on feature aware segmentation in this work (right); the error is the root-mean-square error in [15].

major drawback of this behavior is that sharp features
within patches correspond to high frequency compo-
nents in the corresponding wavelet signal, which are
consequently hard to encode.

To overcome this problem, we propose to guide the par-
titioning procedure in [15] by the sharp features that
were constructed with our method. In particular, the
encoder receives the input model with attached pre-
partition, which is extracted from the closed curves,
see section 3.6. The splitting operations in the parti-
tioning step are performed on each individual patch in
the pre-partition, while the merging is performed as in
the usual setting.

The advantage of this approach is that the features
give the encoder a first guess of the surface structure
to build the patch layout, Fig. 10b. The individual
patches in the resulting partition show an improved
structure as well as more regular boundary shapes.
In contrast, the traditional partitioning method does
not recognize edges sufficiently, leading to patches that
wrap around sharp features, Fig. 10a.

Figure 11 shows compression results for Fandisk (top
row) and Quarter Piston (bottom row) at 2 ·105 points
each. The left images show the original models followed
by two decoded models at different bit rates. For the
Fandisk model we observe heavy compression artifacts

only at extremely low bit rates, e.g., 0.08 bits per point
(bpp). Slightly increasing the bit rate leads to a signifi-
cantly better geometric reconstruction quality. For the
Quarter Piston model (Fig. 11 bottom row), however,
we observe that more bits need are needed (0.26 bpp)
to achieve an adequate reconstruction quality. We ex-
plain this behavior by the fact that this model shows
more complex geometric properties that the Fandisk.
Further increasing the bit rate, e.g., to 0.48 bpp, yields
reconstructions that are close to the original model.

5. Experimental Results

We discuss the robustness of our method to noise and
its run time efficiency. Figure 12 shows extracted fea-
ture lines for the Quarter Piston model at different
noise levels. We applied uniform noise to the origi-
nal model by shifting each point p by a random vector
δ(p) of restricted length, ‖δ(p)‖ ≤ l. The length l is the
noise level, which is expressed in units of the bound-
ing box diagonal length dB of the original model. The
results in Fig. 12 show that our method is robust to
noise and consequently extracts smooth feature lines.
Only for high noise levels, we observe that the feature
line completion step fails to connect all feature lines.

The total time required to construct the polylines is
determined by the number of potential feature points
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Figure 12. Feature extraction from the Quarter Piston model; original point cloud (a); features extracted

from the original model (b); features extracted from the original model after applying uniform noise

‖δ(p)‖ ≤ 0.01dB (c), and ‖δ(p)‖ ≤ 0.05dB (d), where dB is the length of the model bounding box diagonal.

in data set, since only the feature point identification
stage operates on the complete point set. Table 1 shows
run times for all of the five stages in our algorithm
for different models at varying noise levels. We found
that an increase in the noise level leads to a slight de-
crease in computational costs, which can be explained
by the fact that the threshold τ becomes larger for
noisy models, which consequently results in a reduced
number of potential feature points. Carried out on a
Pentium4 2 GHz platform, our implementation needs
four to ten minutes to process models of half a million
points, where the major part of computational costs is
required for the RMLS projection (stage 2).

The robust feature extraction produces smooth results,
but can be limited by an extremely poor sampling qual-
ity and by time constraints. High noise levels or sparse
sampling worsens the performance of our method, since
the distinction between sharp features and noisy re-
gions becomes ambiguous. Because RMLS is computa-
tionally expensive, the algorithm is run as a pre-process
and its output improves the performance of other in-
teractive methods.

Figure 13 illustrates the algorithm output on several
different models with varying feature types. The re-
finement and smoothing that occurs over the multi-
ple stages removes perturbations, while extracting an
accurate representation of the sharp features. Addi-
tionally, note that the extracted feature polylines are
coupled with normal vectors. We couple the projected
points with the RMLS evaluated normals during the
projection phase that identifies the edges. The feature
growing method groups normals of neighboring poly-
line vertices to establish consistent vector orientation.

6 Conclusions and Future Work

We presented a method for extraction of feature curves
on point-sampled surfaces. Our algorithm leverages the
robust statistical methods of RMLS to project points

model noise τ |F| run time [seconds]
[10−2] (1) (2) (3) (4) (5) total

Quarter 0.0 0.5 66k 177 348 17 71 0.1 613
Piston 0.01 1.2 62k 179 342 16 60 0.1 598

0.05 4.7 30k 182 365 10 12 1 570

Fandisk 0.0 0.7 39k 178 198 10 22 0.1 407
0.01 1.1 37k 180 226 10 19 0.1 435
0.05 4.8 8k 186 83 2 0.6 2 274

Ra 0.0 0.8 31k 176 164 7 12 0.0 359
0.01 1.4 28k 176 153 7 10 0.0 347
0.05 4.7 11k 182 133 3 0.9 0.3 319

Table 1. Run time performance of our feature ex-

traction implementation for models that contain

500000 points each; the stages in our pipeline cor-

respond to point identification (1), point projection

(2), point smoothing (3), curve propagation (4), and

curve completion (5).

to all possible features such that they do not need to
be exactly sampled by the input point cloud. The out-
put curves are described as complete and smooth and
prove valuable as inputs to existing geometric process-
ing applications for point clouds. We were able to sig-
nificantly improve the performance of a previously pro-
posed surface reconstruction and a point-compression
method without any modifications to their algorithms.

In future work, we aim at improving initial neighbor-
hood selection methods to speed up the RMLS method,
improving data segmentation for CAD purposes, and
investigating smoothing and resampling methods to
maintain the sharp features.
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Figure 13. Features extracted with our method; displaying the original point sets without normal informa-

tion does not show surface characteristics; our method identifies sharp features and can define oriented

surface patches without relying on input normal vectors.
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