
Robust Social Decisions∗

Eric Danan† Thibault Gajdos‡ Brian Hill§ Jean-Marc Tallon¶

October 14, 2015

Abstract

We propose and operationalize normative principles to guide social decisions when in-
dividuals potentially have imprecise and heterogeneous beliefs, in addition to conflicting
tastes or interests. To do so we adapt the standard Pareto principle to those preference
comparisons that are robust to belief imprecision and characterize social preferences that
respect this robust Pareto principle. We similarly characterize a suitable restriction of this
principle. The former principle provides stronger guidance when it can be satisfied; when it
cannot, the latter always provides minimal guidance.
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Public policies often yield uncertain outcomes. In order to evaluate the various alternative
policies and select an optimal one, policy makers therefore need to rely on some assessment of
the probabilities of these outcomes. For some critical issues such as climate change, however, this
task is particularly challenging because the uncertainty at hand is not well understood enough
to allow a precise assessment of these probabilities.1
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Amajor issue is whether there will be significant global warming – for example, of 4◦C or more
(relative to preindustrial levels) – which would have wide-ranging, and unevenly distributed,
consequences on economic activity, human settlement and health around the world (IPCC,
2014). This depends on future concentrations of greenhouse gases (GHG), which themselves
depend on climate policy. Both of these dependencies involve considerable uncertainty. On
the one hand, climate sensitivity to GHG concentrations is imperfectly understood and cannot
as yet be accurately described, even probabilistically, with full precision. Rather, a range of
probabilistic models are considered plausible by climate scientists (IPCC, 2013, Section 10.8).
On the other hand, the effect of a given policy on GHG concentrations depends, among other
factors, on technological evolutions that are highly unpredictable and for which any prediction is
essentially subjective (Stern, 2013; Pindyck, 2013). So different actors evaluating a given policy
– say the French and British governments evaluating a European climate policy – may rely on
different predictions and, hence, end up using different plausible ranges for the probability of
global warming reaching 4◦C under this policy – say 10% to 50% and 40% to 60%, respectively.
In such a situation, how should the policy be evaluated at the European level?

This paper aims at providing guidance for such policy decisions. Situations of this sort
involve a “social” decision maker (say the European Commission) who must choose a policy whose
outcome is uncertain and affects several “individual” actors (the French and British governments).
Individuals may have different utility functions – or have heterogeneous “tastes” – and consider
different probabilistic models to be plausible – or have heterogeneous “beliefs”. Moreover, a given
individual may also consider more than one model to be plausible – or have an imprecise belief.
For such an individual, which of two policies yields the highest expected utility may depend on
the model considered. When a policy yields a higher expected utility than another one for all
plausible models, we say that the individual has a robust preference for the former policy over
the latter.2

The Pareto principle is a natural guide for such decisions. We propose a robust version of
this principle, requiring that if all individuals robustly prefer a policy to another one then so
should the policy maker. We show that this principle prescribes that the policy maker must
only rely on probabilistic models that are considered plausible by all individuals. In the example
above, this means that in order to guarantee that the implemented policy is robustly Pareto
optimal, the European Commission must restrict attention to probabilities of global warming
reaching 4◦C that belong to both the French and British ranges – between 30% and 40%.

As this example illustrates, the policy maker can respect robust Pareto dominance even
when individuals have heterogeneous beliefs, as long as these beliefs are compatible – at least one
model is unanimously considered plausible. Heterogeneous yet compatible beliefs arise naturally
in some contexts.3 But they are ruled out by the standard assumption that all individuals have
precise beliefs – each individual considers a single probabilistic model. Under this particular
assumption, we recover the well-known result that the standard Pareto principle can only be

2Such preferences were studied axiomatically by Bewley (2002). Note that we use the term “robust” in a
different sense than Hansen and Sargent (2001, 2008), although we will establish relationships between the two
notions of robustness in Section 4.

3For instance, if individuals’ beliefs originate from partial and distinct but mutually consistent pieces of
evidence, or from a common “baseline” probabilistic model that they do not fully trust.
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respected when all individuals have identical beliefs (Hylland and Zeckhauser, 1979; Mongin,
1995, 1998).

When individuals have incompatible beliefs – no probabilistic model is unanimously consid-
ered plausible – the robust Pareto principle yields no prescription: whatever probabilistic models
the policy maker considers plausible, she may end up implementing a robustly Pareto dominated
policy. We therefore propose to restrict this principle to policies that only involve outcomes on
which individual tastes are homogeneous. We show that this common-taste robust Pareto prin-
ciple prescribes that the policy maker must only rely on probabilistic models that are weighted
averages of models considered plausible by at least some individuals. Thus this common-taste
restriction provides weaker guidance than the robust Pareto principle when individual beliefs are
compatible – in the example above, it prescribes that the European Commission must rely on
probabilities between 10% and 60%. On the other hand, it still provides guidance when beliefs
are incompatible – it yields the same prescription if the French range were narrowed to between
10% and 30%.

Except in a few special cases, neither the robust Pareto principle nor its common-taste
restriction constrain the policy maker to rely on a single probabilistic model. She may do so if
she wishes, but she could also rely on a range of models.4 Considering a wider range of models
results in a larger set of robustly optimal policies and, consequently, the policy maker has more
flexibility in selecting the policy to implement within this set. As we demonstrate, the set of
robustly optimal policies, however large, can be computed very simply. Moreover, any policy
selected within this set corresponds to more or less cautious – or conservative – behavior.

Section 1 introduces the formal setup for our analysis. Section 2 contains the main results:
characterizations of the robust Pareto principle and its common-taste restriction. Section 3
presents additional results on computing the set of robust optima and making a selection within
this set. Section 4 discusses related literature. Proofs are gathered in the Appendix.

1 Setup

1.1 Social decisions

Consider a society made of a finite number n of individuals. Let S be a finite set of states of the
world and X be a set of outcomes. Society (the social decision maker) has to choose an act (a
policy) f whose outcome f(s) ∈ X depends on which state s ∈ S will occur. Let F denote the
set of all acts, that is all functions f : S → X. We identify an outcome x ∈ X with the constant
act yielding outcome x no matter which state occurs, thus viewing X as a subset of F .

An element of X specifies an outcome for all individuals in society. We assume that X is a
convex subset of some Euclidean space. One particular case is the classical setting of Anscombe
and Aumann (1963) where X is the set of lotteries over some finite set of prizes. Another one
is when X is a convex subset of the set Rn of monetary allocations or, more generally, of the
set Rdn of allocations of a finite number d of commodities. Since X is convex, given any two
acts f, g ∈ F and any coefficient λ ∈ [0, 1] there exists a “mixed” act λf + (1− λ)g ∈ F yielding

4For instance, the common-taste Pareto principle allows the policy maker to consider plausible all models that
at least one individual considers plausible, as recently suggested by Brunnermeier et al. (2014).
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outcome λf(s) + (1− λ)g(s) in each state s ∈ S.

1.2 Robust SEU preferences

Each individual i = 1, . . . , n has preferences over the acts in F , described by a binary relation
%i on F . That is to say, we write f %i g when individual i weakly prefers act f to act g. As
usual we then write f �i g when this preference is strict and f ∼i g when it is an indifference.
Society also has preferences described by a binary relation %0 on F . We assume that all these
relations are robust subjective expected utility (SEU) preference relations in the following sense
(we use the generic notation % when the subscript i can be omitted).

Definition 1. A binary relation % on F is a robust SEU preference relation if there exist a non-
constant, affine utility function u : X → R and a closed, convex set P of probability distributions
on S, such that for all f, g ∈ F ,

f % g if and only if Ep(u(f)) ≥ Ep(u(g)) for all p ∈ P,

where Ep(u(f)) =
∑

s∈S p(s)u(f(s)) for all f ∈ F and p ∈ P .

P is interpreted as the set of all probability distributions (probabilistic models) the individual
(or society) considers a plausible description of the uncertainty about the state of the world.
When P contains a single probability distribution, the agent has standard SEU preferences and
prefers the act yielding the highest expected utility under this probability distribution. When
P contains multiple probability distributions, the agent only has a robust preference among two
acts when one act yields a higher expected utility than the other under all these distributions.
If the act yielding the highest expected utility depends on which distribution in P is used, then
the individual has no robust preference between the two acts.5

Robust SEU preferences were introduced by Bewley (2002). They satisfy all the properties
characterizing SEU preferences, except the completeness property. The belief P is uniquely
pinned down by the preference relation %, whereas the utility function u is cardinally unique
(i.e. unique up to a positive affine transformation).

1.3 Taste heterogeneity

We focus on situations where individuals’ tastes or interests, as captured by their respective util-
ity functions, are not perfectly aligned. More precisely, we shall assume that for each individual
one can find two constant acts between which this individual is the only one to have a strict
preference (all other individuals being indifferent). Say that the profile (%i)

n
i=1 of individuals’

robust SEU preference relations satisfies c-diversity if for all i = 1, . . . , n, there exist x, y ∈ X
such that x �i y whereas x ∼j y for all j = 1, . . . , n, j 6= i.6

C-diversity is known to be equivalent to the individuals’ utility functions being linearly
independent (note that this is only possible if X is at least n-dimensional; Weymark, 1993).

5The individual may still come up with an overall preference judgment or reveal a behavioral disposition for
one of the two acts; such a preference would simply not be a robust preference. See Section 3.

6This property, which is standard in the preference aggregation literature, is often named “independent
prospects”.
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Thus individual tastes cannot be in full agreement, but neither can they be in full disagreement.
In fact c-diversity implies that the profile (%i)

n
i=1 satisfies the following c-minimal agreement

property: there exist two constant acts x, y ∈ X such x �i y for all i = 1, . . . , n.

2 Robust Pareto principles

This section contains the main results of the paper. We first state a robust version of the
standard Pareto principle and characterize its implications for social preferences. We then
consider a weakening of this robust Pareto principle to a particular subset of acts, yielding a
more general characterization.

2.1 Robust Pareto dominance

The following is the most straightforward application of the Pareto principle in our context. It
simply states that if all individuals robustly prefer f to g, then so should society.

Definition 2. The social robust SEU preference relation %0 satisfies robust Pareto dominance
with respect to the profile (%i)

n
i=1 of individual robust SEU preference relations if for all acts

f, g ∈ F , f %0 g whenever f %i g for all i = 1, . . . , n.

The following characterization result shows that robust Pareto dominance provides guidance
as to which beliefs society might adopt, provided individuals’ beliefs are not too heterogeneous.

Theorem 1. Let %i be a robust SEU preference relation on F with representation (ui, Pi) for
all i = 0, . . . , n. Assume (%i)

n
i=1 satisfies c-diversity. Then %0 satisfies robust Pareto dominance

with respect to (%i)
n
i=1 if and only if there exist a vector of weights θ ∈ Rn+, θ 6= 0, and a

constant γ ∈ R such that

u0 =

n∑
i=1

θiui + γ and P0 ⊆
n⋂
i=1
θi>0

Pi.

Theorem 1 provides a way of aggregating individuals’ tastes and beliefs. The social utility
function is a utilitarian – or linear – aggregation of individuals’ utility functions. This simply
comes from applying the robust Pareto principle to the constant acts, where it reduces to the
standard Pareto principle as beliefs do not matter to evaluate these acts. It is thus a direct
extension of Harsanyi (1955)’s aggregation theorem.

More interesting is the way the social belief is constrained by individuals’. When individual
beliefs are compatible in the sense of having a non-empty intersection, the social belief must lie
inside this intersection. Robust Pareto dominance thus yields a strong but intuitive prescription:
society must only use probability distributions that all individuals consider plausible. This in
particular implies that society’s robust preferences are more complete – can rank more alterna-
tives – than any of the individuals’. The condition that the intersection of individuals’ beliefs is
non-empty is not new in the literature; it appears for instance in Rigotti and Shannon (2005),
where it is needed to prove that, absent any aggregate risk, the set of Pareto optima coincide
with the full insurance allocations.
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If individual beliefs are incompatible – or have an empty intersection – then some individuals
have to be “excluded” as it were, i.e. given zero weight in the social utility function. For instance,
if all individuals have distinct precise beliefs, then the only way for society to satisfy robust
Pareto dominance is that its preferences coincide with a particular individual’s, who then acts
as a dictator. More generally, SEU individuals are either given zero weight or are dictators: any
individual with SEU preferences and a non-zero weight forces society to have SEU preferences
with her prior, in a way forcing her “certitude” on the society.7

2.2 Common-taste robust Pareto dominance

When individuals have incompatible beliefs and society does not wish to exclude some of them,
the robust Pareto principle yields no prescription for society. To recover some guidance in these
situations, we now restrict this principle to acts that are in some sense “consensual”.

Let us start with a situation where our notion of consensus takes a particularly simple form.
Consider two constant acts x, y ∈ X such that x �i y for all i = 1, . . . , n (such acts exist by
c-minimal agreement) and two acts f, g ∈ F that never yield an outcome different from x or
y in any state. Such acts are consensual in the sense that all individuals agree state by state
on the ranking of their respective outcomes: for all s ∈ S, f(s) is either unanimously “good”
– if it is x – or unanimously “bad” – if it is y – and similarly for g. Now if f robustly Pareto
dominates g then all individuals, notwithstanding their incompatible and potentially imprecise
beliefs, further agree that f is more likely than g to yield the “good” outcome. Put differently,
they would continue to unanimously prefer f to g if they agreed to “pool” their beliefs – each of
them incorporating the others’ beliefs into her own.

More generally, we say that two acts are “common-taste” acts if all individuals have the
same cardinal preferences over their possible outcomes.8 Formally, given an act f , let f(S) =

{f(s) : s ∈ S} denote the image of f , i.e. the set of all possible outcomes of f . Given a set Y
of outcomes, let conv(Y ) denote the convex hull of Y , i.e. the set of all convex combinations
(or weighted averages) of outcomes in Y . Two acts f and g are common-taste acts if x %i y is
equivalent to x %j y for all x, y ∈ conv(f(S) ∪ g(S)) and i, j = 1, . . . , n. Equivalently, f and g
are common-taste acts if all individual utility functions, once restricted to the set of all possible
outcomes of these two acts, are identical up to positive affine transformations.

Definition 3. The social robust SEU preference relation%0 satisfies common-taste robust Pareto
dominance with respect to the profile (%i)

n
i=1 of individual robust SEU preference relations if

for all common-taste acts f, g ∈ F , f %0 g whenever f %i g for all i = 1, . . . , n.

Theorem 2. Let %i be a robust SEU preference relation on F with representation (ui, Pi) for
all i = 0, . . . , n. Assume (%i)

n
i=1 satisfies c-minimal agreement. Then %0 satisfies common-taste

robust Pareto dominance with respect to (%i)
n
i=1 if and only if there exist a vector of weights

7A similar pattern was experimentally observed by Baillon et al. (2012).
8In the two-outcome situations discussed above there is no distinction between ordinal and cardinal preferences.

This is no longer true with more than two outcomes and requiring identical cardinal preferences turns out to
provide the relevant notion of common-taste acts for our purposes.
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θ ∈ Rn+, θ 6= 0, and a constant γ ∈ R such that

u0 =

n∑
i=1

θiui + γ, and P0 ⊆ conv

(
n⋃
i=1

Pi

)
.

Thus common-taste robust Pareto dominance allows aggregation of robust preferences even
with incompatible beliefs. As in Theorem 1, society can have SEU preferences even if all individ-
uals have imprecise beliefs. The opposite case is now also possible: society can have imprecise
beliefs even if all individuals have SEU preferences, in which case social belief imprecision results
from individual belief heterogeneity. Thus, although more permissive in the way society’s beliefs
could be related to individuals’ compared with Theorem 1, this result always provides guidance
to construct these beliefs.

Remark 1. We would obtain the same characterization if we strengthened the common-taste
Pareto principle by focusing on the “involved” individuals, in the spirit of Gilboa et al. (2014):
individual i is involved in the comparison between f and g if f(s) �i g(s) for some s ∈ S. That
is, we would now say, more generally, that f and g are common-taste acts if x %i y is equivalent
to x %j y for all x, y ∈ conv(f(S) ∪ g(S)) and all individuals i, j that are involved in f and g.
Equivalently, f and g are common-taste acts if all individual utility functions, once restricted
to the set of all possible outcomes of these two acts, are either identical up to positive affine
transformations or constant.

Remark 2. Unlike Theorem 1, Theorem 2 does not require individual preferences to satisfy
c-diversity but only c-minimal agreement. It is therefore applicable to the particular case where
all individuals have identical tastes.

3 Social optima and social choice

This section turns to the problem of choosing a socially optimal act among a given set of feasible
acts. We provide results helping society to compute the set of optimal acts and make a further
selection among them.

A feasible act is optimal if no other feasible act is strictly preferred to it. When society has
a precise belief p0, the socially optimal acts are thus simply those that maximize expected social
utility under p0. When society has an imprecise belief P0, on the other hand, the set of socially
optimal acts cannot be computed by maximizing a single function, reflecting the incompleteness
of the social robust preference relation. However, we show that maximizing expected social
utility under each “interior” distribution in P0 separately always yields a lower bound for – a
subset of – this set. Moreover, when the feasible set is convex, doing so under all “boundary”
distributions in P0 as well yields an upper bound for this set. Finally, when the feasible set
is polyhedral – determined by a finite system of weak linear inequalities – the lower bound is
actually an exact characterization of the set of social optima.9

Proposition 1. Let % be a robust SEU preference relation with representation (u, P ) and G
be a subset of F . Then any act maximizing Ep(u(f)) in G for some relatively interior p ∈ P

9Aumann (1962, 1964) and Evren (2014) prove similar “scalarization” results in different settings.
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is optimal for % in G. Conversely, if G is convex then any optimal act for % in G maximizes
Ep(u(f)) in G for some p ∈ P , and if G is polyhedral then any optimal act for % in G maximizes
Ep(u(f)) in G for some relatively interior p ∈ P .10

Once the socially optimal acts are identified, society may wish to select among them by
“completing” the robust social ranking in a consistent way rather than picking an act arbitrarily.
Formally, we say that a binary relation %′ on F is a completion of a robust preference relation
% on F if (i) %′ is complete, (ii) f % g implies f %′ g for all f, g ∈ F , and (iii) x � y implies
x �′ y for all x, y ∈ X. As we next show, virtually any consistent completion can be interpreted
as evaluating the different acts with varying degrees of “caution” in the following sense.

Definition 4. A binary relation %′ on F is a variable caution choice rule for a robust SEU
preference relation % on F with representation (u, P ) if there exists a function α : F → [0, 1]

such that for all f, g ∈ F ,

f %′ g if and only if V (f) ≥ V (g),

where V (f) = α(f) minp∈P Ep(u(f)) + (1− α(f)) maxp∈P Ep(u(f)) for all f ∈ F .

The coefficient α(f) is interpreted as the degree of caution with which act f is evaluated. It
is unique whenever the minimal and maximal expected utilities of f do not coincide (otherwise it
is irrelevant), and independent of (u, P ). The most cautious rule corresponds to α(f) = 1 for all
f ∈ F (Gilboa et al., 2010). It is akin to the precautionary principle, each act being evaluated by
its minimal expected utility. The least cautious rule corresponds to α(f) = 0 for all f ∈ F . More
generally, taking α constant corresponds to the Hurwicz (1951) “optimism-pessimism” criterion.
Letting α vary with the act allows for more general rules. For instance, choosing a distribution
p′ ∈ P and taking α(f) =

maxp∈P Ep(u(f))−Ep′ (u(f))

maxp∈P Ep(u(f))−minp∈P Ep(u(f))
corresponds to a SEU rule.

Proposition 2. If a binary relation %′ on F is a transitive, c-Archimedean completion of a
robust SEU preference relation % on F then it is a variable caution choice rule for %.11

Transitivity requires the completion to rank acts in a consistent way. The c-Arcimedean
property, on the other hand, is a mild continuity requirement. When these two requirements
are met, selecting among socially optimal acts thus amounts to adopt a more or less cautious
attitude towards social belief imprecision. The degree of social caution may depend on the act
under consideration.

Remark 3. The converse of Proposition 2 does not hold: some variable caution choice rules –
or α functions – reverse some robust SEU rankings and hence are not completions of it. The
converse holds, however, for all the particular cases discussed above. It holds, more generally, if
the definition of a variable caution choice rule is strenghtened to further require that V (f) ≥ V (g)

whenever Ep(u(f)) ≥ Ep(u(g)) for all p ∈ P .
10A distribution p ∈ P is relatively interior if for all distribution q ∈ P , there exist a distribution r ∈ P and a

coefficient λ ∈ (0, 1) such that p = λq + (1− λ)r.
11A binary relation %′ on F is c-Archimedean if the sets {λ ∈ [0, 1] : λx+ (1− λ)y %′ f} and {µ ∈ [0, 1] : f %′

µx+ (1− µy)} are closed for all f ∈ F and x, y ∈ X.
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Remark 4. Our definition of a variable caution choice rule is identical to Cerreia-Vioglio et al.
(2011)’s definition of a “generalized Hurwicz representation”, except that they require % to be
derived from %′ in a specific way whereas we more generally allow % to be any robust SEU
preference relation admitting %′ as completion. Cerreia-Vioglio et al. (2011) show that any
“monotonic Bernoullian Archimedean” (MBA) preference relation admits such a representa-
tion.12 Any MBA preference relation is a transitive, c-Archimedean completion of some robust
SEU preference relation, but the converse is not true as MBA preferences satisfy a stronger
Archimedean property.

4 Discussion and related literature

In this section, we further discuss the relationship between our main results and the existing
literature on social decisions. Whereas most of the literature assumes SEU preferences, a recent
strand of papers considers ambiguity – or nonexpected utility – preferences.

4.1 Social decisions with SEU preferences

When individuals and society have SEU preferences and individual tastes are heterogeneous,
respecting Pareto dominance is impossible unless all individuals (with non-zero weight) have
identical beliefs (Hylland and Zeckhauser, 1979; Mongin, 1995, 1998, 2014). Theorem 1 general-
izes this result to robust SEU preferences. This generalization is partly a possibility result: the
robust Pareto principle can accomodate simultaneous heterogeneity in tastes and beliefs, as long
as beliefs remain compatible. In the particular case where all individuals have SEU preferences,
it also yields the following corollary, showing that the assumption that society has a precise
belief is not necessary for the impossibility result as it is in fact implied by the Pareto principle.

Corollary 1. Let %0 be a robust SEU preference relation on F and %i be a SEU preference
relation on F for all i = 1, . . . , n. Assume (%i)

n
i=1 satisfies c-diversity. If %0 satisfies robust

Pareto dominance with respect to (%i)
n
i=1 then %0 is a SEU preference relation.

Gilboa et al. (2004) restrict the Pareto principle to “common-belief” acts, i.e. acts whose
outcome only depends on events to which all individuals assign the same probability. In the
setting of Savage (1954), they show that this restriction allows aggregation of SEU preferences
with heterogeneous tastes and beliefs, and requires the social belief to be a weighted average of
the individuals’. In an Anscombe-Aumann setting, Qu (2015) obtains the same characterization
by restricting the Pareto principle to common-taste acts. These two restrictions have the same
flavor of allowing society to ignore “spurious” unanimities (individuals agree for opposite reasons),
which are the source of the impossibility. The Savage setting features a rich set of states, making
the common-belief restriction stronger, whereas the Anscombe-Aumann setting features a rich
set of outcomes, making the common-taste restriction stronger. Theorem 2 generalizes Qu (2015)
result to robust SEU preferences.13

12The MBA class includes virtually all popular ambiguity models, such as maxmin expected utility (MEU;
Gilboa and Schmeidler, 1989), Choquet expected utility (CEU; Schmeidler, 1989), smooth ambiguity (Klibanoff
et al., 2005), variational (Maccheroni et al., 2006), and multiplier (Hansen and Sargent, 2001) preferences.

13Note that Qu (2015) also defines common-taste acts more narrowly as those yielding only convex combinations
of two exogeneously fixed outcomes between which individuals have a unanimous strict preference. Our more
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Gilboa et al. (2014) say that an act f no-betting Pareto dominates an act g if f Pareto
dominates g and there exists a probability distribution p on S such that Ep(ui(f)) ≥ Ep(ui(g))

for all involved individual i (their definition requires strict inequality, but this weak version is
more directly comparable to ours). Their definition can be generalized to robust SEU preferences
by requiring robust Pareto dominance instead of Pareto dominance. Gayer et al. (2014) say
that an act f unanimity Pareto dominates an act g if Epj (ui(f)) ≥ Epj (ui(g)) for all involved
individuals i, j. Their definition (which again requires strict inequality) can also be generalized
to robust SEU preferences by requiring that Epj (ui(f)) ≥ Epj (ui(g)) for all individuals i, j
and all probability distribution pj ∈ Pj . Common-taste robust Pareto dominance then implies
unanimity robust Pareto dominance, which itself implies no-betting robust Pareto dominance
and in turn robust Pareto dominance. Moreover, the last two are equivalent when individual
beliefs are compatible. Finally, Theorem 2 implies that it is equivalent for a social robust SEU
preference relation to respect either one of the first two when c-minimal agreement holds.

Brunnermeier et al. (2014) propose a belief neutral social welfare criterion that essentially
consists in a social robust SEU ranking whose belief is the convex hull of the individuals’. This
corresponds to the particular case of Theorem 2 where individuals have SEU preferences and
society has the least complete robust SEU preferences satisfying common-taste robust Pareto
dominance. The common-taste robust Pareto principle thus provides foundations for a gener-
alization of their criterion allowing, on the one hand, for more precise social beliefs – or more
complete social preferences – and, on the other hand, for imprecise individual beliefs.

4.2 Social decisions with ambiguity preferences

When individuals and society have ambiguity preferences and invidual tastes are heterogeneous,
respecting Pareto dominance becomes impossible even when all individuals have identical beliefs.
This has been shown in various settings covering in particular the class of MBA preferences
(Gajdos et al., 2008; Herzberg, 2013; Chambers and Hayashi, 2014; Mongin and Pivato, 2015;
Zuber, 2015). In contrast, Theorems 1 and 2 show that robust SEU preferences allow the
aggregation of imprecise beliefs.

Moreover, our results can be used to obtain positive aggregation results for ambiguity pref-
erences as well. Indeed, an ambiguity preference relation naturally induces an “unambiguous
preference” relation, capturing the part of the preference ranking that is not affected by the am-
biguity the individual perceives (Ghirardato et al., 2004; Nehring, 2007; Klibanoff et al., 2014).
For an MBA preference relation %, this unambiguous preference relation %∗ is a robust SEU
preference relation and % is a variable caution choice rule for its unambiguous part %∗. % can
therefore be represented by a triple (u, P, α) where (u, P ) is as in Definition 1 and α is an in
Definition 4.14 The function α is then interpreted as reflecting the individual’s attitude towards
the ambiguity she perceives.

We may therefore restrict the Pareto principle as follows: say that the social preference rela-

general definition yields the same characterization while retaining a stronger Pareto principle. See also Billot and
Vergopoulos (2014) for a different resolution of the impossibility through an extension of the state space.

14Note that in this approach % is the only primitive relation whereas %∗ is revealed by %. Note also that the
definition of %∗ – or, equivalently, of P – by Ghirardato et al. (2004) and Nehring (2007) does not necessarily
coincide with that by Klibanoff et al. (2014), the former being generally more complete.
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tion %0 satisfies unambiguous Pareto dominance with respect to the profile (%i)
n
i=1 of individual

preference relations if the social unambiguous preference relation %∗0 satisfies robust Pareto dom-
inance with respect to the profile (%∗i )

n
i=1 of individual unambiguous preference relations. This

principle, and its restriction to common-taste acts, are then characterized as in Theorems 1 and
2, respectively. Note that these characterizations do not involve the functions αi and thus relate
the individuals’ and society’s beliefs independently of their ambiguity attitudes. We explicitly
state the latter result.

Corollary 2. Let %i be a MBA preference relation on F with representation (ui, Pi, αi) for all
i = 0, . . . , n. Assume (%i)

n
i=1 satisfies c-minimal agreement. Then %0 satisfies common-taste

unambiguous Pareto dominance with respect to (%i)
n
i=1 if and only if there exist a vector of

weights θ ∈ Rn+, θ 6= 0, and a constant γ ∈ R such that

u0 =
n∑
i=1

θiui + γ and P0 ⊆ conv

(
n⋃
i=1

Pi

)
.

Several particular specifications of this general characterization have been studied within
various subclasses of MBA preferences. Crès et al. (2011), Nascimento (2012), Hill (2013),
and Gajdos and Vergnaud (2013) assume that individuals have identical tastes. Allowing for
taste heterogeneity, Qu (2015) characterizes a strengthening of common-taste Pareto dominance
within the MEU and CEU classes. Alon and Gayer (2015) assume that individuals have SEU
preferences whereas society has MEU preferences and characterize unanimity Pareto dominance.
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Appendix: proofs

Given a utility function u : X → R and a probability distribution p on S, define the “state-
dependent utility” function wu,p : X × S → R by wu,p(x, s) = p(s)u(x). Given a set P of
probability distributions on S, let Wu,P = {wu,p : p ∈ P}. Let

C =
{
c ∈ RX×S : c(x, s) = c(y, s) for all x, y ∈ X and s ∈ S

}
denote the set of “state-dependent constant” functions. Let cone(·) denote conic hull.

Lemma 1. Let %i be a robust SEU preference relation on F with representation (ui, Pi) for
all i = 0, . . . , n. Assume (%i)

n
i=1 satisfies c-minimal agreement. Then %0 satisfies robust Pareto

dominance with respect to (%i)
n
i=1 if and only if

Wu0,P0 ⊆
n∑
i=1

cone (Wui,Pi) + C. (1)

Proof. X has a finite affine basis X̂ since it is a subset of a Euclidean space. Given a state-
dependent utility function w : X ×S → R, denote by ŵ its restriction to X̂ ×S. Given a set W
of such functions, denote by Ŵ the set of corresponding restrictions. Then (1) is equivalent to

Ŵu0,P0 ⊆
n∑
i=1

cone
(
Ŵui,Pi

)
+ Ĉ. (2)

It follows from a straightforward generalization of Danan et al. (2015)’s aggregation theorem
that %0 satisfies robust Pareto dominance with respect to (%i)

n
i=1 if and only ifWu0,P0 is included

in the closure of the right hand side of (2). Hence it suffices to prove that this right hand side
is closed. We first show that cone(Ŵui,Pi) + Ĉ is a closed, convex cone for all i = 1, . . . , n.
That it is a convex cone is easily checked. For closedness, note that 0 /∈ Ŵui,Pi since ui is non-
constant and, hence, cone(Ŵui,Pi) is closed since Ŵui,Pi is compact and convex (Rockafellar,
1970, Corollary 9.6.1). Moreover, cone(Ŵui,Pi)∩ Ĉ = {0} and, hence, cone(Ŵui,Pi) + Ĉ is closed
as well (Rockafellar, 1970, Corollary 9.1.3).

It remains to show that the sum of these closed, convex cones is itself closed. As explained
in Danan et al. (2015), this will be the case if there exist two acts f, g ∈ F such that, for all
i = 1, . . . , n and all gi ∈ F such that f %i gi, there exist g′i ∈ F and λi ∈ (0, 1) such that f %i g

′
i

and g = λigi + (1− λi)g′i. To establish this property, recall that by c-minimal agreement, there
exist x, y ∈ X such that x �i y for all i = 1. . . . , n. Hence, for all i = 1, . . . , n, there exists an
open neighborhood Yi of y in X such that x �i y′ for all y′ ∈ Yi. Let Y =

⋂n
i=1 Yi. Then Y

is open and x �i y′ for all y′ ∈ Y and all i = 1, . . . , n. Fix an outcome z ∈ Y , an individual
i = 1, . . . , n, an act gi ∈ F such that x %i gi, and a coefficient λ ∈ (0, 1). Let g′i = 1

1−λz−
λ

1−λgi,
so that z = λgi + (1 − λ)g′i. Since S is finite, there exists λ ∈ (0, 1) small enough so that
g′i ∈ Y S ⊂ F and, hence, x �i g′i(s) for all s ∈ S. It follows that x %i g

′
i.

Proof of Theorem 1. The “if” part is easily checked. For the “only if” part, assume %0 sat-
isfies robust Pareto dominance with respect to (%i)

n
i=1. Restricting attention to the constant
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acts, robust Pareto dominance reduces to standard Pareto dominance. We can therefore apply
Harsanyi (1955)’s aggregation theorem (for a rigorous proof in our setting, see de Meyer and
Mongin, 1995) to obtain θ ∈ Rn+ and γ ∈ R such that u0 =

∑n
i=1 θiui + γ. θ and γ are unique

by c-diversity. Moreover, θ 6= 0 since u0 is non-constant.
It remains to prove that for all p0 ∈ P0 and all i = 1, . . . , n such that θi > 0, p0 ∈ Pi. To

this end, note that by Lemma 1, there exist (pi)
n
i=1 ∈

∏n
i=1 Pi, θ

′ ∈ Rn+, and c′ ∈ C such that

wu0,p0 =
n∑
i=1

θ′iwui,pi + c′.

It follows that

p0(s)u0(x) =
n∑
i=1

θ′ipi(s)ui(x) + c′(s) (3)

for all s ∈ S and x ∈ X, where c′(s) stands for c′(x, s) since the latter is independent of x.
Summing over S yields

u0(x) =

n∑
i=1

θ′iui(x) +
∑
s∈S

c′(s)

for all x ∈ X, so that θ = θ′ and γ =
∑

s∈S c
′(s). Hence (3) implies that

p0(s)(u0(x)− u0(y)) =
n∑
i=1

θipi(s)(ui(x)− ui(y))

and, hence, that

n∑
i=1

θi(p0(s)− pi(s))(ui(x)− ui(y)) = 0 (4)

for all s ∈ S and x, y ∈ X. Fix an individual i such that θi > 0. By c-diversity, there exist
x, y ∈ X such that ui(x) > ui(y) whereas uj(x) = uj(y) for all j = 1, . . . , n, j 6= i. By (4), it
follows that p0(s) = pi(s) for all s ∈ S, so that p0 = pi ∈ Pi.

Proof of Theorem 2. The “if” part is easily checked. For the “only if” part, assume %0 satisfies
common-taste robust Pareto dominance with respect to (%i)

n
i=1. As in the proof of Theorem 1,

we first restrict attention to the constant acts to obtain θ ∈ Rn+, θ 6= 0, and γ ∈ R such that
u0 =

∑n
i=1 θiui + γ.

It remains to prove that for all p0 ∈ P0, there exist (pi)
n
i=1 ∈

∏n
i=1 Pi and λ ∈ ∆n such

that p0 =
∑n

i=1 λipi. By c-minimal agreement, there exist x, y ∈ X such that x �i y for all
i = 1, . . . , n. Hence all acts in conv({x, y})S are common-taste acts. It follows that x �0 y, so
that individual and social preferences all agree on conv({x, y}). Hence for all i = 1, . . . , n, there
exist ai ∈ R+, ai > 0, and bi ∈ R such that

ui(z) = aiu0(z) + bi (5)
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for all z ∈ conv({x, y}). We can therefore use the common-taste robust Pareto principle to show,
as in the proof of Theorem 1, that for all p0 ∈ P0, there exist (pi)

n
i=1 ∈

∏n
i=1 Pi, θ

′ ∈ Rn+, and
c′ ∈ C such that

p0(s)u0(z) =
n∑
i=1

θ′ipi(s)ui(z) + c′(s) (6)

for all s ∈ S and z ∈ conv({x, y}). Summing over S and using (5) yields

u0(z) =

n∑
i=1

θ′iui(z) +
∑
s∈S

c′(s) =

n∑
i=1

θ′iaiu0(z) +

n∑
i=1

θ′ibi +
∑
s∈S

c′(s)

for all z ∈ conv({x, y}), so that
∑n

i=1 θ
′
iai = 1 and

∑n
i=1 θ

′
ibi = −

∑
s∈S c

′(s) since u0 is non-
constant on conv({x, y}). Hence (6) implies that

p0(s)(u0(x)− u0(y)) =
n∑
i=1

θ′ipi(s)(ui(x)− ui(y)) =
n∑
i=1

θ′ipi(s)ai(u0(x)− u0(y))

and, hence, that

p0(s) =

n∑
i=1

θ′iaipi(s)

for all s ∈ S, so that p0 =
∑n

i=1 θ
′
iaipi. Let λ = (θ′iai)

n
i=1 ∈ Rn. Since θ′i ≥ 0 and ai > 0 for all

i = 1, . . . , n and
∑n

i=1 θ
′
iai = 1, we have λ ∈ ∆n.

Proof of Proposition 1. First, let G be any subset of X and let g ∈ arg maxf∈GEp(u(f))

for some relatively interior p ∈ P . We show that g is optimal for % in G. Suppose not, i.e.
there exists f ∈ G such that f � g. It must then be that Ep(u(f)) = Ep(u(g)) whereas
Eq(u(f)) > Eq(u(g)) for some q ∈ P . Moreover, since p is relatively interior in P , there exist
r ∈ P and λ ∈ (0, 1) such that p = λq + (1− λ)r, i.e. r = 1

1−λp−
λ

1−λq. It follows that

Er(u(f)) =
1

1− λ
Ep(u(f))− λ

1− λ
Eq(u(f)) <

1

1− λ
Ep(u(g))− λ

1− λ
Eq(u(g)) = Er(u(g)),

contradicting f � g.
Next, assume G is convex and g ∈ G is optimal for % in G, i.e. there exists no f ∈ G such

that f � g. We show that g ∈ arg maxf∈GEp(u(f)) for some p ∈ P . Let

A =
{
v ∈ RS : there exists f ∈ G such that v(s) = u(f(s))− u(g(s)) for all s ∈ S

}
,

B =
{
v ∈ RS : Eq(v) > 0 for all q ∈ P

}
.

Then A is convex since G is convex and u is affine, and B is a convex cone whose dual cone is
cone(P ). Moreover, since g is optimal for % in G, A and B must be disjoint by Definition 1.
Hence by a separation argument (Rockafellar, 1970, Theorem 11.3), there exists p ∈ RS , p 6= 0,
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such that ∑
s∈S

p(s)b(s) ≥ 0 ≥
∑
s∈S

p(s)a(s).

for all a ∈ A and b ∈ B. The former inequality implies that p ∈ cone(P ), so we can assume
without loss of generality that p ∈ P . The latter inequality then implies that Ep(u(g)) ≥
Ep(u(f)) for all f ∈ G.

Finally, assume G is polyhedral and g ∈ G is optimal for % in G, i.e. there exists no f ∈ G
such that f � g. We show that g ∈ arg maxf∈GEp(u(f)) for some relatively interior p ∈ P .
Define A as above and let

B′ =
{
v ∈ RS : Eq(v) ≥ 0 for all q ∈ P

}
.

Then A is polyhedral since G is polyhedral and u is affine, and B′ is a closed, convex cone
whose dual cone is cone(P ). Since A is polyhedral and 0 ∈ A, cone(A) is a closed, convex cone
(Rockafellar, 1970, Corollary 19.7.1). We also have B′ = B′1 +B′2 where B′1 is the lineality space
of B′ and B′2 is a pointed, closed, convex cone orthogonal to B′1. Since B′2 is pointed, there exists
a compact, convex set D ⊂ B′2, 0 /∈ D, such that cone(D) = B′2 and, hence, cone(B′1 +D) = B′.
Moreover, since g is optimal for % in G, we have A ∩ B′ ⊆ B′1 by Definition 1 and, hence, A
and B′1 +D must be disjoint since 0 /∈ D. Hence by a separation argument (Rockafellar, 1970,
Corollary 20.3.1), there exists q ∈ RS , q 6= 0, and ε ∈ R such that∑

s∈S
q(s)b(s) > ε ≥ 0 ≥

∑
s∈S

q(s)a(s).

for all a ∈ A and b ∈ B′1 + D. It follows that there exists an open neighborhood Q of q such
that, for all r ∈ Q, ∑

s∈S
r(s)b(s) ≥ 0 ≥

∑
s∈S

r(s)a(s).

for all a ∈ A and b ∈ B′. The former inequality implies that Q ⊂ cone(P ), so we can assume
without loss of generality that q ∈ P . By definition, Q must then contain a relatively interior
p ∈ P . The latter inequality then implies that Ep(u(g)) ≥ Ep(u(f)) for all f ∈ G.

Proof of Proposition 2. Assume %′ is a transitive, c-Archimedean completion of a robust
SEU preference relation % on F with representation (u, P ). First note that since %′ is a com-
pletion of % and by Definition 1, we have

x %′ y if and only if x % y if and only if u(x) ≥ u(y) (7)

for all x, y ∈ X. For all f ∈ F , let xf ∈ arg maxs∈S u(f(s)) and yf ∈ arg mins∈S u(f(s)). This
is well-defined since S is finite. We then have

u(xf ) ≥ max
p∈P

Ep(u(f)) ≥ min
p∈P

Ep(u(f)) ≥ u(yf ).
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Since X is convex and u is affine, there then exist x′f , y
′
f ∈ conv({xf , yf}) such that u(x′f ) =

maxp∈P Ep(u(f)) and u(y′f ) = minp∈P Ep(u(f)). It follows that x′f % f % y′f by Definition 1
and, hence, x′f %′ f %′ y′f since %′ is a completion of %.

We now show that there exist α(f) ∈ [0, 1] such that

f ∼′ α(f)y′f + (1− α(f))x′f .

If f ∼′ x′f or f ∼′ y′f then we are done, so assume x′f �′ f �′ y′f . By (7), we then have
u(x′f ) > u(y′f ). Let

L = {λ ∈ [0, 1] : λy′f + (1− λ)x′f %′ f},

M = {µ ∈ [0, 1] : f %′ µy′f + (1− µ)x′f}.

We then have L ∪M = [0, 1] since %′ is complete. Moreover, for all λ ∈ L and µ ∈ M , we
have λy′f + (1− λ)x′f %′ µy′f + (1− µ)x′f since %′ is transitive and, hence, u(λy′f + (1− λ)x′f ) ≥
u(µy′f + (1 − µ)x′f ) by (7). Since u is affine and u(x′f ) > u(y′f ), this is only possible if λ ≤ µ.
It follows that supL = inf M . Finally, L and M are closed since %′ is c-Archimedean and,
hence, supL = maxL and inf M = minM . Hence, letting α(f) = maxL = minM and
zf = α(f)y′f + (1− α(f))x′f , we have f ∼′ zf .

Finally, let V (f) = u(zf ). Since u is affine, we then have

V (f) = α(f)u(y′f ) + (1− α(f))u(x′f ) = α(f) min
p∈P

Epu(f)) + (1− α(f)) max
p∈P

Ep(u(f)).

Moreover, since %′ is transitive and by (7), we have

f %′ g if and only if zf %′ zg if and only if V (f) ≥ V (g)

for all acts f, g ∈ F , which completes the proof.
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