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Robust Software Partitioning
with Multiple Instantiation

Simon A. Spacey, Wolfram Wiesemann, Daniel Kuhn, and Wayne Luk
Department of Computing, Imperial College London, London SW7 2AZ, United Kingdom

simon.spacey@sase.biz, { wwiesema | dkuhn | wl } @ imperial.ac.uk

The purpose of software partitioning is to assign code segments of a given computer program
to a range of execution locations such as general purpose processors or specialist hardware
components. These execution locations differ in speed, communication characteristics, and
in size. In particular, hardware components offering high speed tend to accommodate only
few code segments. The goal of software partitioning is to find an assignment of code seg-
ments to execution locations that minimizes the overall program run time and respects the
size constraints. In this paper we demonstrate that an additional speedup is obtained if we
allow code segments to be instantiated on more than one location. We further show that
the program run time not only depends on the execution frequency of the code segments
but also on their execution order if there are multiply instantiated code segments. Unlike
frequency information, however, sequence information is not available at the time when the
software partition is selected. This motivates us to formulate the software partitioning prob-
lem as a robust optimization problem with decision-dependent uncertainty. We transform
this problem to a mixed-integer linear program of moderate size and report on promising
numerical results.

Key words: robust optimization; software partitioning; decision-dependent uncertainty; mul-
tiple instance partitioning

1. Introduction

We consider a computer program that must be executed quickly and frequently over a long

(maybe indefinite) life time. Such programs arise in cryptography (Cheung et al., 2005),

digital signal processing (Constantinides et al., 2003), computer vision (Fahmy et al., 2007),

video image processing (Haynes et al., 2000), database processing (Shirazi et al., 2001),

network analysis (Yusuf et al., 2008) and on-line commercial services. It is assumed that

the program consists of several indivisible building blocks or code segments. The overall

execution time of the program is the time needed to execute the individual code segments

and the time needed to exchange information between code segments which are executed in

direct succession. These contributions to the run time will be referred to as the execution

costs and communication costs, respectively, and may depend on the characteristics of the

execution location where each code segment is run. Examples of execution locations are
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central processing units, graphical processing units, or specialist hardware components such

as field-programmable gate arrays. The goal of software partitioning is to find an assignment

of code segments to execution locations that results in the fastest total program execution

while respecting the size constraints of specialist hardware components. More precisely, we

seek an assignment which ensures that the underlying program runs fast on average for a

broad range of possible input parameters.

The necessity for software partitioning has been recognized since the early sixties, when

manual partitioning methods based on the Fixed Plus Variable system were proposed (Estrin,

2002). By the early nineties, the Cosyma and Vulcan systems (Ernst et al., 1993; Gupta

and Micheli, 1993) began to apply semi-automated approaches to software partitioning.

While Cosyma relies on a simulated annealing heuristic to assign code segments to execution

locations, Vulcan employs a greedy approach. In the following years, a plethora of heuristic

solution procedures for software partitioning were studied including tabu search (Eles et al.,

1997), genetic algorithms (Dick and Jha, 1997; Purnaprajna et al., 2007), particle swarm

algorithms (Abdelhalim et al., 2006) and ant colony optimization (Koudil et al., 2005).

Recent exact solution approaches for various forms of the software partitioning problem rely

on dynamic programming (Knudsen and Madsen, 1996; Kuang et al., 2005; Shrivastava et al.,

2000; Wu and Srikanthan, 2006) and mixed-integer linear programming (Arató et al., 2003;

Banerjee et al., 2006; Khayam et al., 2001; Niemann and Marwedel, 1996; Spacey et al.,

2009a). A survey on software partitioning and related areas is provided by Wolf (2003).

For the purpose of software partitioning, a program’s execution is described exhaustively

by the execution sequence or execution trace, that is, the sequence in which the program’s

code segments are executed. In typical programs, some code segments are called very often

as part of nested loops. This renders the execution trace information too large to be stored

at the fine-grained (program basic block or subroutine) level required for optimal software

partitioning (Spacey et al., 2009a). Moreover, execution traces often depend on input data

implying that there may be infinitely many possible traces that have to be considered for

some programs.

As it is impractical or impossible to manipulate large execution traces, software engineers

tend to deal with control flow graphs (CFGs) instead. CFGs compress out sequence infor-

mation from traces and retain only a program’s calling frequencies, that is, the frequencies

with which the code segments call each other. It is relatively easy to predict average calling

frequencies over a large number of program runs with statistically independent input data.
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Hence, it is reasonable to assume that this type of frequency information is available at the

time when the software partition has to be selected.

Frequency information is sufficient to solve the software partitioning problem optimally

if each code segment is assigned to a single location (Arató et al., 2003; Khayam et al., 2001;

Spacey et al., 2009a). However, in this work we seek to obtain an additional speedup by

assigning code segments to more than one execution location. In this multiple instantiation

setting, information about the program’s execution sequence is required in order to solve the

partitioning problem optimally. The motivation for considering multiple instantiation is that

in software partitioning, as with most distributed process optimization problems, communi-

cations on the same location incur substantially smaller costs than those between different

locations. Therefore, it can be beneficial to instantiate frequently visited code segments at

more than one location, just as a manufacturer would naturally consider installing the same

machine at multiple locations to reduce transportation costs. Previous exact approaches

to multiple instantiation have assumed complete knowledge of the program’s execution se-

quence (Banerjee et al., 2006; Niemann and Marwedel, 1996; Kuang et al., 2005). By the

above discussion, however, this assumption restricts the applicability of these approaches to

programs with short execution traces.

In this paper we propose a novel approach to software partitioning which does not require

sequence information but still allows for multiple instantiation of code segments. Since

sequence information is absent, we formulate the multiple instance partitioning problem as

a robust optimization problem which minimizes the worst-case run time over all execution

sequences consistent with known CFG calling frequencies. After applying a dimensionality

reduction mechanism, we end up with a robust optimization model with integer decisions and

a decision-dependent uncertainty set. We reformulate the resulting model as an equivalent

mixed integer linear program (MILP) which we solve with off-the-shelf optimization software.

Although our formulation only requires information about the calling frequencies, its

objective function (the worst-case run time) is determined by the location-aware execution

traces that are consistent with the given calling frequencies. A location-aware execution

trace collects full information about the order of the code segment/location pairs visited

during program execution, and it is crucially influenced by the adopted calling convention.

Indeed, whenever a specific code segment must be executed that has been instantiated on

several locations, the calling convention decides which of its duplicates is called. While it

is straightforward to construct an optimization model that determines the optimal calling
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Figure 1: Example control flow graph (CFG). The vertices represent the code segments, the
arcs depict calls between code segments, and the arc weights indicate calling frequencies.

Figure 2: Two software partitions for the CFG from Figure 1. The arcs represent the adopted
calling conventions for execution traces τ 1 (left partition) and τ 2 (right partition). Multiply
instantiated nodes are shown as pentagons and singly instantiated nodes as circles.

convention when the whole program trace is known, it becomes a major challenge to derive an

optimal calling convention if only calling frequencies are available. To ensure computational

tractability, we adopt a problem independent greedy calling convention in this work.

Example 1.1. Consider the CFG shown in Figure 1. Among others, this CFG is consistent

with the execution trace τ 1 given by

1, 2, 3, 2, 1, 2, 3, 2, . . . , 1, 2, 3, 2,
︸ ︷︷ ︸

99 times

1, 2, 3, 4, 3, 4, . . . , 3, 4,
︸ ︷︷ ︸

100 times

1

and the execution trace τ 2 given by

1, 2, 1, 2, . . . , 1, 2,
︸ ︷︷ ︸

100 times

3, 4, 3, 2, 3, 4, 3, 2, . . . , 3, 4, 3, 2
︸ ︷︷ ︸

99 times

3, 4, 1,

where the numbers 1–4 represent calls to the code segments G01–G04.

Figure 2 shows two different partitions for the program. The left (right) partition results

in 2 (200) expensive cross-partition calls if execution trace τ 1 is realized and in 200 (2)

cross-partition calls if execution trace τ 2 is realized. If we remove the first instance of G03

in the left partition, then all code segments are singly instantiated and the partition results

in 200 cross-partition calls for either execution trace.

Our robust software partitioning problem bears some similarity to the generalized quadratic

assignment problem (GQAP), see Hahn et al. (2008). The GQAP considers a number of

entities with given sizes that need to be assigned to locations with size constraints. Every
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pair of entities gives rise to communication and assignment costs that depend on the loca-

tions the entities are assigned to, and the goal is to minimize the overall costs. The software

partitioning problem introduced in this paper can be regarded as a multiple instance gener-

alization of GQAP, which is in itself a generalization of the NP-hard quadratic assignment

problem (Garey and Johnson, 1979).

We evaluate our approach on a real software benchmark for execution on an architecture

with three execution locations. Although the program is fairly small with an execution trace

of 2,946 entries for 23 assignable code segments, it is already too large for traditional exact

software partitioning approaches. Our numerical experiments demonstrate that the robust

multiple instantiation approach may have significant advantages over both an optimistic

multiple instantiation model and a single instance GQAP approach in simulated timings for

the benchmark’s real execution trace.

The remainder of this paper proceeds as follows. In Section 2 we study the software parti-

tioning problem under the assumption that the program’s execution trace is precisely known.

The problem then reduces to an integer quadratic program that optimizes over all admissible

partitions and location-aware execution traces. In Section 3 we argue that, in reality, only

frequency information is available at the time when the partition is selected, and that actual

sequence information is revealed gradually during program execution. In this more realis-

tic setting, the software partitioning problem reduces to a robust multistage optimization

problem with integer recourse and is therefore severely computationally intractable. Sec-

tion 4 suggests the use of a greedy calling convention and a problem reformulation in terms

of location-aware control flows to improve computational tractability. These simplifications

lead to a robust single-stage optimization problem with decision-dependent uncertainty. In

Section 5 we demonstrate that this robust problem can be reformulated as an equivalent

MILP. We provide numerical results in Section 6 and conclude in Section 7.

Notation An arc-weighted directed graph is called (strongly) connected if there is a di-

rected path between any two vertices in the graph, and each arc on this connecting path

has strictly positive weight. We call a node in an arc-weighted graph isolated if it is only

incident to arcs of weight zero. We define B := {0, 1}.
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2. Software Partitioning under Complete Information

We consider a computer program given by a set of code segments V := {1, . . . , V } and an

execution trace τ := {τv}v∈V , where each τv represents a function from T := {1, . . . , T}

to B. By definition, τv(t) := 1 if code segment v is executed at time t, and τv(t) := 0

otherwise. Note that the execution times t ∈ T represent time indices rather than factual

time points. The factual execution times of the code segments depend on the execution and

communication costs and will be discussed later. In the following, we assume that the code

segments are executed sequentially, that is, we assume that τ satisfies

∑

v∈V

τv(t) = 1 ∀ t ∈ T. (2.1)

For situations where code segments may be executed in parallel, one can apply the method

presented by Spacey et al. (2009a) to obtain a sequential description of the program which

satisfies (2.1). We say that segment v calls segment w at time t if τv(t) = τw(t + 1) = 1.

Without loss of generality, we assume that the program starts with code segment 1 and

returns to this first code segment at time T + 1, that is, we set τv(T + 1) := τv(1) := 1 for

v = 1; := 0 for v 6= 1.

A program’s execution trace typically depends on the input data, which itself differs

with every execution. Since we are interested in the long term program performance over all

future inputs, we will not consider a single execution trace. Instead, from now on we assume

that τ represents the concatenation of all future execution traces. In this section, we thus

assume that complete information about the composite execution trace is available at the

time the software partition is selected. This assumption will be relaxed in later sections.

In the following we assume that there is a finite set of possible execution locations L :=

{1, . . . , L}. The size of location l is given by Sl. We assume that code segment v has size svl

on location l. Note that we use an abstract notion of ‘size’ which accounts for heterogeneous

resource types such as program and data memory requirements as well as physical area for

logical gates. Nevertheless, all of the following models extend to multidimensional resource

measures in a straightforward way. A software partition can formally be represented as a

matrix of binary variables x ∈ B
V×L with the interpretation that xvl = 1 if and only if

segment v is assigned to location l. Partition x is feasible if it is an element of the set

X :=

{

x ∈ B
V×L :

∑

l∈L

xvl ≥ 1 ∀v ∈ V ,
∑

v∈V

svlxvl ≤ Sl ∀l ∈ L, x1l = Il=1

}

,
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where Il=1 := 1 if l = 1; := 0 otherwise. The first group of constraints in the definition of X

requires that each code segment is assigned at least to one location. This guarantees that

the program can be executed without errors. The second constraint group enforces the size

restrictions on the different locations. Note that we explicitly allow for multiple instantiation

of individual code segments. The last constraint requires that the first code segment (with

index 1) is instantiated only on location 1. This can always be enforced by introducing a

virtual dummy code segment and/or location. For later reference, we also introduce the set

X1 ⊂ X which only allows for single instantiation. Thus, X1 is obtained by replacing the

inequality in the first constraint group of X by an equality.

If an instance of segment v on location l calls an instance of segment w on location m

anytime during program execution, then a calling cost cvwlm is incurred. This cost represents

a latency and accounts for delays due to execution of segment v as well as communication

between segments v and w. If the instances of v and w reside on different locations, then

the communication costs are typically high. Relatively low communication costs arise if the

instances of v and w occupy the same location. After data transfer, the execution costs

depend solely on the location l where the code segment is executed. In practice it is often

impossible to assign all code segments to the location where they incur their lowest execution

costs because of hardware size constraints.

Given an assignment x ∈ X1 subject to single instantiation of the code segments, the

overall execution time of the program amounts to

c1(x) :=
∑

t∈T

∑

v,w∈V

∑

l,m∈L

cvwlmxvlτv(t)xwmτw(t+ 1).

Recall that the program was assumed to return to the first code segment after termination,

and observe that the costs associated with this call can be set to zero if necessary. If only

single instantiation is allowed, the best software partition is thus found by solving the integer

quadratic program

min
x∈X1

c1(x) . (P1)

Remark 2.1. Note that problem P1 encapsulates the quadratic assignment problem as a

special case. To see this, set V = L = {1, . . . , V }, Sl = 1, svl = 1, T = V 2 + 1, and let the

trace τ describe an Eulerian cycle in the complete directed graph (V ,V × V) with self-loops

for all nodes. Recall that an Eulerian cycle in a graph is a cycle that traverses each arc

exactly once. Every complete directed graph possesses an Eulerian cycle (Diestel, 2005). We
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thus have
∑

t∈T τv(t)τw(t+ 1) = 1 for all v, w ∈ V, and problem P1 reduces to

min
x∈BV 2

V∑

v,w,l,m=1

cvwlmxvlxwm

s.t.
V∑

l=1

xvl = 1 ∀ v = 1, . . . , V,

V∑

v=1

xvl ≤ 1 ∀ l = 1, . . . , V,

x11 = 1.

(2.2)

Note that since x is a binary square matrix, all inequalities in this problem can be re-

placed by equalities. Thus, (2.2) is readily recognizable as a variant of the quadratic assign-

ment problem. It is well known that the quadratic assignment problem is strongly NP-hard.

The software partitioning problem P1 and its generalizations to be developed below are thus

also strongly NP-hard, that is, they allow for no polynomial-time solution or approximation

scheme (Garey and Johnson, 1979).

The situation is further complicated if multiple instantiation of code segments is admis-

sible. To see this, assume that at time t the program executes an instance of segment v on

location l (note that there may be other instances of v on locations l′ 6= l). Moreover, assume

that v calls a segment w which is multiply instantiated. Thus, at time t+1 the program can

jump to one of several locations on which w is instantiated. Note that the given description

of the program in terms of the execution trace τ provides no guidelines on which instance to

choose. Instead, we are free to adopt any calling convention for choosing among the different

instances of w.

The additional flexibility to choose a calling convention can be exploited to further reduce

the overall execution time of the program. To this end, we introduce a location-aware

execution trace θ which represents a function from T to the family of binary matrices BV×L.

By definition, we set θvl(t) = 1 if and only if code segment v is executed on location l at

time t. The location-aware execution trace θ must therefore be an element of the set

ΘPI(x; τ) :=

{

θ ∈ B
V×L×T : θvl(t) ≤ τv(t) xvl ∀v ∈ V , l ∈ L, t ∈ T,

∑

l∈L

θvl(t) = τv(t) ∀v ∈ V , t ∈ T

}

.

The subscript ‘PI’ indicates that perfect information about the ordinary execution trace τ

is assumed to be available. This assumption will be reconsidered in Section 3. The first
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constraint group in the definition of ΘPI(x; τ) ensures that an instance of segment v on

location l is executed at time t only if v is in fact instantiated on l and some instance of v

must in fact be executed at time t. The second constraint group makes sure that exactly

one instance of segment v at time t is called if v is supposed to be executed at t. Note that

our definition of execution traces implies that θvl(T + 1) := θvl(1) for all v ∈ V and l ∈ L,

indicating that after termination the program must return to the initial code segment and

location. It is easy to verify that for x ∈ X1 we have ΘPI(x; τ) = {θ◦} where θ◦vl(t) := τv(t)xvl

for all v, l, and t.

Given an assignment x ∈ X and a calling convention θ ∈ ΘPI(x; τ), the overall execution

time of the program amounts to

c(θ) :=
∑

t∈T

∑

v,w∈V

∑

l,m∈L

cvwlmθvl(t)θwm(t+ 1) . (2.3)

If multiple instantiation of code segments is allowed, the best software partition is thus found

by solving the integer quadratic program

min
x∈X

min
θ∈ΘPI(x;τ)

c(θ) . (P)

Since X1 is a subset of X, the optimal value of P is never larger than the optimal value of

P1. In other words, the extra flexibility introduced by allowing for multiple instantiation

necessarily reduces the program’s optimal execution time.

3. Causal Calling Conventions

A crucial assumption underlying the software partitioning problem P is that the execution

trace τ is precisely known. Note that T represents the total number of executions of all

code segments in V during the program’s lifetime. Even for a single program run, T typi-

cally exceeds V since some code segments are called several times. Since τ represents the

concatenation of all future program traces, T can be expected to be much larger than V .

Moreover, τ depends on future input data which is unknown at the time when P is solved.

Since P requires full trace information as an input, it can therefore not be solved in practice.

Instead of collecting, storing and manipulating τ itself, one needs to compress its essential

information in an efficient way. This is most commonly achieved by removing sequence in-

formation from the trace using a high-level control flow graph (Spacey et al., 2009b), that is,

only calling frequencies are gathered. A program’s calling frequencies can be estimated with
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a number of software packages, such as Valgrind, GILK and 3S (Nethercote and Seward,

2003; Pearce et al., 2002; Spacey, 2006). The basic idea is to amend the program’s code with

instructions that log every call between different code segments. When the execution trace

of a program depends on the input parameters, several program runs can be used to log the

cumulative number of calls between code segments. Assuming that the program is executed

repeatedly with independent and identically distributed input parameters, the strong law of

large numbers then guarantees that the relative calling frequencies converge.

Let us consider the directed, arc-weighted control flow graph G associated with the pro-

gram. The vertices of this graph correspond to the code segments v ∈ V , while the arcs

(v, w) ∈ V × V represent calls between code segments. An arc (v, w) with weight χvw in-

dicates that segment w is called χvw times by segment v during program execution. For

notational convenience, we assume that G is complete with self-loops for all nodes. Arcs

that do not correspond to calls between code segments are assigned weight zero. Observe

that the control flow graph G is uniquely determined by the execution trace τ . Indeed, the

arc weights χ are obtained through the relation

∑

t∈T

τv(t) τw(t+ 1) = χvw ∀ v, w ∈ V . (3.1)

In contrast, a given control flow graph G fails to induce a unique execution trace because it

contains no information about the order of the calls. The set of all execution traces consistent

with G is representable as

T :=
{

τ ∈ B
V×T :

∑

t∈T

τv(t)τw(t+ 1) = χvw ∀v, w ∈ V ,

∑

v∈V

τv(t) = 1 ∀t ∈ T, τ1(1) = 1
}

.

The first constraint group in the definition of T enforces consistency with the calling fre-

quencies stipulated in the control flow graph, while the second constraint group ensures that

exactly one code segment is executed at any time under trace τ . The last constraint, finally,

requires the program to start and terminate at code segment 1. From now on we assume

that only T (or, equivalently, G) is known at the time when the software partition is selected.

Thus, there is uncertainty about which trace τ ∈ T will materialize.

Before we formulate the software partitioning problem under trace uncertainty, we should

investigate under what conditions on G the set T is nonempty (which is a prerequisite for
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a meaningful optimization model). The following lemma describes the set of control graphs

that guarantee non-emptiness of T .

Lemma 3.1. The set T of execution traces which are compatible with the control flow graph

G is nonempty if and only if

(i) χvw ∈ Z+ for all v, w ∈ V;

(ii) G is the union of isolated vertices and a connected subgraph containing vertex 1;

(iii) T =
∑

v,w∈V
χvw;

(iv)
∑

w∈V
χvw − χwv = 0 for all v ∈ V.

Proof. Assume that T is nonempty, and select some τ ∈ T . Then, (i) holds since τ is

integer-valued, while (ii)–(iv) hold since τ induces a cycle in G that starts at vertex 1 and

visits arc (v, w) exactly χvw times for all v, w ∈ V . Assume now that the assertions (i)–

(iv) are satisfied, and consider the directed multigraph G(χ) with vertices V that has χvw

parallel arcs from v to w for all v, w ∈ V . Condition (iv) guarantees that each vertex in G(χ)

has equally many incoming as outgoing arcs. Moreover, G(χ) is the union of some isolated

vertices and a connected subgraph containing vertex 1; this property is inherited from G.

Thus, the multigraph G(χ) possesses an Eulerian cycle {vt}t∈T of length T that starts at

vertex 1 and visits each arc exactly once. Any such Eulerian cycle can be used to construct

a trace τ ∈ T by setting τv(t) := 1 if v = vt; := 0 otherwise.

In the remainder of this paper we will always assume that the conditions (i)–(iv) of

Lemma 3.1 are satisfied, implying that T is in fact nonempty.

Generic calling conventions generating location-aware traces θ ∈ ΘPI(x; τ) are not imple-

mentable under incomplete information about τ . Indeed, according to the above discussion,

only the control flow graph is known at the time when the software partition is selected. Even

though the trace τ is initially unknown, it is revealed during program execution, and thus the

amount of available information gradually increases: at any time t, the history of the trace

up to time t, that is, the sequence of binary vectors {τ(s)}ts=1, is available. Causal (or non-

anticipative) calling conventions that exploit this online information remain implementable

and exhibit considerable flexibility. For more information on the role of non-anticipativity

in decision making under uncertainty see e.g. Kall and Wallace (1994).

11



Set ΘPI(x) := ×τ∈T ΘPI(x; τ). Thus, every θ ∈ ΘPI(x) constitutes a collection of location-

aware traces θ = (θτ )τ∈T where θτ ∈ ΘPI(x; τ) for each τ ∈ T . Any θ ∈ ΘPI(x) should be

interpreted as a decision rule of the following type: if trace τ materializes, then apply the

calling convention that generates θτ . Note that this decision rule is (usually) only imple-

mentable if perfect trace information is available before the first call. We can now introduce

the set of all location-aware traces that are generated by causal calling conventions.

ΘC(x) :=
{

θ ∈ ΘPI(x) : θτ (t) = θτ ′(t) ∀t ∈ T, τ, τ ′ ∈ T

with τ(s) = τ ′(s) ∀ s = 1, . . . , t
}

By definition, ΘC(x) is a subset of ΘPI(x). Thus, any given θ ∈ ΘC(x) still constitutes a

decision rule of the kind described above. This θ is implementable despite the fact that

the full trace τ is only known after program termination. Because of the non-anticipativity

constraints in the definition of ΘC(x), knowledge of the trace history τ(1), . . . , τ(t) up to

time t is sufficient to implement the time t calling convention yielding θτ (t). In fact, all

τ ∈ T which are indistinguishable up to time t result in the same call at time t.

The above discussion suggests that we should employ causal calling conventions corre-

sponding to location-aware traces θ ∈ ΘC(x) if τ is uncertain. As no probabilities can be

assigned to the different traces in T , it is reasonable to select a software partition x ∈ X

and location-aware trace θ ∈ ΘC(x) which are optimal in view of the worst-case realization

of τ . Ideally, we thus would like to solve the following robust counterpart of problem P .

min
x∈X

min
θ∈ΘC(x)

max
τ∈T

c(θτ ) (RP)

4. Complexity Reduction

The software partitioning problem RP represents a multi-stage robust optimization prob-

lem with integer recourse and is therefore severely computationally intractable. Moreover,

accumulating trace information during program execution is impractical due to excessive

storage requirements; see also the discussion at the beginning of Section 3. To reduce the

computational complexity of RP , we now apply several approximations.

4.1 Greedy Calling Convention

First, we shrink the set of admissible location-aware traces to a singleton, that is, we stipulate

that a specific greedy calling convention generating the location-aware trace θ∗ must be used.
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Instead of using the trace history τ(1), . . . , τ(t) to decide which instance of a code segment

should be called at time t + 1, this greedy calling convention passes control to the instance

that results in the smallest instantaneous calling costs. The software partitioning problem

RP then reduces to

min
x∈X

max
τ∈T

c(θ∗τ ) . (GRP)

If the location-aware trace θ∗ is an element of ΘC(x), then GRP is more restrictive than the

original problem RP and thus represents a conservative approximation. In order to specify

θ∗, we explicitly define the greedy calling convention µ.

µ : X × V × V × L → L, µ(x; v, w, l) := min

{

argmin
m∈L,xwm=1

{cvwlm}

}

Note that the argmin-mapping constitutes a set-valued function. For µ to be well-defined,

we must prescribe a rule for selecting a unique minimizer if the argmin mapping returns

several values. Without loss of generality, we always select the minimizer with the lowest

index. For a given software partition x, the greedy calling convention µ has the following

property. If code segment v on location l needs to call code segment w, then calling w’s

instance on location µ(x; v, w, l) incurs the smallest instantaneous costs. The location-aware

trace θ∗ generated by the greedy calling convention µ can be constructed recursively. For all

t ∈ T we set

θ∗τ,wm(t+ 1) :=







1 if τw(t+ 1) = 1 and m = µ(x; v, w, l)
for v and l with θ∗τ,vl(t) = 1,

0 otherwise.

As usual, we use the convention that θ∗τ,vl(T + 1) := θ∗τ,vl(1) for all v ∈ V and l ∈ L. Note

that the recursive construction of θ∗ is well-defined since—by definition of X—the first code

segment (with index 1) is instantiated only on location 1, while each other code segment is

instantiated on at least one location. The location-aware trace θ∗ depends on the selected

software partition x. To avoid proliferation of subscripts, however, we notationally suppress

this dependency.

Lemma 4.1. The location-aware trace θ∗ is an element of ΘC(x).

Proof. We first show that θ∗τ ∈ ΘPI(x, τ) for any τ ∈ T . By construction, θ∗τ,vl(t) is binary

and vanishes if xvl = 0 or τv(t) = 0. This implies

θ∗τ,vl(t) ≤ τv(t)xvl ∀ v ∈ V , l ∈ L, t ∈ T .

13



By induction on time one can show that for any fixed t ∈ T there is exactly one code segment

vt and location lt such that θ∗τ,vl(t) = 1 if v = vt and l = lt; := 0 otherwise. This essentially

follows from the fact that µ is a single-valued mapping on its entire domain. In particular,

notice that θ∗τ,vl(1) = 1 if and only if v = l = 1. This holds because each execution trace in

T starts with code segment 1, which is instantiated only on location 1. Thus, we find

∑

l∈L

θ∗τ,vl(t) = τv(t) ∀ v ∈ V , t ∈ T,

implying that θ∗τ is indeed an element of ΘPI(x, τ). It remains to be shown that θ∗ is causal.

To this end, notice that θ∗τ (1) is independent of τ , while θ∗τ (t + 1) depends only on τ(t + 1)

and θ∗τ (t) for all t ∈ T. Causality thus follows by induction on t.

4.2 Location-Aware Control Flows

Problem GRP is still not suitable for numerical solution. To improve its computational

tractability, we should eliminate its explicit dependence on time. To this end, we introduce

a set Ξc(x) of location-aware control flows.

Ξc(x) :=
{

ξ ∈ Z
V 2×L2

+ : ∃τ ∈ T with

ξvwlm =
∑

t∈T

θ∗τ,vl(t)θ
∗

τ,wm(t+ 1) ∀v, w ∈ V , l,m ∈ L
}

The component ξvwlm of any ξ ∈ Ξc(x) indicates how often code segment v on location l calls

code segment w on location m during program execution when the greedy calling convention

is employed. If some of the code segments are multiply instantiated, this number may vary

with the execution trace τ . The set Ξc(x) collects all location-aware control flows ξ associated

with the possible traces τ ∈ T . In other words, Ξc(x) is the set of all location-aware control

flows that are consistent with the (location-unaware) control flow graph G. Recalling the

definition of the cost function (2.3), problem GRP can now be reformulated as

min
x∈X

max
ξ∈Ξc(x)

∑

v,w∈V

∑

l,m∈L

cvwlmξvwlm . (4.1)

Note that (4.1) can be interpreted as a robust optimization problem with decision-dependent

uncertainty. The goal is to find a robust software partition x that minimizes the worst-case

program execution time. The worst case is taken over all location-aware control flows ξ

that are consistent with the control flow graph G and the software partition x. In robust
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optimization terminology, x is the decision variable, ξ is the uncertain parameter, and Ξc(x)

represents the underlying uncertainty set. The uncertainty set explicitly depends on the

decision x. While stochastic programs with decision-dependent uncertainty have been con-

sidered recently by Goel and Grossmann (2006), it seems that robust optimization problems

of this type have received little attention until now. See Ben-Tal et al. (2009) for a textbook

introduction to robust optimization.

Problem (4.1) constitutes an exact reformulation of GRP . While its objective function is

linear in ξ and thus lends itself to computational treatment, the uncertainty set Ξc(x) looks

cumbersome and still exhibits an explicit dependence on time. We now construct a more

tractable approximation for Ξc(x). To this end, we let M be any constant which is larger

than maxv,w χvw, and we define Ξ(x) as the set of all ξ ∈ R
V 2×L2

+ satisfying the constraints

∑

w∈V

∑

m∈L

ξvwlm − ξwvml = 0 (4.2a)

∑

l,m∈L

ξvwlm = χvw (4.2b)

ξvwlm ≤ M min {xvl, xwm} (4.2c)

ξvwlm ≤ M min
m′∈Lvwlm

(1− xwm′) (4.2d)

for all v, w ∈ V and l,m ∈ L. The index set Lvwlm is defined as the collection of all m′ ∈ L

that satisfy cvwlm′ < cvwlm. Notice that Ξ(x) is indeed independent of the choice of M as

long as M is larger than all χvw. We emphasize that Ξc(x) is a discrete set, whereas Ξ(x)

constitutes a convex polyhedron.

Proposition 4.2. Ξc(x) is a subset of Ξ(x).

Proof. Choose an arbitrary ξ ∈ Ξc(x) and let τ be an element of T satisfying

ξvwlm =
∑

t∈T

θ∗τ,vl(t)θ
∗

τ,wm(t+ 1) ∀v, w ∈ V , l,m ∈ L .

The existence of such a τ is guaranteed by the definition of Ξc(x). Thus, we have

∑

w∈V

∑

m∈L

ξvwlm − ξwvml

=
∑

w∈V

∑

m∈L

∑

t∈T

θ∗τ,vl(t)θ
∗

τ,wm(t+ 1)− θ∗τ,wm(t)θ
∗

τ,vl(t+ 1)

=
∑

t∈T

θ∗τ,vl(t)− θ∗τ,vl(t+ 1) = θ∗τ,vl(1)− θ∗τ,vl(T + 1) = 0 ,
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where the second equality holds since the program executes exactly one code segment on

exactly one location at each time. Thus, (4.2a) holds. Next, we find

∑

l,m∈L

ξvwlm =
∑

l,m∈L

∑

t∈T

θ∗τ,vl(t)θ
∗

τ,wm(t+ 1) =
∑

t∈T

τv(t)τw(t+ 1) = χvw ,

where the second equality holds because θ∗τ ∈ ΘPI(x; τ), while the third equality follows from

the properties of traces τ ∈ T . Thus, (4.2b) is established. The fact that θ∗τ is contained in

ΘPI(x; τ) further implies

ξvwlm =
∑

t∈T

θ∗τ,vl(t)θ
∗

τ,wm(t+ 1) ≤
∑

t∈T

xvlτv(t)xwmτw(t+ 1) = xvlxwmχvw .

Thus, we have ξvwlm ≤ Mxvl and ξvwlm ≤ Mxwm, which implies (4.2c). In order to establish

(4.2d), we notice that

∃m′ ∈ Lvwlm : xwm′ = 1 ⇒ µ(x; v, w, l) 6= m

⇒ θ∗τ,vl(t)θ
∗

τ,wm(t+ 1) = 0 ∀ t ∈ T

⇒ ξvwlm =
∑

t∈T

θ∗τ,vl(t)θ
∗

τ,wm(t+ 1) = 0 .

Here, the first and second implications follow from the definitions of µ(x; v, w, l) and the

location-aware trace θ∗, respectively. The above reasoning implies that ξvwlm ≤ M(1−xwm′)

for all m′ ∈ Lvwlm. In summary, all constraints (4.2) are satisfied, and thus ξ is an element

of Ξ(x).

In the following, we argue that Ξc(x) is a strict subset of Ξ(x), and we establish an

explicit criterion to decide whether ξ ∈ Ξ(x) is contained in Ξc(x). To this end, we assign

to each V 2×L2-dimensional vector ξ with nonnegative integer entries a directed multigraph

G(ξ) with vertices V × L and with ξvwlm parallel arcs from (v, l) to (w,m), where (v, l) and

(w,m) range over V × L.

Proposition 4.3. If ξ ∈ Ξ(x) has only integer entries, while G(ξ) is the union of a connected

subgraph and some isolated vertices, then ξ ∈ Ξc(x).

Proof. Select a ξ satisfying the conditions in the statement. Since ξ is an element of Ξ(x), the

number of incoming arcs equals the number of outgoing arcs in each vertex of the multigraph

G(ξ), see (4.2a). Since G(ξ) can be decomposed into a connected subgraph and some isolated

vertices, there exists an Eulerian cycle {vt, lt}t∈T of length

∑

v,w∈V

∑

l,m∈L

ξvwlm

(4.2b)
=

∑

v,w∈V

χvw = T
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Figure 3: Instance of AGRP with disconnected worst-case control flow. The left chart illus-
trates the CFG. The upper right and lower right charts depict the worst-case disconnected
and worst-case connected control flows for the optimal partition, respectively. In the charts,
all arcs have unit weights.

which visits each arc exactly once. The component sequence {vt}t∈T can be used to construct

an execution trace τ ∈ T by setting τv(t) := 1 if v = vt; := 0 otherwise.

The constraints (4.2c)–(4.2d) ensure that if vt = v, vt+1 = w, lt = l, and lt+1 = m for

some t ∈ T, then v must be instantiated on l, w must be instantiated on m, and the cost

of calling w on m from v on l is minimal over all locations m′ on which w is instantiated.

Therefore, we have lt =
∑

l∈L lθ
∗
τ,vl(t) for all t ∈ T, v ∈ V , and l ∈ L, that is, the Eulerian

cycle {vt, lt}t∈T is induced by the execution trace τ under the location-aware trace θ∗. This

implies that ξ ∈ Ξc(x).

If we replace Ξc(x) by its superset Ξ(x) in (4.1), we obtain a conservative approximation

for GRP .

min
x∈X

max
ξ∈Ξ(x)

∑

v,w∈V

∑

l,m∈L

cvwlmξvwlm (AGRP)

Note that the inner maximization problem is now a linear program. In the next section we

will show that AGRP has an equivalent reformulation as a MILP and is thus a promising

candidate for numerical solution. We close this section with an example which illustrates that

the worst-case control flow in AGRP for a given partition x ∈ X may indeed be contained

in Ξ(x) \Ξc(x). We remark, however, that disconnected worst-case control flows seem to be

rare in realistic examples.

Example 4.4. Consider a problem with two execution locations of size 21 and 7, respec-

tively, and five code segments of size 10, 10, 1, 3 and 3, respectively, independent of the

execution location. The calling costs are cvwlm = 1 if l = m and 10 otherwise, for all
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v, w ∈ V. Figure 3 shows the CFG (left chart) and the optimal solution to AGRP (right

charts). For this partition, the worst-case control flow is disconnected and leads to cumula-

tive calling costs of 42 (upper right chart), whereas the worst connected control flow leads to

cumulative calling costs of 24 (lower right chart).

5. MILP Formulation

We convert AGRP to an equivalent minimization problem by dualizing the linear program

over the uncertain parameters ξ ≥ 0. To do so, we introduce Lagrange multipliers αvl and

βvw corresponding to the flow conservation and consistency constraints (4.2a) and (4.2b),

respectively. Moreover, we assign nonnegative multipliers γvwlm and δvwlm to the constraints

(4.2c) and (4.2d), respectively, which ensure that the location-aware control flow is consistent

with the selected software partition x and obeys the greedy calling convention. The dual of

the inner maximization problem adopts the following form.

min
α,β,γ,δ,ε

∑

v,w∈V

χvwβvw +M
∑

v,w∈V

∑

l,m∈L

min {xvl, xwm} γvwlm

+M
∑

v,w∈V

∑

l,m∈L

min
m′∈Lvwlm

(1− xwm′) δvwlm

s.t. αvl − αwm + βvw + γvwlm + δvwlm ≥ cvwlm ∀v, w ∈ V , l,m ∈ L
γ, δ ≥ 0

(5.1)

Notice that strong linear programming duality holds since the inner maximization problem

in AGRP is feasible, that is, because Ξ(x) is nonempty for all x ∈ X. This is a consequence

of the fact that Ξ(x) is a superset of Ξc(x), which in turn is nonempty because of Lemma 3.1

and our assumptions about the given control flow graph G. Thus, the dual linear program

(5.1) has the same optimal value as the inner maximization problem in AGRP .

From a computational point of view, the frequent occurrence of the large constant M in

the dual objective function is undesirable as it deteriorates the problem’s scaling properties.

Moreover, the bilinear terms in the assignment variable x and the dual variables γ and δ

lead to a mixed-integer nonlinear program when (5.1) is substituted into AGRP . It turns

out that the outlined deficiencies can be overcome by exploiting the following observation.

The primal feasible set Ξ(x) of the inner problem in AGRP is independent of the choice of

M as long as M is larger than M0 := maxv,w χvw. Thus, by strong duality, the optimal value

of (5.1) is also independent of M as long as M ≥ M0. This implies that
∑

v,w∈V

∑

l,m∈L

min {xvl, xwm} γvwlm + min
m′∈Lvwlm

(1− xwm′) δvwlm = 0 (5.2)
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at optimality. Since γ and δ are nonnegative, while x is a vector of binary variables, (5.2)

can be interpreted as a complementarity condition which is equivalent to

γvwlm ≤ Md max {1− xvl, 1− xwm} , δvwlm ≤ Md max
m′∈Lvwlm

xwm′ (5.3)

for all v, w ∈ V and l,m ∈ L. The new constant Md > 0 represents a uniform a priori

bound on the optimal dual variables γ and δ with respect to the maximum norm. Note

that Md can be chosen independently of x ∈ X and M ≥ M0. This reasoning shows

that we can remove all terms proportional to M in the objective of (5.1) at the cost of

appending the constraints (5.3). By construction, the optimal value of the resulting stream-

lined optimization problem is independent of Md as long as this constant is chosen suffi-

ciently large.Using standard duality arguments, one can for example show that the choice

Md := V Lmax {cvwlm : v, w ∈ V , l,m ∈ L} is sufficient. Standard arguments similar to

those outlined above can be used to show that the constraint

αvl − αwm + βvw + γvwlm + δvwlm ≥ cvwlm (5.4)

is redundant (that is, not binding at optimality) if xvl = 0 or xwm = 0 or xwm′ = 1 for at

least one m′ ∈ Lvwlm. This observation allows us to eliminate δ from the problem and to

replace (5.3) and (5.4) by

αvl − αwm + βvw + γvwlm ≥ cvwlm

γvwlm ≤ Md

(

1− xvl + 1− xwm +
∑

m′∈Lvwlm

xwm′

)

.

In summary, we have thus demonstrated that AGRP can be equivalently expressed as the

following MILP.

min
x,α,β,γ

∑

v,w∈V

χvwβvw

s.t. αvl − αwm + βvw + γvwlm ≥ cvwlm ∀v, w ∈ V , l,m ∈ L

γvwlm ≤ Md

(

2− xvlxwm +
∑

m′∈Lvwlm

xwm′

)

”

x ∈ X, γ ≥ 0

(5.5)

The solution time of problem (5.5) is determined by the O(V L) binary variables. Since

V ≫ L in typical applications, every additional execution location leads to V further binary

variables, and hence the number of execution locations L dominates the solution time.
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6. Numerical Results

We compare our robust software partitioning approach with single instantiation partitioning

and optimistic multiple instantiation partitioning. More precisely, we evaluate the following

approaches to software partitioning:

1. Robust Multiple Instantiation Software Partitioning. We solve model AGRP .

2. Optimistic Multiple Instantiation Software Partitioning. We replace the in-

ner maximization in AGRP by a minimization. The resulting problem OP optimizes

in view of the least time-consuming control flow consistent with the given frequency

information. We also consider a variant OP∗ that enforces connectivity of the location-

aware control flow ξ. Connectivity can be enforced through subtour elimination con-

straints known from the traveling salesman literature (Applegate et al., 2007).

3. Single Instantiation Software Partitioning. We consider model P1 from Section 2,

where every code segment must be assigned to exactly one location. Since the pro-

gram’s execution time is uniquely determined by the calling frequencies and does not

depend on the execution sequence, P1 reduces to a generalized quadratic assignment

problem (Hahn et al., 2008).

The optimal values of the aforementioned partitioning approaches satisfy

OP � OP∗ � P � AGRP � P1,

where P denotes the software partitioning problem under complete information (see Sec-

tion 2) and ‘�’ refers to the ordering of optimal objective values. The first inequality follows

from the fact that subtour elimination constraints reduce the feasible region of the inner

optimization problem in OP . The last inequality holds since AGRP minimizes over the

set of multiple instantiation partitions, while P1 optimizes over the smaller set of single

instantiation partitions.

We apply all software partitioning approaches to a Java simulation program. Figure 4

illustrates the control flow graph for a representative program run to be optimized. The

graph is obtained with the 3S characterization framework discussed by Spacey (2006). For

the sake of clarity, we omit the auxiliary arc that connects the sink node with the source node

throughout this section. We consider three heterogeneous execution locations A, B and C.
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Figure 4: Control flow graph of the software benchmark. Nodes are shaded in proportion to
their total inbound communication and computation time requirements on a reference hard-
ware location with darker shades indicating code segments with greater time requirements.
G01 and G23 are unique source and sinks for the control flow.

The execution and communication costs of the code segments on the different locations were

obtained with the Write-Only Architecture computation model (Spacey et al., 2009a,b). We

use the commercial solver CPLEX 11.2 to solve the arising MILP models.

Table 1 compares the solutions of the considered partitioning approaches in terms of

their forecasted and simulated execution times, the number of duplicate code segments, as

well as the solution times required by CPLEX. The forecasted execution times correspond

to the optimal objective values of the corresponding optimization problems. For the models

AGRP and OP this is the worst-case and best-case execution time over all location-aware

control flows that are consistent with the control flow graph in Figure 4, respectively. For

the model P1 this is the execution time for any location-aware control flow that is consistent

with the control flow graph. The simulated execution times are obtained with a 3S simula-

tion of the real program execution trace τ containing 2,946 calls to the code segments. In

the simulations we use the assignments x ∈ X determined by the optimization models and

implement a greedy calling convention. The number of duplicate code segments represents
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the difference between the overall number of instantiations and |V|, the number of instanti-

ations in P1. As expected, the optimistic model underestimates the factual execution time.

Due to its inherent optimism, the model determines a partition with many duplicate code

segments that performs well for some benign execution flows but performs poorly on average.

The single instantiation model, on the other hand, correctly predicts the factual execution

times but determines a poor partition due to the single instantiation restriction. The ro-

bust partitioning approach, finally, outperforms both methods in the simulations because it

predicts the factual execution times more accurately and allows for multiple instantiation.

Note that the number of duplicates in the optimal solution for model AGRP is significantly

smaller than the respective numbers for OP and OP∗. Indeed, duplicates have two opposite

effects on the uncertainty set Ξ(x): constraint (4.2c) is relaxed, whereas constraint (4.2d) is

tightened. Thus, contrary to the optimistic models, more duplicates do not necessarily lead

to better solutions in AGRP .

We remark that the increased performance of model AGRP comes at the cost of signifi-

cantly larger solution times. Since the partitioning problem needs to be solved only once at

design time, the increase in solution time might well be acceptable in view of the potential

performance gains. Alternatively, the solution times for model AGRP could be reduced

in two ways. On one hand, one could design integrality cuts for AGRP that speed up the

fathoming process of CPLEX. On the other hand, one could resort to heuristic solution tech-

niques, for example problem decomposition methods, a tabu search or a genetic algorithm.

Depending on their solution times, these heuristics may even be used to dynamically adapt

the software partition while the program is executed (Hauck and Dehon, 2008).

Figures 5–8 illustrate the solutions obtained by the different partitioning approaches.

Circles indicate code segments that are instantiated once, while pentagons refer to multiply

instantiated code segments. The arcs display the location-aware control flows that determine

the corresponding objective values. As Figure 6 shows, OP selects a partition x that mini-

mizes the overall execution costs for a disconnected (and hence physically impossible) control

flow. While this leads to a poor practical performance, the partition is nevertheless feasible

since it is an element of the set X. In particular, the partition contains at least one instance

of each code segment, and for any possible control flow, the greedy calling convention will

determine a valid code segment to call. The refined model OP∗, on the other hand, enforces

connectivity of the location-aware control flows ξ.
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execution times (secs)
model forecasted simulated # of duplicates solution time

AGRP 479 479 7 26h:48m:53s

OP 167 871 12 00h:00m:01s
OP∗ 321 853 10 00h:05m:15s

P1 1037 1037 0 00h:00m:24s

Table 1: Summary of the solutions for the benchmark instance from Figure 4.

7. Conclusion

Previous exact approaches to software partitioning either assume knowledge of the com-

plete execution sequence or they only support the single instantiation of code segments. In

practice, sequence information is available only at coarse granularity levels which reduces

assignment optimization potentials (Spacey et al., 2009a), while the restriction to single

instantiation partitions can severely reduce the achievable program performance, see e.g.

Table 1. In this paper we present a novel approach to software partitioning with multiple

instantiation that only requires knowledge of the control flow graph, which is stripped of all

sequence information.

As soon as code segments can be instantiated multiple times, the execution time of an

assignment depends not only on the calling frequencies but also on the execution sequence. In

the absence of such sequence information, we propose to formulate the multiple instantiation

software partitioning problem as a robust optimization problem that minimizes the worst-

case run time over all execution traces consistent with the known control flow graph. We

show that the resulting problem can be approximated by a MILP amenable to optimization

with off-the-shelf commercial solvers. We also provide results for a benchmark application

demonstrating that our approach compares favourably with alternative software partitioning

methods when evaluated on real execution traces.

We identify three promising areas for future research. Firstly, even though our method

does not require sequence information, it becomes computationally challenging for large ap-

plications. In order to improve the scalability of our method, we propose the investigation

of new formulations and bounding techniques along the lines of Hahn et al. (2008). Sec-

ondly, the robust solution may be too conservative in some instances and the inclusion of

additional software characterization information such as compressed partial trace sequences

generated by the 3S loopgraph d tool (Spacey, 2006) may be investigated as future work.
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Thirdly, research into the effect of different non-anticipative calling conventions and calling

cost variation over the uncertainty set Ξc(x) should be performed (Spacey, 2009).

Finally, as our robust partitioning approach can be regarded as an extension of the

generalized quadratic assignment problem to multiple instances, and as the latter problem

has manifold practical applications (Hahn et al., 2008), it seems promising to investigate the

applicability of our model to domains outside the software partitioning arena.
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Figure 5: Software partition determined by the robust multiple instantiation model AGRP .
Nodes are shaded in proportion to their total inbound communication and computation time
requirements at each location and arcs are labelled with the number of location aware control
flows. Multiply instantiated nodes are shown as pentagons and singly instantiated nodes as
circles. In contrast to Figure 4, the singly instantiated node G07 is the most time consuming
node because of its high cross partition inbound communication costs.
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Figure 6: Software partition determined by the optimistic multiple instantiation model OP .
Note that the location-aware control flow is not connected. The shapes and shades of the
nodes as well as the labels of the arcs have the same meaning as in Figure 5.
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Figure 7: Software partition determined by OP∗, the optimistic multiple instantiation model
which enforces connectivity. Note in contrast to Figure 6, the location-aware control flow is
now connected. The shapes and shades of the nodes as well as the labels of the arcs have
the same meaning as in Figure 5.
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Figure 8: Software partition determined by the single instantiation model P1. Only two of
the three execution locations were used. The shades of the nodes as well as the labels of the
arcs have the same meaning as in Figure 5. All nodes are singly instantiated and are shown
as circles.
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