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Abstract

The automatic sound event classification (SEC) has attracted a growing attention in recent years. Feature extraction

is a critical factor in SEC system, and the deep neural network (DNN) algorithms have achieved the state-of-the-art

performance for SEC. The extreme learning machine-based auto-encoder (ELM-AE) is a new deep learning algorithm,

which has both an excellent representation performance and very fast training procedure. However, ELM-AE suffers

from the problem of unstability. In this work, a bilinear multi-column ELM-AE (B-MC-ELM-AE) algorithm is proposed to

improve the robustness, stability, and feature representation of the original ELM-AE, which is then applied to learn

feature representation of sound signals. Moreover, a B-MC-ELM-AE and two-stage ensemble learning (TsEL)-based

feature learning and classification framework is then developed to perform the robust and effective SEC. The

experimental results on the Real World Computing Partnership Sound Scene Database show that the proposed SEC

framework outperforms the state-of-the-art DNN algorithm.
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1 Introduction

Sound event classification (SEC), also known as acoustic

event classification (AEC), which aims to assign a se-

mantic label to the audio content of a short sound chip

[1, 2], is attracting a growing attention in recent years.

SEC has wide potential applications [3], such as acoustic

surveillance, bioacoustic monitoring, and environmental

sound supervising [1–3].

The SEC system usually consists of three components,

namely, signal preprocessing, feature extraction, and

classification [2]. As a critical factor for the performance

of SEC, feature extraction is a challenging task in SEC,

and many efforts have been devoted to extract effective

feature representation. The commonly extracted features

for SEC can be roughly divided into the following cat-

egories [2]: temporal domain features, frequency domain

features, time-frequency image features, cepstral features,

modulation frequency features, eigen domain features,

and phase space features. However, most of these features

are hand-crafted descriptors, which are at a low semantic

level, and also generic for different sound datasets without

data specificity [4].

In contrast to the hand-crafted features, the learning-

based feature representation methods have gained their

good reputation for SEC in recent years because they are

data-specific and robust, and the learned features have a

higher semantic level [4]. The typical feature learning

methods for SEC include bag of words [5], sparse coding

[6], exemplar-based coding [7], and deep learning (DL)

[8]. Specially, DL has achieved great success in image

and speech signal processing by developing a layered,

hierarchical architecture to yield high-level and more

effective data representation [9–11]. DL has also been

applied to SEC and performs superiorly to the com-

monly used hand-crafted features [8, 12, 13]. McLough-

lin et al. proposed to use deep neural network (DNN)

classifier for representing the time-frequency features

from the stabilized auditory image (SAI) and spectro-

gram image features (SIF), respectively, for SEC [8].

Notably, this DNN algorithm can effectively improve
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feature representation of original time-frequency fea-

tures and then promote the classification performance

[8]. Other DL algorithms, such as deep belief network

(DBN) [13], convolutional neural networks (CNN) [14,

15], and auto-encoder (AE) [16], have also been effect-

ively used for SEC. However, it is still time-costing to

train a deep network model by these DL algorithms for

a large-scale sound dataset.

The extreme learning machine (ELM) is a supervised

learning algorithm based on single-layer feedforward

neural networks (SLFNs), which randomly assigns the

weights to the input layer and analytically fixes the

weights between the hidden layer and the output layer

[17]. ELM offers significant advantages, such as fast

learning speed, effective performance, and ease of imple-

mentation [17–19]. Therefore, ELM has become a popu-

lar tool for solving various classification and regression

tasks.

Although AE is an effective unsupervised DL algo-

rithm for SEC, it also suffers from the problem of time-

costing training. Recently, Kasun et al. proposed a novel

extreme learning machine-based auto-encoder (ELM-

AE) algorithm for unsupervised feature learning from

large-scale data [20]. ELM-AE is a special case of ELM

in essence, in which the input is equal to the output,

and the randomly generated weights are chosen to be

orthogonal together with the bias of hidden layers [20].

ELM-AE is no longer an iterative algorithm, and it

adopts a similar solution procedure to ELM to improve

the training speed. Therefore, ELM-AE has not only an

excellent representation performance with multi-layer

ELM-AE networks but also an extremely fast training

stage, which is several orders of magnitude faster than

other DL algorithms [20].

ELM-AE has attracted considerable attentions in re-

cent years, and its variants have also been proposed for

different applications [21–25]. However, all these ELM-

AE-based algorithms generally suffer from the problem

that the random input-layer weights in ELM-AE net-

works usually result in unstable performance. To im-

prove its stability, we propose a bilinear multi-column

ELM-AE (B-MC-ELM-AE) algorithm to robustly learn

feature representation and then apply it to SEC.

The multi-column deep neural network (MC-DNN) is

a newly proposed DL method inspired by the microcol-

umns of neurons in the cerebral cortex. MC-DNN trains

several deep neural columns as experts to unfold their

potentials and improve representation performance [26].

Ciresan et al. combined multiple DNN columns by

averaging their outputs that were trained on inputs

with different standard preprocessing methods, and

this MC-DNN algorithm outperformed the compared

DL algorithms on several public image datasets [26].

Agostinelli et al. developed a multi-column-based

stacked sparse AE algorithm for image denoising by

calculating the optimal column weights via solving a

nonlinear optimization program [27]. Shao et al. pro-

posed a multispectral neural networks algorithm to

learn robust feature representation from MC-DNN,

which achieved superior performance for image classi-

fication [28]. All these studies indicate the effective-

ness of multi-column method in DL.

ELM-AE has the potential to be extended to a multi-

column version, from which the learned multi-channel

features can be further fed to an ensemble learning al-

gorithm for classification. Moreover, ELM-AE is also

suitable for implementing the multi-column operation,

since each column of ELM-AE has a very fast training

speed. Therefore, this multi-column-based ELM-AE

(MC-ELM-AE) algorithm will consequentially improve

the robustness, stability, and classification performance.

On the other hand, the bilinear model has been

successfully applied to CNN, which multiplies the

convolutional-layer outputs of two-channel CNNs at

each location of the image, resulting in bilinear features

[29]. This bilinear outer product can capture pairwise

correlations between the feature channels to help im-

prove feature representation. While from the perspective

of kernel functions, bilinear features are closely similar

to the quadratic kernel, which gives a linear classifier the

discriminative power of a quadratic kernel machine [30].

Therefore, the bilinear model can be effectively used for

feature representation [29, 30], which is also feasible for

MC-ELM-AE to build a bilinear model-based MC-ELM-

AE (B-MC-ELM-AE); that is to say, the bilinear model

can be applied to each pair of ELM-AE columns to fur-

ther improve the robust feature representation.

In this study, we propose a feature learning and clas-

sification framework for SEC with B-MC-ELM-AE and

two-stage ensemble learning (TsEL), in which a B-MC-

ELM-AE algorithm learns the robust feature represen-

tation of sound segments, and then, a two-stage

ensemble learning algorithm is used to fuse features

from B-MC-ELM-AE and classify sound events. The

main contributions are threefold: (1) A MC-ELM-AE

algorithm is proposed to achieve the robust feature repre-

sentation for sound signals; (2) A B-MC-ELM-AE algo-

rithm is proposed to capture pairwise correlations among

multiple ELM-AE columns for further improving feature

representation and robustness; (3) A TsEL framework is

proposed as a classifier to fuse the decisions of B-MC-

ELM-AE to promote classification performance.

2 B-MC-ELM-AE- and TsEL-based robust SEC

framework

As shown in Fig. 1, the proposed SEC framework con-

sists of three components: feature extraction from sound

frame, B-MC-ELM-AE, and TsEL. Firstly, the SIF
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operation is performed on a sound file to generate fea-

tures for each segmented frame, which has the same

length for analysis [8]. The B-MC-ELM-AE algorithm is

then implemented on the SIF features for each frame to

learn more effective feature representation, which will

generate multiple-channel bilinear features. Next, in the

first stage of the TsEL component, single-channel bilin-

ear features are first fed to an ELM classifier to generate

classification decision values, which are then fused by

the weighted-voting-based ensemble learning algorithm

to achieve the decision of the current frame. Finally, the

second-stage ensemble learning algorithm is conducted

on all the frames belonging to a sound file to fuse their

decisions and yield the final classification result for SEC.

It is worth noting that in the conventional SEC frame-

work, only one stage of ensemble learning is used to in-

tegrate the classification results of different frames in

one sound file. However, an additional ensemble learn-

ing is adopted to fuse multiple B-MC-ELM-AE in our

proposed framework.

2.1 SIF feature extraction

As introduced in [8], in order to extract the SIF features,

the fast Fourier transform (FFT) is performed and a stack

of FFT magnitude spectra builds the initial spectrogram.

For the current frame F, spectral line fF is given by

f F kð Þ ¼
X

n¼0

ws−1
sF nð Þe

−j2πnk
ws

�

�

�

�

�

�

for k ¼ 1⋯
ws

2
−1

� �

ð1Þ

With

sF nð Þ ¼ s F⋅σ þ nð Þ⋅w nð Þ for n ¼ 0⋯ ws−1ð Þ ð2Þ

where σ is the sample advance between analysis frames

and w(n) defines an N-point Hamming window. Then,

down sampling is then implemented by averaging over

B' = [ws/2B] samples, where B is the number of bin fre-

quency resolution. The resulting spectrum are stacked

to form an overlap spectrogram as

S l; mð Þ ¼
1

B0

XB
0
⋅ lþ1ð Þ

n¼B
0
⋅l

f F−m nð Þ

for l ¼ 0⋯B=σ

ð3Þ

The spectrogram S includes a history of up to D con-

secutive spectral lines, which are concatenated to form a

(B ⋅D + 1) dimension feature vector, called spectrogram

image feature (SIF). This feature vector is augmented by

a scalar energy metric, which is defined by

Fig. 1 Flowchart of the proposed B-MC-ELM-AE-TsEL-based feature learning and classification framework for SEC, which consists of three components:

feature extraction for sound frame, B-MC-ELM-AE, and TsEL
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v ¼
X

D−1

l¼0

X

B−1

m¼0

S l;mð Þ ð4Þ

Please refer to [8] for details about SIF feature extraction.

2.2 ELM-AE algorithm

ELM is an effective SLFN-based learning algorithm with

randomly generated hidden nodes as shown in Fig. 2

[17–19]. The ELM theory can also be applied to build a

multi-layer AE, which performs layer-by-layer unsuper-

vised learning [20, 22].

For a training set {(xi, yi), i = 1,…, n}, where xi is the

training sample and yi is the label, the input data x is

mapped to the ELM random feature space with the net-

work output by

f L xð Þ ¼
XL

i¼1
βihi xð Þ ¼ h xð Þβ ð5Þ

where L is the number of nodes in hidden layer, βi de-

notes the weight connecting the ith hidden node and the

output layer, and hi(x) is the hidden node output (non-

linear feature mapping) for input x by

hi xð Þ ¼ g wi⋅xþ bið Þ ð6Þ

where wi is the weight vector connecting the ith hidden

node and the input nodes, bi is the bias of ith hidden

node, and g(x) is the activation function.

The ELM then aims to solve the following problem:

Y ¼ Hβ ð7Þ

Where Y = [y1,… yn]
T and H = [hT(x1),…, hT(xn)]

T. The

output weights β can be calculated by

β ¼ H
†
Y ¼ H

T
HH

T
� �−1

ð8Þ

where H
† is the Moore-Penrose generalized inverse of

matrix H. By adding a regularization term to improve

the generalization performance and make the solution

more robust, the resulting solution β is given by [18, 19]

β ¼ H
T
Hþ

I

C

� �−1

H
T
Y ð9Þ

where C is a parameter to balance the experiential risk

and structural risk.

On the other hand, AE is a popular unsupervised fea-

ture learning model, which aims to make the encoded

outputs to be equal to the original inputs by minimizing

the reconstruction errors [31]. As a variant of AE, ELM-

based AE (ELM-AE) significantly improves the training

speed [20] and also achieves excellent representation

performance by building multi-layer networks [22].

Figure 3 shows the network architectures of ELM-AE.

In ELM-AE, the input data is first transformed into an

ELM random feature space, and then, a multi-layer un-

supervised learning is conducted to achieve high-level

feature representation.

For a single-layer ELM-AE, the input data is projected

to a new space with the constraint of the orthogonal

random weights and biases of the hidden nodes on Eq.

(10) by

H ¼ g w⋅xþ bð Þ s:t: w
T
w ¼ I and b

T
b ¼ 1 ð10Þ

The output weight β is now responsible for learning

transformation from the feature space to input data, and

it can be determined analytically as ELM with the simi-

lar form:

β ¼ H
T
Hþ

I

C

� �−1

H
T
X ð11Þ

where X is the input data.

The multi-layer ELM-AE can then be implemented to

learn higher level feature representation based on single-

layer ELM-AE network architectures. Here, we rewrite

the equation of the output of each hidden layer as

H i ¼ g H i−1⋅βð Þ ð12Þ

where Hi and Hi − 1 are the outputs of the ith and the

(i-1)th layers, respectively. Notably, each hidden layer

of ELM-AE works as an independent and separated fea-

ture extractor.

2.3 Bilinear multi-column ELM-AE

In order to suppress the effect of unstability deriving

from random weights and improve the robustness to-

gether with representation performance, we proposed

the B-MC-ELM-AE algorithm.

As shown in Fig. 1, several column ELM-AEs are per-

formed on the same input data and fused to form the

multi-column ELM-AE (MC-ELM-AE) algorithm. Since

multi-column features are generated from MC-ELM-AE,

the feature concatenation is the simplest way to fuse

these features.
Fig. 2 The network architecture of ELM
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In this work, we use the bilinear model to pairwisely

fuse the features of MC-ELM-AE to improve representa-

tion and further boost classification performance as

shown in Fig. 4, which is similar to the bilinear CNN

model [29]. The bilinear features are the outer product

of a pair of ELM-AE features. Define E1 and E2 as the

learned features of two ELM-AEs from the same input

data; the bilinear feature representation is calculated by

EB ¼ E1⊗E2 ¼ E1⋅E
T
2 ¼

e11
e21
⋮

em1

2

6

6

4

3

7

7

5

� e12 e22 ⋯en2
	 


¼

z11 ⋯ z1n

⋮ ⋱ ⋮

zm1 ⋯ zmn

2

6

4

3

7

5
ð13Þ

where m and n are the feature dimensionalities of E1
and E2, respectively.

The calculated bilinear representation EB is a matrix,

which is then vectorized to a vector form eb as the input

of a classifier in this work. Since there is no back propa-

gation in ELM-AE, the bilinear feature representation is

very straightforwardly embedded in ELM-AE. For the k

column MC-ELM-AEs, k × (k − 1)/2 channel bilinear fea-

tures in total are obtained by the pairwise bilinear oper-

ation, which are then fed to the TsEL framework for

classification.

2.4 Two-stage ensemble learning framework

The multi-channel bilinear features from one sound

frame are more robust and effective than the original

single-column ELM features, which can be used for clas-

sification of the current frame. Since a sound file is di-

vided into multiple frames, the final classification result

of a sound file is the fused decision of all frames. In this

work, a two-stage ensemble learning (TsEL) framework

is proposed for SEC with B-MC-ELM-AE features, since

Fig. 3 The network architecture of ELM-AE

Fig. 4 Schematic diagram of the bilinear multi-column ELM-AE algorithm
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ensemble learning can improve the generalization and

prediction performance of multiple classifiers by com-

bining their decisions.

Specifically, as shown in Fig. 1, the first-stage ensemble

learning is implemented on the base ELM classifiers of

the multi-channel bilinear features generated from B-

MC-ELM-AE for each sound frame, and the second-

stage ensemble learning is conducted on all the decisions

of all frames to provide final SEC. It is worth noting that

various ensemble learning algorithms can be used in this

TsEL framework.

A weighted-voting-based ensemble learning algorithm

is used in the first-stage learning [32], which is very sim-

ple and effective.

Define the classification decisions of all ELM classifiers

on individual bilinear features of B-MC-ELM-AE as

Ŷ = [Ŷ1(x), Ŷ2(x),⋯, Ŷk(x) ]T, where k is the number

of all base ELM classifiers, and Ŷi(x) means the output of

ith base classifier on sample x. Suppose that the total

weight matrix of all of base classifiers is given by

W
0 ¼ w

0

1; w
0

2;⋯;w
0

k

	 
T
, where w

0

ij i ¼ 1;⋯; k; j ¼ 1; 2;⋯;mð Þ

means the weight of the ith base classifier on the jth

class. The weight of each base classifier is calculated as

w
0

ij ¼
log pij= 1−pijð Þð Þ

Xt

i¼1
log pij= 1−pijð Þð Þ

; i ¼ 1; 2;⋯k; j ¼ 1; 2;⋯m-

(14)

where pij is the classification accuracy of the ith classifier

on the jth class. The final decision of this multi-classifier

ensemble learning is given by the maximum score based

on Eqs. (15) and (16)

sj ¼
X

i¼1
k

w0
ij
⋅Ŷ ij; j ¼ 1; 2;⋯;m ð15Þ

where sj is the score of the jth class. The final classifica-

tion result is decided by

Label ¼ argmax s1; s2; s3;⋯; smð Þ ð16Þ

Since different sound files have different sound

lengths, resulting in different frame numbers, some sim-

ple ensemble learning algorithms, such as majority vot-

ing and weighted voting [8], can be used in the second-

stage ensemble learning in our framework to fuse the

decisions of all multiple sound frames from the first

stage to generate the final classification decision for the

current sound event.

3 Experiments and results

3.1 Dataset and data preprocessing

The performance of the proposed B-MC-ELM-AE-TsEL

framework for SEC was evaluated on the Real World

Computing Partnership (RWCP) Sound Scene Database

in Real Acoustic Environments [33]. The noise-corrupted

data use four background noise environments selected

from the NOISEX-92 database, namely “Destroyer Con-

trol Room,” “Speech Babble,” “Factory Floor1,” and “Jet

Cockpit 1” [3]. In McLoughlin’s work, there were in total

50 classes of sound events selected from the RWCP Sound

Scene Database, such as the wooden, metal and china im-

pacts, friction sounds, bells, phones ringing, and whistles,

and each class included 80 files.

McLoughlin et al. have achieved the state-of-the-art

performance on this RWCP dataset with the DNN algo-

rithm [8]. Thus, we directly used this dataset with ex-

tracted SIF features in this study. Each sound file was

segmented into several frames, and the SIF features were

then extracted from each frame with a dimensionality of

721. The details about SIF features and data processing

can be found in [8] and [3]. The proposed B-MC-ELM-

AE algorithm was then implemented to learn feature

representation from the extracted SIF features, and the

learned features were further fed to the TsEL framework

for SEC.

3.2 Experimental settings

We conducted two same experiments as those in [8] to

evaluate our proposed SEC framework. In the first mis-

matched condition experiment, the data in training set

were exclusively clean sounds without noise, but the

data in testing set were corrupted by additive back-

ground noise at levels of 20, 10, and 0 dB SNR. The sec-

ond experiment was the multi-condition evaluation, in

which both the data in training set and testing set com-

prised a variety of clean and noise-corrupted sounds.

The 10-fold cross-validation strategy is performed for all

algorithms, and the result of classification accuracy is

given by the form of mean ± SD (standard deviation).

All the compared algorithms are listed as follows:

(i) DNN in [8]: the results of DNN by McLoughlin et

al. in [8] were selected as the baseline.

(ii) SIF-ELM: the original SIF features of each sound

segment were directly fed to the ELM classifier for

classification, and then, only the second-stage

ensemble learning was implemented to generate the

final decision on all segments.

(iii) ELM-AE: the single-column ELM-AE was imple-

mented on SIF features for each sound segment with

the ELM classifier, and then, only the second-stage

ensemble learning was used to get the final decision

on all segments.

(iv) B-ELM-AE: ELM-AE was conducted twice on

SIF features belonging to the same sound segment,

respectively, and then, the bilinear model was

implemented on these two ELM-AE features to

generate bilinear features for classification with only

the second-stage ELM-based ensemble learning on
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all segments. Notably, B-ELM-AE is a special case

of B-MC-ELM-AE with two-column ELM-AEs.

(v) MC-ELM-AE-C: the 5-column MC-ELM-AE was

conducted on SIF features for each sound segment

to generate 5-column features, which were then

concatenated to form a feature vector for the ELM

classifier, and only the second-stage ensemble

learning was used to get the final decision on all

segments.

(vi) MC-ELM-AE-TsEL-V: the 5-column MC-ELM-

AE was conducted on SIF features for each sound

segment to generate 5-column features, which were

then fed to a TsEL algorithm. However, the

majority-voting-based ensemble learning algorithm

was performed to boost the classification results of

the 5-column features in the first-stage ensemble

learning.

(vii) MC-ELM-AE-TsEL-W: the 5-column MC-ELM-

AE was conducted on SIF features for each sound

segment to generate 5-column features, which were

then fed to a TsEL algorithm with the weighted-

voting-based ensemble learning algorithm in

Section 2.4.

(viii) B-MC-ELM-AE-C: the B-MC-ELM-AE was

conducted on SIF features for each sound segment

to generate 5-channel bilinear features, which were

then concatenated to form a feature vector for the

ELM classifier, and only the second-stage ensemble

learning was used to get the final decision on all

segments.

(ix) B-MC-ELM-AE-TsEL-V: the proposed B-MC-

ELM-AE and TsEL-based algorithm was conducted

on SIF features for classification as shown in Fig. 1.

Here, the 5-column MC-ELM-AE was used for the

bilinear model. However, the majority-voting-based

ensemble learning algorithm was performed to boost

the classification results of the pairwise bilinear

features in the first-stage ensemble learning.

(x)B-MC-ELM-AE-TsEL-W: the proposed B-MC-

ELM-AE- and TsEL-based algorithm was conducted

on SIF features for classification as shown in Fig. 1

with the weighted-voting-based ensemble learning

algorithm in Section 2.4. Here, the 5-column

MC-ELM-AE was used for the bilinear model.

It is worth noting that the following three ensemble

learning methods were used in the second-stage of TsEL

[8]: (1) the baseline method that considers the maximum

class score from the mean of all predictive probability

values of classifiers as the final decision (denoted as -b);

(2) majority-voting-based ensemble learning (denoted as

-v); (3) weighted-voting-based ensemble learning that

weights the votes of individual classifiers by calculating

the context energy (denoted as -e).

3.3 Results of the mismatched condition experiment

Tables 1, 2, and 3 show the classification results of dif-

ferent algorithms for the first mismatched condition

experiment with the -b, -v, and -e ensemble learning

methods in the second stage of TsEL, respectively.

It can be found in Table 1 that all the ELM-AE-based

algorithms outperform the baseline DNN algorithm in

[8], showing the effectiveness of ELM-AE for SEC. The

proposed B-MC-ELM-AE-TsEL-W algorithm achieves

the best performance on all the clean condition, 20 , 10,

and 0 dB SNR conditions, whose corresponding mean

classification accuracies are 99.45 ± 0.30%, 97.00 ± 0.46%,

96.15 ± 1.26%, and 91.63 ± 1.29%, respectively. Compared

with DNN, the B-MC-ELM-AE-TsEL-W algorithm im-

proves accuracies by 2.72, 2.40, 5.88, and 15.16% at the

clean, 20, 10, and 0 dB SNR conditions, respectively.

Moreover, both MC-ELM-AE-TsEL-W and B-MC-ELM-

AE-TsEL-W outperform the majority-voting-based MC-

ELM-AE-TsEL-V and B-MC-ELM-AE-TsEL-V, which

indicates that the weighted-voting is more effective to

boost multiple classifiers in this work. On the other hand,

both B-ELM-AE and MC-ELM-AE algorithms are super-

ior to the original ELM-AE, which indicates that the

bilinear model and multi-column extension truly effect-

ively improve the representation performance. Further-

more, B-MC-ELM-AE achieves better performance

than B-ELM-AE and MC-ELM-AE by fairly comparing

the classification accuracy with the -C and -TsEL

methods, respectively.

In Table 2, B-MC-ELM-AE-TsEL-W again obtains the

best performance, whose mean accuracies are 98.95 ±

0.52%, 96.45 ± 0.55%, 94.15 ± 1.27%, and 86.93 ± 1.43%

on the clean, 20, 10, and 0 dB SNR condition, respect-

ively. Compared with DNN, B-MC-ELM-AE-TsEL-W

achieves 1.12, 1.75, and 8.06% improvements for the 20,

10, and 0 dB SNR conditions, respectively. It also im-

proves by at least 1.06% on the mean classification

accuracy compared with all other algorithms. Again, the

weighted-voting ensemble learning is superior the

majority-voting case. However, with the -b ensemble

learning method, the baseline DNN algorithm is slightly

superior to other ELM-AE-based algorithms except B-

MC-ELM-AE-TsEL-W on the clean, 20 and 10 dB SNR

condition, while it dramatically degenerates on the 0 dB

condition.

As shown in Table 3, B-MC-ELM-AE-TsEL-W is still

the best one with mean accuracies of 98.33 ± 0.53%,

97.25 ± 0.83%, 96.73 ± 0.97, and 93.83 ± 0.88% on the

clean, 20, 10, and 0 dB SNR condition, respectively,

and it improves by 2.33, 2.88, 3.20, and 8.7%, respect-

ively, compared with DNN. Moreover, the overall

mean of B-MC-ELM-AE-TsEL-W is 96.54 ± 0.80%,

which improves by at least 1.03% compared with all

other algorithms.
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3.4 Results of the multi-condition evaluation experiment

Tables 4, 5, and 6 give the results of different algorithms

on the second multi-condition evaluation experiment

with the -b, -v, and -e ensemble learning methods in the

second stage of TsEL, respectively.

As can be seen from Table 4, B-MC-ELM-AE-TsEL-W

outperforms all other algorithms, with mean classifica-

tion accuracies of 98.65 ± 0.39%, 98.23 ± 0.45%, 98.18 ±

0.19%, and 96.90 ± 0.59% on the clean, 20, 10, and 0 dB

SNR conditions, respectively. Here, there are no results

given for the DNN algorithm with the -b ensemble

learning method in [8].

It can be found in Table 5 that B-MC-ELM-AE-TsEL-

W again achieves the best performance with the mean

accuracies of 98.03 ± 0.36%, 97.40 ± 0.31%, 96.28 ± 1.05%,

and 91.53 ± 0.84% on all the clean, 20, 10, and 0 dB SNR

conditions, respectively, which improves by 1.13, 0.5,

3.08, and 11.13% compared with the baseline DNN

algorithm.

In Table 6, almost all ELM-AE-based algorithms are

superior to DNN, and B-MC-ELM-AE-TsEL-W is the

best one. The mean accuracies of B-MC-ELM-AE-TsEL-

W are 97.43 ± 0.65%, 97.35 ± 0.43%, 97.20 ± 0.78% and

96.40 ± 0.36% on the clean, 20 dB, 10 dB and 0 dB SNR

conditions, respectively, which improves by 2.73, 1.55,

5.10, and 8.70% compared with DNN.

4 Discussion
In this work, a feature learning and classification frame-

work named B-MC-ELM-AE-TsEL is proposed for SEC.

Generally, the learned features by ELM-AE are unstable

due to the random input-layer weights in ELM-AE net-

works, resulting in unstable performance. In order to

improve the stableness of ELM-AE, the multi-column

extension is proposed for ELM-AE to build MC-ELM-

AE, whose multiple decisions are then fused by ensem-

ble learning methods to generate more stable and robust

performance. Moreover, the bilinear model is then ap-

plied to MC-ELM-AE to mining the correlation among

multiple ELM-AEs, and the TsEL strategy is proposed to

improve the final decision. In the experiment, three

levels of noise were added to clean sound data, namely,

20, 10, and 0 dB SNR conditions. With the increase of

noise, the recognition performance for sound events

Table 1 Classification results of different algorithms with the mean probability value ensemble learning (-b) at the second-stage TsEL

(unit: %)

Clean 20 dB 10 dB 0 dB Mean

DNN 96.73 94.60 90.27 76.47 89.52

ELM 97.08 ± 0.45 90.31 ± 0.92 85.75 ± 1.16 72.39 ± 1.18 86.38 ± 0.93

ELM-AE 97.68 ± 1.31 94.25 ± 1.53 92.28 ± 2.04 86.63 ± 1.43 92.71 ± 1.58

B-ELM-AE 99.08 ± 0.34 95.88 ± 0.49 94.93 ± 0.93 89.85 ± 0.85 94.93 ± 0.65

MC-ELM-AE-C 98.63 ± 0.46 95.88 ± 0.67 94.35 ± 0.86 87.90 ± 1.27 94.19 ± 0.82

MC-ELM-AE-TsEL-V 98.53 ± 0.52 95.63 ± 0.55 93.73 ± 0.91 88.33 ± 1.48 94.05 ± 0.86

MC-ELM-AE-TsEL-W 99.03 ± 0.34 96.55 ± 0.52 95.53 ± 0.92 89.08 ± 1.61 95.05 ± 0.85

B-MC-ELM-AE-C 99.08 ± 0.35 96.08 ± 0.69 94.65 ± 1.07 89.93 ± 1.19 94.94 ± 0.83

B-MC-ELM-AE-TsEL-V 99.15 ± 0.31 96.20 ± 0.42 95.10 ± 0.88 90.45 ± 0.93 95.23 ± 0.63

B-MC-ELM-AE-TsEL-W 99.45 ± 0.30 97.00 ± 0.46 96.15 ± 1.26 91.63 ± 1.29 96.06 ± 0.83

Table 2 Classification results of different algorithms with the context voting ensemble learning (-v) at the second-stage TsEL

(unit: %)

Clean 20 dB 10 dB 0 dB Mean

DNN 98.87 95.33 92.40 78.87 91.37

ELM 93.76 ± 0.61 91.35 ± 0.62 86.99 ± 1.06 72.81 ± 1.29 86.23 ± 0.90

ELM-AE 95.53 ± 2.35 92.28 ± 1.67 89.40 ± 1.70 81.93 ± 1.86 89.78 ± 1.90

B-ELM-AE 98.23 ± 0.57 94.38 ± 0.67 92.50 ± 1.25 84.43 ± 1.76 92.39 ± 1.06

MC-ELM-AE-C 96.93 ± 0.65 93.70 ± 0.97 91.33 ± 0.83 83.25 ± 1.16 91.30 ± 0.90

MC-ELM-AE-TsEL-V 97.23 ± 0.70 93.90 ± 0.67 91.50 ± 1.22 84.20 ± 1.29 91.71 ± 0.97

MC-ELM-AE-TsEL-W 97.95 ± 0.62 95.35 ± 0.76 92.38 ± 1.49 84.78 ± 2.07 92.62 ± 1.24

B-MC-ELM-AE-C 98.13 ± 0.36 94.33 ± 0.73 92.88 ± 0.90 84.45 ± 1.36 92.45 ± 0.84

B-MC-ELM-AE-TsEL-V 98.33 ± 0.57 94.73 ± 0.58 92.98 ± 0.99 86.23 ± 1.54 93.06 ± 0.92

B-MC-ELM-AE-TsEL-W 98.95 ± 0.52 96.45 ± 0.55 94.15 ± 1.27 86.93 ± 1.43 94.12 ± 0.94
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decreases for all algorithms used in this study. However,

in the 0 dB SNR condition, the baseline DNN algorithm

degenerates most rapidly compared with all the ELM-

AE-based algorithms as shown in Tables 1, 2, 3, 4, 5, and

6, while the proposed B-MC-ELM-AE-TsEL algorithms,

including both B-MC-ELM-AE-TsEL-V and B-MC-

ELM-AE-TsEL-W, still achieve good performance with a

more than 90% mean accuracy only except the result in

Table 2. Therefore, our B-MC-ELM-AE-TsEL framework

is effective and robust for SEC, especially in the noisy

environment.

There are three findings from the experimental results

on RWCP Sound Scene Database: (1) the random input-

layer weights in ELM-AE networks usually result in

unstable performance, and the numbers of the hidden

nodes in ELM-AE also lead to different feature represen-

tations. Therefore, we propose the multi-column ELM-

AE algorithm, which performs multiple ELM-AEs with

different numbers of the hidden nodes on the same

sound frame to generate diverse classification results.

The first-stage ensemble learning is then conducted on

the classification decisions of these multi-column ELM-

AE to improve robustness and classification performance

compared with the original ELM-AE algorithm; (2) the

bilinear model is then applied to each feature-pair of

ELM-AE columns, in which the bilinear outer product

can capture pairwise correlations between the feature

channels for superior feature representation. The pro-

posed B-MC-ELM-AE algorithm by integrating both

bilinear and multi-column models into ELM-AE can fur-

ther promote the representation performance and

robustness for sound data; (3) the proposed B-MC-

ELM-AE-TsEL framework is superior to the state-of-the-

art DNN algorithm in [8] for SEC.

In the current B-MC-ELM-AE-TsEL framework, the

B-MC-ELM-AE features are integrated by a classifier-

or decision-level fusion method, that is to say, ensemble

learning can be applied to all the classification results

of individual column of B-ELM-AE. Specifically, a

weighted-voting-based ensemble learning algorithm is

used in the first-stage learning [32], which has shown

its effectiveness compared with the majority-voting-

based ensemble learning as shown in Tables 1, 2, 3, 4,

5, and 6. It should be noted that other ensemble learn-

ing algorithms, such as the margin distribution

optimization method and the Adaboost-based method

[34, 35], also can be applied in this framework. On the

other hand, instead of the classifier- or decision-level

Table 3 Classification results of different algorithms with e-scaled weight ensemble learning (-e) at the second-stage TsEL (unit: %)

Clean 20 dB 10 dB 0 dB Mean

DNN 96.00 94.37 93.53 85.13 92.26

ELM 95.85 ± 0.55 93.81 ± 0.77 92.82 ± 0.66 87.93 ± 0.86 92.60 ± 0.71

ELM-AE 95.03 ± 2.43 94.43 ± 1.09 93.33 ± 1.82 90.33 ± 1.43 93.28 ± 1.69

B-ELM-AE 97.60 ± 0.64 96.40 ± 0.81 95.50 ± 0.84 92.50 ± 0.89 95.50 ± 0.80

MC-ELM-AE-C 96.40 ± 0.67 95.25 ± 0.82 94.75 ± 1.06 91.30 ± 1.10 94.42 ± 0.91

MC-ELM-AE-TsEL-V 96.45 ± 0.66 95.03 ± 0.69 94.73 ± 1.20 91.95 ± 0.99 94.54 ± 0.89

MC-ELM-AE-TsEL-W 97.05 ± 0.50 95.88 ± 0.91 96.00 ± 1.23 93.13 ± 0.83 95.51 ± 0.87

B-MC-ELM-AE-C 97.43 ± 0.49 96.10 ± 0.84 95.73 ± 0.88 92.63 ± 0.75 95.47 ± 0.74

B-MC-ELM-AE-TsEL-V 97.53 ± 0.53 96.43 ± 0.72 95.48 ± 0.85 92.60 ± 0.92 95.51 ± 0.75

B-MC-ELM-AE-TsEL-W 98.33 ± 0.53 97.25 ± 0.83 96.73 ± 0.97 93.83 ± 0.88 96.54 ± 0.80

Table 4 Multi-condition (MC) classification results of different algorithms with the mean probability value ensemble learning (-b) at

the second-stage TsEL (unit: %)

Clean 20 dB 10 dB 0 dB Mean

ELM 95.20 ± 0.59 94.06 ± 0.38 93.29 ± 0.69 89.42 ± 0.93 92.99 ± 0.65

ELM-AE 96.65 ± 0.85 96.03 ± 0.85 95.88 ± 0.78 94.35 ± 0.83 95.73 ± 0.83

B-ELM-AE 98.15 ± 0.24 98.03 ± 0.41 97.48 ± 0.31 95.95 ± 0.35 97.40 ± 0.33

MC-ELM-AE-C 97.20 ± 0.49 96.80 ± 0.72 96.43 ± 0.40 95.10 ± 0.72 96.38 ± 0.58

MC-ELM-AE-TsEL-V 96.93 ± 0.50 96.50 ± 0.64 96.15 ± 0.44 95.10 ± 0.89 96.17 ± 0.62

MC-ELM-AE-TsEL-W 97.95 ± 0.53 97.43 ± 0.47 97.55 ± 0.52 96.05 ± 0.77 97.25 ± 0.57

B-MC-ELM-AE-C 98.08 ± 0.54 97.65 ± 0.45 97.40 ± 0.47 96.08 ± 0.50 97.30 ± 0.49

B-MC-ELM-AE-TsEL-V 98.20 ± 0.35 97.9 ± 0.40 97.55 ± 0.45 96.03 ± 0.59 97.42 ± 0.45

B-MC-ELM-AE-TsEL-W 98.65 ± 0.39 98.23 ± 0.45 98.18 ± 0.19 96.90 ± 0.59 97.99 ± 0.41
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fusion, another way to properly integrate these B-MC-

ELM-AE features is the feature-level fusion. For ex-

ample, the multiple kernel learning (MKL) method can

effectively combine multiple-channel features and then

make a decision, since the multiple kernels in MKL can

naturally correspond to features from different views

[36]. This feature-level fusion method will be studied

for our B-MC-ELM-AE-TsEL framework in the future.

The proposed B-MC-ELM-AE-based two-stage ensem-

ble learning algorithm has very fast learning speed,

which is several orders of magnitude faster than other

DL algorithms, resulting in short training time. More-

over, the multi-channel ELM-AEs can perform in a par-

allel way, which will improve the time efficiency.

Therefore, our proposed algorithm is more suitable for

real-time implementation than DNN in [8], because of

its fast computational efficiency and high classification

accuracy. However, since the multiple channels of ELM-

AE should be trained to improve robustness and stabil-

ity, B-MC-ELM-AE-based algorithm requires more

memory than DNN, mainly because the bilinear model

is an operation of high-dimensional matrix. Therefore,

dimensionality reduction can be conducted on ELM-AE

features before bilinear operation. In current work, we

only use the SIF features as the input to the proposed al-

gorithm for a fair comparison with DNN in [8]. In fu-

ture, we will select more features to evaluate the effect

of input features on B-MC-ELM-AE and even directly

perform B-MC-ELM-AE on the raw data or the features

of time and frequency domain [37].

5 Conclusions

In conclusion, we propose a bilinear multi-column

ELM-AE and two-stage ensemble learning-based feature

learning and classification framework for SEC. The

experimental results on RWCP Sound Scene Database

indicate the robustness and effectiveness of B-MC-ELM-

AE-TsEL framework. It suggests that the proposed

framework has the potential for SEC.

Table 5 Multi-condition (MC) classification results of different algorithms with context voting ensemble learning (-v) at the second-

stage TsEL (unit: %)

Clean 20 dB 10 dB 0 dB Mean

DNN 96.90 96.90 93.20 80.40 91.85

ELM 93.34 ± 0.60 91.55 ± 0.57 89.22 ± 0.91 79.78 ± 1.62 88.47 ± 0.93

ELM-AE 94.23 ± 0.76 93.38 ± 1.49 91.65 ± 0.76 86.88 ± 1.60 91.54 ± 1.15

B-ELM-AE 97.38 ± 0.47 96.58 ± 0.47 95.10 ± 0.62 90.05 ± 1.35 94.78 ± 0.73

MC-ELM-AE-C 95.48 ± 0.63 94.70 ± 0.38 93.18 ± 0.91 88.73 ± 1.02 93.02 ± 0.74

MC-ELM-AE-TsEL-V 95.35 ± 0.57 94.35 ± 0.48 93.28 ± 0.82 89.00 ± 1.30 92.99 ± 0.79

MC-ELM-AE-TsEL-W 96.63 ± 0.31 95.35 ± 1.01 93.63 ± 1.02 89.50 ± 1.42 93.78 ± 0.94

B-MC-ELM-AE-C 97.13 ± 0.49 96.43 ± 0.62 94.88 ± 1.00 89.68 ± 0.97 94.53 ± 0.77

B-MC-ELM-AE-TsEL-V 97.33 ± 0.50 96.55 ± 0.60 95.38 ± 0.76 90.55 ± 0.72 94.95 ± 0.65

B-MC-ELM-AE-TsEL-W 98.03 ± 0.36 97.40 ± 0.31 96.28 ± 1.05 91.53 ± 0.84 95.81 ± 0.64

Table 6 Multi-condition (MC) classification results of different algorithms with e-scaled weight ensemble learning (-e) at the second-

stage TsEL (unit: %)

Clean 20 dB 10 dB 0 dB Mean

DNN 94.70 95.80 92.10 87.70 92.58

ELM 93.91 ± 0.71 94.34 ± 0.61 93.90 ± 0.86 91.51 ± 0.91 93.42 ± 0.77

ELM-AE 94.50 ± 1.04 94.48 ± 1.04 94.50 ± 0.77 93.68 ± 0.94 94.29 ± 0.95

B-ELM-AE 96.95 ± 0.66 96.50 ± 0.46 96.48 ± 0.58 95.45 ± 0.53 96.35 ± 0.56

MC-ELM-AE-C 95.60 ± 0.94 95.53 ± 0.67 95.83 ± 0.61 94.58 ± 0.90 95.39 ± 0.78

MC-ELM-AE-TsEL-V 95.28 ± 0.69 95.23 ± 0.43 95.55 ± 0.79 94.40 ± 0.92 95.11 ± 0.71

MC-ELM-AE-TsEL-W 96.13 ± 0.61 96.38 ± 0.64 96.50 ± 0.63 95.35 ± 0.66 96.09 ± 0.64

B-MC-ELM-AE-C 96.53 ± 0.49 96.33 ± 0.62 96.43 ± 0.53 95.68 ± 0.77 96.24 ± 0.60

B-MC-ELM-AE-TsEL-V 96.73 ± 0.63 96.73 ± 0.46 96.53 ± 0.83 95.60 ± 0.58 96.39 ± 0.62

B-MC-ELM-AE-TsEL-W 97.43 ± 0.65 97.35 ± 0.43 97.20 ± 0.78 96.40 ± 0.36 97.10 ± 0.56
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