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Abstract

A method for principal component analysis is proposed that is sparse and robust at the

same time. The sparsity delivers principal components that have loadings on a small number

of variables, making them easier to interpret. The robustness makes the analysis resistant

to outlying observations. The principal components correspond to directions that maximize

a robust measure of the variance, with an additional penalty term to take sparseness into

account. We propose an algorithm to compute the sparse and robust principal components.

The method is applied on several real data examples, and diagnostic plots for detecting

outliers and for selecting the degree of sparsity are provided. A simulation experiment studies

the loss in statistical efficiency by requiring both robustness and sparsity.

Keywords: dispersion measure, projection-pursuit, outliers, variable selection

1 Introduction

Principal component analysis (PCA) is a standard tool for dimension reduction of multivariate

data. PCA searches for linear combinations of the variables, called principal components (PC),

that summarize well the data. The PCs correspond to directions maximizing the variance of the

data projected on them (see, e.g. Jollife, 2002). The transformation matrix defining the principal

components is called the loadings matrix, and it may be used to interpret the PCs. In general,

PCA does not deliver well interpretable components. Good interpretability of PCs is related to

rather large or small (absolute) values in the loadings matrix yielding either quite strong or quite

weak contributions of the variables to the PC. Loadings matrices with many values exactly equal to

zero, which we call sparse loadings matrices, are preferred, since the interpretation of a particular
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principal component does not require to consider all variables, but only a small subset. This yields

a sparse PCA, which is especially helpful for analyzing high dimensional data sets. In this paper

we introduce a method for PCA that yields both sparse and robust results. Outliers frequently

occur in multivariate data sets, and any multivariate procedure should take the possible presence

of outliers into account.

Different approaches for computing sparse loadings matrices have been proposed in the litera-

ture. Vines (2000) and Anaya-Izquierdo et al. (2011) use a restriction on the loadings to integers.

Jolliffe et al. (2003) introduced the SCoTLASS, related to the Lasso estimator (Tibshirani, 1996).

Here the principal components maximize the variance but under an upper bound on the sum of

the absolute values of the loadings. It is shown that such an approach yields better results than a

two-step procedure, where after a standard PCA rotation techniques are performed (Jollife, 1995).

Zou et al. (2006) use the elastic net to obtain a version of sparse PCA. Modifications and improve-

ments of this method are made in Leng and Wang (2009). Finally, Guo et al. (2011) introduce a

fusion penalty to capture block structures within the variables. All these methods, however, are

not robust to outliers.

This paper proposes a PCA method that is robust and sparse at the same time. Several robust,

but non sparse, PCA methods have been introduced in the literature (see, e.g., Filzmoser, 1999;

Hubert et al., 2005; Maronna, 2005), and robustness properties were investigated (Croux and

Haesbroeck, 2000). Here we focus on the projection-pursuit approach to PCA, where the PCs are

extracted from the data by searching for directions that maximize a robust measure of variance

of the data projected on it (Li and Chen, 1985; Croux and Ruiz-Gazen, 2005). Using a robust

measure of variance avoids that the PCs are attracted by the outliers, since outliers inflate the

standard non-robust variance. An efficient algorithm for computing the projection-pursuit based

PCs is the Grid algorithm, introduced in Croux et al. (2007). The Grid algorithm is very precise,

and an implementation is available in the R package pcaPP (Filzmoser et al., 2010). Up to the

best of our knowledge, the PCA method we propose is the first one combining the properties of

robustness and sparsity.

The paper is organized as follows: Section 2 defines the robust sparse principal components as

the solution of a non convex optimization problem. Section 3 shows how the Grid algorithm can

be extended to find an approximate solution of this problem. The selection of tuning parameters
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is discussed in Section 4. Simulation results are presented in Section 5, and real data examples

are shown in Section 6. The final Section 7 concludes.

2 Method

Given n multivariate observations x1, . . . ,xn ∈ R
p, collected in the rows of the data matrix X.

The first PCA direction is given by

a1 = argmax
‖a‖=1

V (atx1, . . . ,a
txn), (1)

where V is a variance measure. In the standard non-robust case, V is the empirical variance

(Var), and the resulting optimal direction a1 corresponds to the first eigenvector of the sample

covariance matrix. Equation (1) is the projection-pursuit formulation for finding the first PC,

with V being the projection-pursuit index. Robust PCA directions can easily be obtained by

taking a robust variance measure for V , like the squared Median Absolute Deviation (MAD) or

the squared Qn estimator. The Qn estimator was proposed in Rousseeuw and Croux (1993) and is,

for a univariate data set y1, . . . , yn, defined as the first quartile of all pairwise distances |yi−yj|, for

1 ≤ i < j ≤ n. Croux and Ruiz-Gazen (2005) showed that using the Q2
n estimator as projection

index yields robust and efficient estimates for the principal components. In the remainder of this

paper, we use the Q2
n as robust variance estimator.

Suppose the first j−1 PCA directions have already been found (j > 1), then the jth direction

(j ≤ p) is defined as

aj = argmax
‖a‖=1,a⊥a1,...,a⊥aj−1

V (atx1, . . . ,a
txn), (2)

imposing an orthogonality constraint to all previously found directions. The jth principal com-

ponent is then the vector containing the PCA scores

zij = at
jxi for i = 1, . . . , n. (3)

The loadings matrix for the first k PCs is denoted by Ak, and contains in its columns the optimal

directions or loadings vectors aj, for 1 ≤ j ≤ k. The loadings determine the contribution of each

variable to the principal components. The matrix containing the principal component scores is

then

Zk = XAk. (4)
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Sparsity can be imposed on the PCA directions by adding an L1 penalty in the objective

function. As such, Jolliffe et al. (2003) introduced the SCoTLASS criterion,

max
‖a‖=1,a⊥a1,...,a⊥aj−1

atΣ̂a, subject to ‖a‖1 ≤ t, (5)

for obtaining the jth PCA direction, with 1 ≤ j ≤ p. Here, Σ̂ is the empirical covariance matrix,

and the L1 norm ‖a‖1 =
∑p

j=1 |aj| takes the sum of the absolute values of the components of the

vector a. It is more convenient to work with the dual formulation of the above problem, given by

max
‖a‖=1,a⊥a1,...,a⊥aj−1

atΣ̂a − λ1‖a‖1, (6)

where λ1 is a tuning parameter. The larger λ1, the more the components of a are shrunken

towards zero. Due to the use of the L1 penalty, some of the loadings will even become exactly

zero, similar as for the Lasso estimator in regression. The approach of Jolliffe et al. (2003) requires

an estimated covariance matrix Σ̂ as input of the maximization problem (5), which can be solved

using the algorithm detailed in Trendafilov and Jolliffe (2006) or in Journée et al. (2010).

An obvious way to sparse robust PCA would be to replace the empirical covariance matrix

by a robust covariance estimator, as is often done in robust multivariate data analysis (Hubert

et al., 2008). However, computing robust covariance matrices in high dimensions, and particularly

if p > n, is cumbersome –the estimator may even not exist– and time consuming. We therefore

propose to stick to the projection-pursuit approach, where the PCs are directly obtained without

using a prior covariance estimation. Adding the L1 constraint in definition (1) for finding the first

PCA direction yields

ã1 = argmax
‖a‖=1

V (atx1, . . . ,a
txn) − λ1‖a‖1. (7)

The vector ã1 is the first sparse PCA direction, and its sparsity is controlled by the tuning

parameter λ1. Setting λ1 = 0 results in the unconstrained first PCA direction a1, but for increasing

values of λ1, sparsity gains importance compared to robust variance maximization. Similarly, the

jth sparse PCA direction (1 < j ≤ p) is defined by

ãj = argmax
‖a‖=1,a⊥ã1,...,a⊥ãj−1

V (atx1, . . . ,a
txn) − λj‖a‖1, (8)

with λj a tuning parameter, possibly different from λ1. Definition (7) and (8) are very elegant and

simple, and maintain the basic interpretation of the principal components: we look for directions
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maximizing a robust variance, under the constraint the loadings should not become too large. If

V = Var, then definitions (6) and (7) are the same. Note that most often one does not need all

possible PCs, but only the first few. An advantage of the projection-pursuit approach is that the

estimators are computed sequentially, reducing the computation time for small values of k.

3 Algorithm

Computing the projection-pursuit based PCs requires to find the optimal directions in (1) and (2)

over a p-dimensional space. For general projection indices V it is not possible to find analytical

solutions for the optimal directions. Moreover, since V may be not differentiable in its arguments,

using gradient based methods is not always possible. Several proposals to find good approximations

of the projection-pursuit based PCs, applicable for any choice of the projection index V , have been

made (Hubert et al., 2002; Croux and Ruiz-Gazen, 2005; Croux et al., 2007). In this paper we

extend the Grid algorithm of Croux et al. (2007) for obtaining sparse solutions, i.e. to solve (7)

and (8). The algorithm is fast to compute and accurate even for larger dimension. It is available

in the R package pcaPP (Filzmoser et al., 2010). Below we give an outline of the algorithm.

Let k be the number of sparse PCs that need to be computed. Assume that the first j − 1

sparse PCA directions ãj−1 are already obtained and are collected in the first j − 1 columns of

the loadings matrix Ãj−1, with 1 ≤ j ≤ k − 1. Now we want to compute ãj. For notational

consistency, set Ã
⊥

0 equal to the identity matrix. For j > 1, let Ã
⊥

j−1 be a matrix containing in

its columns an orthonormal basis for the subspace orthogonal to the space spanned by the first

j − 1 sparse PCA directions. Denote x
(j−1)
i = (Ã

⊥

j−1)
txi, for i = 1, . . . , n, belonging to the lower-

dimensional space R
p−j+1. Solving the maximization problem (8) is then equivalent to maximizing

the objective function

f (a) = V (atx
(j−1)
1 , . . . ,atx(j−1)

n ) − λj‖Ã
⊥

j−1a‖1, (9)

under the restriction that ‖a‖ = 1. As sparseness relates to the components of a direction in the

space of the original variables, and not to the lower dimensional space a belongs to, we need to

back-transform the vector a to the original space before taking the L1 norm.

For optimizing (9) the Grid algorithm is used. The basic idea of this algorithm is to reduce the

problem to a sequence of optimizations in a two-dimensional plane under a unit norm constraint.
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This boils down to a sequence of maximizations of a function over the unit circle, which is simply

a univariate maximization problem that can be solved by means of a grid search over [−π, π].

Consider the optimization of (9) for a given value of 1 ≤ j ≤ k. We take the following steps:

1. Sort the columns of X(j), where the rows of X(j) contain the vectors x
(j−1)
i , in descending

order of their projection index V . Then the first variable has the largest value for V and

its corresponding loadings vector a = (1, 0, . . . , 0) serves as a first approximation of the

solution. The vector a has p − j + 1 components.

2. For l = 1, . . . ,maxiter, perform an iteration step in which all components of the vector a

are updated

• For 1 ≤ i ≤ p− j + 1, update the ith component, ai, of the current best approximation

a by finding the angle γ∗ maximizing

f
(
a1b(γ), . . . , ai−1b(γ), cos γ, ai+1b(γ), . . . , ap−j+1b(γ)

)
,

where γ ranges in the interval [arccos(ai) − π/(2l−1), arccos(ai) + π/(2l−1)], and where

b(γ) = sin(γ)/
√

1 − (ai)2 is such that the unit norm condition holds. This function is

maximized by a grid search using Ngrid evaluation points. The updated value of ai is

then simply cos γ∗.

Note that if the iteration step l increases, we perform a more restricted search in the plane,

since we assume that we are already close enough to the solution. Since Ngrid remains

constant, we are increasing the precision in every iteration step.

The procedure is said to converge when the absolute change of the optimal direction a between two

iterations drops below a prespecified tolerance level. The procedure always stops if the maximum

number of iterations (maxiter) is reached. In our implementation, we take Ngrid = 25 and

maxiter = 10 by default. Finally, the optimal sparse direction a found for the jth PC by the grid

algorithm has to be back-transformed into the original space, yielding ãj = Ã
⊥

j−1a.

4 Selection of λ

The tuning parameter λj regulates the degree of sparseness. The larger λj, the less weight is given

to the robust variance measure V in the objective function (8), for j = 1, . . . , k. To make the
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relative importance of the penalty term in (8) comparable across the different PCs, i.e. to have a

similar degree of sparsity over the different principal components, we take

λj := λV(X(j)), (10)

where the matrix X(j) is defined in the previous section, and contains the data vectors projected on

the orthogonal complement of the space spanned by the first j−1 optimal directions. Furthermore,

V denotes the total robust variance of a data matrix, and is for any n by p matrix Y defined as

V(Y ) =

p∑

i=1

V (yi), (11)

where yi stands for the ith column of Y and V is the robust variance measure used as projection

index. Using (10), there is only one tuning parameter λ to be selected. The penalty term λj

decreases with increasing j, along with the value of the projection index V for the jth principal

component.

We propose to select the λ to minimize a BIC type criterion (see also Guo et al., 2011; Leng

and Wang, 2009)

BIC(λ) =
R̃V

RV
+ df(λ)

log(n)

n
, (12)

where R̃V and RV refer to the total robust variance of the residuals matrix obtained from a sparse

PCA and an unconstrained PCA. The first term in the BIC is a measure for the quality of the

fit, while the second term penalizes for model complexity. Here, df(λ) is the number of non-zero

loadings when using λ as the penalty parameter, as in Guo et al. (2011). The calculation of R̃V

and RV is immediate, since they are given by

R̃V = V(X − XÃkÃ
t

k) and RV = V(X − XAkA
t
k),

where X stands for the data matrix, and Ak and Ãk denote the loadings matrices containing the

first k PC directions (in the columns) for unconstrained and constrained PCA, respectively. Note

that, for V = Var, the BIC criterion in (12) equals the one in Guo et al. (2011). In practice, the

selection of λ is carried out by minimizing the BIC(λ) over a grid [0, λmax], where λmax results in

full sparseness of the sparse PCA solution with k components (i.e. every loadings vector contains

only one non-zero element).

Besides λ, one also needs to choose the number of components k. Appropriate selection of k

is an old and common problem in principal components analysis, and many proposals have been
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made for it. In this paper we select the number k from the scree-plot of an unconstrained PCA (see

Cattell, 1966). Such a scree-plot represents the percentage of explained (robust) variance (EV)

by the PCs versus the number of principal components. Mathematically, the explained (robust)

variance is given by

EVk =
V(Zk)

V(X)
, (13)

with Zk the matrix containing the principal component scores, see (4). For V = Var, EVk equals

the ratio of the sum of the k largest eigenvalues to the sum of all eigenvalues of the sample

covariance matrix. Since we are concerned about ease of interpretation and sparsity we do not

want to select a higher number of components when running the Sparse PCA, and maintain the

same number of PCs. For this value of k, a selected λ should result in a sparser loadings matrix, at

the price of limited reduction in explained (robust) variance. In Section 6 we present the so-called

tradeoff curve, where the percentage of explained variance of the k sparse PCs is plotted as a

function of λ. This tradeoff curve is a graphical tool, in addition to the BIC, for selecting an

appropriate value of λ.

5 Simulation experiments

In this section we present two simulation experiments. The sparse method should (i) result in

increased estimation precision when the true loadings matrix is sparse, and (ii) succeed in detecting

those variables that do not contribute to the principal components, i.e. true zero loadings are

exactly estimated as zero. We contrast the standard approach, with V = Var, with the robust

approach, with V = Q2
n. If no outliers are present, then the two properties above hold for both

approaches. But it will be shown that, in presence of outliers, the standard sparse method does

not meet its objectives anymore.
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Experiment 1

We generate data sets of n = 50 observations in p = 10 dimensions. The true loadings matrix is

A =




√
0.5 0

√
0.5 0 0 · · · 0

√
0.5 0 −

√
0.5 0 0 · · · 0

0
√

0.5 0
√

0.5 0 · · · 0

0
√

0.5 0 −
√

0.5 0 · · · 0

0 0 0 0 1 0
...

...
...

...
. . .

0 0 0 0 0 1




and the eigenvalues are l = (1, 0.5, 0.1, . . . , 0.1) . The observations are generated from a multivari-

ate normal distribution N10

(
0,ALAt

)
, with a diagonal matrix L holding the values of l in its

diagonal. Contamination is added by replacing a portion of pout observations by outliers, gener-

ated from the distribution N10 (µout, I10) with µout = (2, 4, 2, 4, 0,−1, 1, 0, 1,−1)t . Note that the

outliers are not very far from the center of the model distribution. From the generated data set

the loadings matrix is estimated, with k = 2. The resulting Â2 is compared to the true A2,

containing the first two columns of A, by computing the angle ϕ between the subspaces spanned

by columns of the matrices.

Both the standard and the robust sparse PCA procedure are applied to m = 100 simulated

data sets. Figure 1 pictures the average value of ϕ over the m simulations, as a function of

the tuning parameter λ. Different outlier proportions, ranging from no contamination to 40% of

outliers are considered.

If no outliers are present (pout = 0, solid line), we get the expected pattern. Starting with

λ = 0 (i.e. non sparse PCA) the estimation error decreases until a minimum is reached at about

λ = 1.2. Penalizing the loadings further yields again an increasing estimation error. If the true

model is sparse (here about 80% of the true loadings are zero) sparse estimation methods indeed

may improve the precision of the maximum likelihood method. For the robust sparse method a

similar pattern is observed. Note that there is a slight loss in precision using the robust instead of

the standard method. However, the robust method remains fairly accurate under contamination,

as can be seen from the other curves in Figure 1 (b). This is in contrast with the standard method,

where the estimation error increases substantially and supersedes those of the robust counterpart
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Figure 1: Average deviation between estimated and true loadings for (a) the standard and (b)

robust sparse PCA methods for different levels of contamination pout and different values of λ.

by a large amount. Finally, note that in presence of outliers the advantage of penalizing disappears

for the standard method, since λ = 0 yields the smallest average deviation ϕ. This does not happen

for robust sparse PCA.

Experiment 2

We consider the same design as introduced by Zou et al. (2006), and subsequently used by Far-

comeni (2009) and Guo et al. (2011) in the same context of sparse PCA. We have n = 20 obser-

vations and p = 10 variables driven by two latent variables

U1 ∼ N(0, 290), U2 ∼ N(0, 300),

where ε ∼ N(0, 1), and U1, U2 and ε are independent. The observed variables are constructed as

Xj =





U1 + εj, if 1 ≤ j ≤ 4

U2 + εj, if 5 ≤ j ≤ 8

−0.3U1 + 0.925U2 + ε + εj, if j = 9, 10.

The error terms ε and εj, for 1 ≤ j ≤ 10, are i.i.d. N(0, 1). The first two principal compo-

nents correspond to U2 and U1, respectively, and in this order. The first block of variables,
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Table 1: Second simulation experiment: simulated loadings of the 10 variables on the first two

PCs using standard and robust sparse PCA. The last line presents the percentage of explained

variance EV. The reported values are the median and MAD (in parenthesis) over 100 simulation

runs. The different columns correspond to no outliers (“0%”), and 10% and 20% of outliers in the

data.
Standard Estimation Robust Estimation

PC 1 PC 2 PC 1 PC 2

0% 10% 20% 0% 10% 20% 0% 10% 20% 0% 10% 20%

B
lo

c
k

1

X1

0 0 0 0.5 0.14 0.12 0 0 0 0.46 0.34 0.3

(0) (0.01) (0) (0.01) (0.15) (0.15) (0) (0) (0) (0.12) (0.24) (0.28)

X2

0 -0.41 -0.42 0.5 0.15 0.14 0 0 0 0.46 0.3 0.26

(0) (0.03) (0.03) (0.01) (0.16) (0.16) (0) (0.10) (0.12) (0.10) (0.26) (0.22)

X3

0 0.42 0.42 0.5 0.15 0.15 0 0 0 0.44 0.28 0.25

(0) (0.03) (0.02) (0.01) (0.15) (0.13) (0) (0.07) (0) (0.12) (0.40) (0.36)

X4

0 0.21 0.2 0.5 0.13 0.13 0 0 0 0.47 0.38 0.33

(0) (0.03) (0.03) (0.01) (0.15) (0.15) (0) (0.1) (0) (0.10) (0.27) (0.31)

B
lo

c
k

2

X5

0.41 0.01 0 0 -0.25 -0.27 0.39 0.33 0.32 0 0 0

(0.02) (0.02) (0) (0) (0.25) (0.22) (0.01) (0.15) (0.11) (0) (0.13) (0.06)

X6

0.42 0.44 0.43 0 -0.24 -0.28 0.38 0.33 0.36 0 0 0

(0.02) (0.03) (0.02) (0) (0.25) (0.17) (0.14) (0.27) (0.25) (0) (0.17) (0.21)

X7

0.41 -0.4 -0.41 0 -0.24 -0.27 0.39 0.23 0.26 0 0 0

(0.02) (0.03) (0.03) (0) (0.36) (0.3) (0.12) (0.27) (0.35) (0) (0.25) (0.14)

X8

0.42 0.22 0.21 0 -0.26 -0.28 0.4 0.35 0.34 0 0 0

(0.02) (0.03) (0.03) (0) (0.23) (0.18) (0.12) (0.21) (0.22) (0) (0.13) (0.18)

X9

0.39 0.33 0.32 0 -0.33 -0.34 0.31 0.31 0.22 0 0 0

(0.04) (0.03) (0.02) (0) (0.13) (0.1) (0.18) (0.24) (0.32) (0) (0.1) (0.25)

X10

0.39 -0.3 -0.3 0 -0.33 -0.36 0.3 0.25 0.22 0 0 0

(0.03) (0.03) (0.03) (0) (0.2) (0.13) (0.19) (0.21) (0.33) (0) (0.11) (0.21)

EV (%)
61.4 67.4 80.3 35.7 21.2 13 58.9 51.2 50.4 31.9 30.1 28.3

(10.9) (5.75) (3.9) (9.3) (4.9) (3.8) (12.5) (8.9) (8.9) (11.4) (7.1) (6)

X1 to X4 is expected to have a high loading on the second PC, but zero loadings on the first

one. The second block, X5 to X8, should have important loadings on the first PC, but a

zero loading on the second one. The remaining variables X9 and X10 have a more important

loading on the first PC than on the second one, and a sparse PCA could shrink this second

loading to zero. We will add outliers generated from the distribution N(µout, σ
2
outI10), with

µout = (0,−100, 100, 50, 0, 100,−100, 50, 75,−75)t, and σ2
out = 20. These added data are not

univariate outliers, and hence are not detectable by making boxplots of the individual variables,

but they do not follow the factor structure described above.

We generate m = 100 samples according to the simulation design, using outlier portions 0%,

10%, and 20%, and apply the standard and the robust version of the sparse PCA algorithm.

For every sample, an optimal value of the tuning parameter was selected according to the BIC

11



criterion. Then loadings of each of the 10 variables on the first two PCs are computed, as well as

the percentage of explained (robust) variance EV. The reported values correspond to the median

and median absolute deviation (MAD, between parenthesis) over the 100 replications, and are

presented in Table 1, in a similar way as in (Guo et al., 2011, Table 1).

Without contamination (0 %), the results are according to the expectations, and very much

comparable to those of Guo et al. (2011). For both the standard and the robust sparse method,

we get that variables X5 through X10 are solely represented in the first PC, variables X1 to X4 in

the second PC , and the loadings of the last two variables for the second PC are also shrunken to

zero. When adding contamination it is seen from Table 1 that the standard PCA gets distorted,

and does not succeed in retrieving the sparsity in the data generating process. The robust method,

however, still delivers sparse solutions. The price the robust method pays for the resistance with

respect to outliers is an increased variability, as measured by the MAD values.

The standard sparse PC directions are attracted by the outliers and do no longer explain the

actual structure of the majority of observations. As we can see from the last row of Table 1, the

explained variance by the first principal component increases substantially with an increasing level

of contamination. This is a misleading outcome, since it is only caused by the use of the sample

variance estimator, which gets inflated due to the outliers. It is not meaning that the PCs are

more representative for the bulk of the data. When using robust sparse PCA, we see that the

percentage of explained variance remains about the same when the outliers are added.

6 Real data examples

The method is used for two differently structured data sets. The first example has n > p and

shows how the robust method is capable of spotting groups of outliers. The second example points

out the method’s applicability on high-dimensional data sets, where p > n.

Example 1

The car data set (Kibler et al., 1989) consists of 26 variables containing technical and insurance-

related data for 205 different car models. Only continuous variables, and observations without

missing values are considered here, resulting in a data set of size 195 × 14. To make the scale of
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Figure 2: Scree-plots for a (a) standard and (b) robust PCA (λ = 0) for the car data set.

the variables comparable, we divide each column of the data matrix by its standard deviation (if

V = Var) or by a robust scale measure (if V = Qn). Figure 2 gives a scree-plot for non-sparse

standard and robust PCA, which plots the explained variance, as defined in (13), versus the

number of components. Based on this scree-plot we decide to retain the first four PCs, explaining

about 80% of the total (robust) variance, for both approaches.

Figure 3 shows the tradeoff curve, discussed in Section 4, plotting the percentage of explained

variance as a function of λ. The explained variances are computed over a grid of 100 different

values of the tuning parameter λ, ranging from λ = 0 (no sparseness) up to full sparseness (exactly

one non-zero loading per PC). This plot illustrates how an increase in sparseness affects, and in

general will lower, the explained variance. The idea is that the selected λ should be such that the

sharpest decline of tradeoff curve occurs afterwards. The selected λ should be close to the end of

the first, relatively flat, part of the tradeoff curve. Using the BIC criterion from equation (12),

minimized over the same grid of 100 values, we get λ = 2.36, corresponding to the vertical dashed

line in the plot. From the tradeoff curve we conclude that this is an acceptable value. The sharper

decline of the tradeoff curve occurs for a tuning parameter larger than 3.

Table 2 shows the resulting loadings for robust non-sparse PCA and robust sparse PCA, derived

with λ = 2.36. By adding the penalty term in the objective function, the number of non-zero

loadings is reduced from 56 to 16, whereas the total amount of explained variance in the first four

PCs drops from 81% to 64%. We do find this decrease in explained variance acceptable, given
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Figure 3: Tradeoff curve for robust sparse PCA computed on the car data set. The dashed line

represents the λ selected by the BIC criterion.

the gained sparsity in the loadings matrix. This could facilitate interpretation, in particular for

the higher order principal components. For instance, the fourth principal component is uniquely

determined by peak-rpm.

Further exploratory data analysis can be done by making distance-distance plots (see Hubert

et al., 2002). Such a plot presents two different distance measures: the score distance of each

observation in the space of the first k PCs, and the orthogonal distance of each observation to this

space. Using cut-off values for both types of distances, outliers can be identified that do not follow

the pattern the majority of the data follows. For details on the construction of these plots, we refer

to Hubert et al. (2002). Figure 4 shows distance-distance plots for the car data, using standard and

robust PCA, and their sparse versions, resulting in four different plots. As before, the first k = 4

PCs are retained, and λ is selected according to the BIC. The robust distance-distance plot (Figure

4b) points out a very distinct outlier group (denoted by symbols ×) which in fact represents all

car-models running on diesel. The robust sparse model (Figure 4d) is also able to clearly identify

this particular group of outliers. In contrast, when considering the standard non-sparse (Figure

4a) and sparse (Figure 4c) distance-distance plots, these outliers cannot be identified, since their
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Table 2: Loadings of the variables on the first four robust non-sparse (λ = 0) and robust sparse

(λ = 2.36) PCs of the car data set.

Robust PCA Robust sparse PCA

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

symboling -0.03 -0.04 0.03 -0.17 0 0 0 0

wheel-base 0.24 0.25 0.08 0.16 0 0.50 0 0

length 0.29 0.18 -0.05 0.04 0.24 0 0.85 0

width 0.26 0.16 0.14 0.03 0.21 0 0 0

height 0.08 0.39 -0.26 0.32 0 0.87 0 0

curb-weight 0.24 0.13 0.12 0.00 0.32 0 0 0

bore 0.24 0.16 -0.25 0.04 0.21 0 0.03 0

stroke 0.00 -0.24 0.29 -0.58 0 0 0 0

compression-ratio -0.47 0.61 0.49 -0.11 -0.45 0 0.53 0

horsepower 0.36 -0.01 0.16 -0.20 0.43 0 0 0

peak-rpm 0.08 -0.38 0.60 0.64 0 0 0 1.00

city-mpg -0.31 0.04 -0.02 0.14 -0.30 0 0 0

highway-mpg -0.33 0.07 -0.04 0.14 -0.35 0 0 0

price 0.33 0.31 0.34 -0.12 0.40 0 0.06 0

EV % 49.20 15.54 10.12 5.97 45.73 8.32 6.03 4.16

Cumulative EV % 49.20 64.74 74.85 80.82 45.73 54.05 60.08 64.24

presence is masked by the use of a non-robust diagnostic measure. We conclude that in this

example only the robust procedure allows to detect the group of outliers, and that adding the

sparsity condition did not affected the diagnostic power of the robust distance-distance plot.

Example 2

The yarn data set (see Swierenga et al., 1999) contains near-infrared (NIR) spectra of 21 PET

yarns of different density. 268 different wavelengths were measured, yielding a data set of size

21 × 268. As the algorithm discussed in Section 3 computes one (sparse) PC at a time and may

stop after computing the kth component, it is especially useful in high-dimensional applications,

where the actual information is restricted to a comparatively low-dimensional subspace. Due to

this characteristic, computation time can be reduced tremendously, as in such settings usually

only a few PCs are important. In the data set k = 2 PCs already explain more than 85% of the
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Figure 4: Distance-distance plots for standard and robust PCA and their sparse versions. In the

robust plots vehicles running on diesel (×) are clearly distinguishable from vehicles using gasoline

(©).

total (robust) variance, thus the iteration can be stopped after obtaining the first two principal

components, rather than computing all min(n, p) loadings vectors. In this particular example this

reduces computation time by 90% (from 41 to 4 seconds for standard and from 135 to 13 seconds

for robust PCA on an AMD Athlon x64 X2 4200+ running at 2.2GHz).

Figure 5 shows the spectral lines of the 21 observations (black). Three spectral intervals A, B

and C are pointed out, as the variables in these areas show a higher variance than in other regions.

In interval B the single yarns are grouped together to 5 “clusters”, whereas in region A and C

this pattern cannot be observed and the yarns are more homogeneously structured. We add three
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Figure 5: The yarn data set. The NIR spectrum of 21 different PET yarns (black), with intensity

measured at 268 wavelengths. Outliers (in grey) were added for challenging the robust sparse

PCA estimator.

outlying spectra (see Figure 5, in grey) in order to test the algorithm’s robustness properties in

high-dimensional scenarios.

We start by selecting an appropriate value for the number k of PCs to retain. The screeplot in

Figure 6 conforms that k = 2 is a good choice, explaining most of the (robust) variance. Note that

the large value for EV1 for the standard method is mainly due to the fact that the sample variance

is inflated by the outliers. The screeplot for standard PCA on the data set without the outlying

spectra does resemble Figure 6 (b). Then, we use the tradeoff curve in Figure 7 for selecting a

value of λ keeping a sufficiently large percentage of explained variance. For robust PCA we take

λ = 16.02, a value at the end of the flat part of the curve and well before the sharp decrease in the

tradeoff curve. For that value of λ we explain still 85% of the robust variance. The BIC criterion

gives us a value of 19.55, which is not that different, but leads to a too large loss of explained

robust variance. For standard PCA we take λ = 12.77 explaining 75% the total variance.

Figure 8 shows the loadings of the 268 variables, labeled with wavenumbers one to 268 for

standard and robust PCA, and their sparse version. For standard PCA, the loadings in general
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Figure 6: Scree-plots for a (a) standard and (b) robust PCA (λ = 0) for the yarn data set.
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Figure 7: Tradeoff curves for standard and robust sparse PCA computed on the yarn data set.

The dashed lines represent the selected value of the tuning parameter λ.

do not seem to contain any interpretable structure and are heavily influenced by the outliers.

The first standard sparse PC (panel b, dashed line), does hardly contain any zeros, whereas

the second (panel d, dashed line) does only contain 11 non-zero loadings. However, this second

sparse standard PC does not point out specific spectral ranges, but is mainly made up of single
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Figure 8: Loadings of the 268 variables on the first two principal components using standard

(grey) and robust (black) PCA. Results are given for both sparse (right) and non-sparse (left)

PCA for the yarn data set.

spikes, describing the outlier’s random pattern. In contrast to this, robust PCA shows distinct

features in all four plots. The first non-sparse robust PC (panel a, solid line) points out a peak

at the spectrum’s lower end. This peak is even much more clearly detected by the robust sparse

model (panel b, solid line) and corresponds to the spectral range B in which the yarns reveal a
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rather “clustered” structure. Most of the loadings outside of the interval B are reduced to zero,

illustrating that a sparse approach make interpretation easier. The second robust PC (panel c,

solid line) is mainly made up of the wavelengths in spectral ranges A and C, corresponding to the

wavelengths with high variability but without “cluster structure” among the yarns. Wavelengths

outside of these intervals A and C contribute less to the second PC, as their (absolute) loadings are

quite low. The loadings of the second sparse robust PC (panel d, solid line) do even much better

in separating the wavelengths in intervals A or C from the others; almost all loadings outside of

these ranges are exactly equal to zero. As we can see from the tradeoff curve in Figure 7 (b), the

sparse robust solution only explains 1% less variance than the non-sparse (λ = 0), whereas the

number of non-zero loadings decreases from 2× 268 = 536 to 159. Despite the noise added by the

three outlying spectra, the robust sparse method is capable of finding distinct structures in the

data.

7 Concluding remarks

Sparse PCA delivers components that can be considered as a compromise between maximizing

the variance and simplifying the interpretability. Robust sparse PCA also has the goal of simple

interpretability, but the determination of the PCA directions is not affected by outlying obser-

vations. The proposed approach is based on the idea of projection-pursuit, maximizing a robust

variance for finding the directions. Projection-pursuit based PCA has the further advantage that

the components are extracted sequentially, which allows to stop the algorithm after a desired

number of components. This is especially attractive for the analysis of data in high dimensions,

with possibly fewer observations than variables.

The optimal level of the tuning parameter λ, optimal in terms of both interpretability and

explained variance, can be determined by an information criterion like the BIC criterion introduced

in equation (12). This criterion can be used for determining the sparsity parameter jointly for all

extracted PCs. The simulations and the data examples have demonstrated that the robust sparse

PCs can be accurately estimated with the Grid algorithm, that the results are resistant with

respect to data outliers, and that the resulting sparsity patterns are useful. The tradeoff curve,

visualizing the tradeoff between explained variance and sparsity, can be used as an exploratory

tool for obtaining more guidance on an optimal sparsity level. An implementation of the algorithm
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is available in the R package pcaPP (Filzmoser et al., 2010).

There are several questions we did not address and which are left for future research. For

instance, one could think of a joint selection criterion for the number of principal components and

the tuning parameter λ, as opposed to the two-step approach followed in this paper. Another

limitation of the paper is that we only considered the L1 norm in the constraint on the loadings.

In regression analysis one frequently uses the L2 norm, e.g. Maronna (2011) for regularized robust

regression, but this will not lead to sparse solutions. Using the L0 norm, though, does yield

sparsity (see Farcomeni, 2009). Finally, one could consider to add a supplementary penalty on the

norm of the score vectors, given in (3), to get both sparse loadings coefficients and score vectors,

as in Witten et al. (2009). This would yield a sparse variant of robust low-rank approximations

of a data matrix, as in Maronna and Yohai (2008).

A naive approach to robust sparse PCA would be to estimate a sparse robust covariance

matrix, and then compute the eigenvectors of it. While sparse robust covariance matrices have

recently been proposed (Croux et al., 2010), this is not a useful approach since the eigenvectors

will not inherit the sparsity of the matrix. A projection-pursuit approach, as undertaken in this

paper, avoids this pitfall. Projection-pursuit approaches to sparse discriminant analysis and sparse

canonical correlation analysis were recently proposed (see Witten and Tibshirani, 2011; Lykou and

Whittaker, 2010), and robust version of these methods can be obtained along similar lines as in

this paper.
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