
1208 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 6, AUGUST 2009

Robust Speaker-Adaptive HMM-Based
Text-to-Speech Synthesis

Junichi Yamagishi, Member, IEEE, Takashi Nose, Heiga Zen, Zhen-Hua Ling, Tomoki Toda, Member, IEEE,
Keiichi Tokuda, Member, IEEE, Simon King, Senior Member, IEEE, and Steve Renals, Member, IEEE

Abstract—This paper describes a speaker-adaptive HMM-based
speech synthesis system. The new system, called “HTS-2007,” em-
ploys speaker adaptation (CSMAPLR+MAP), feature-space
adaptive training, mixed-gender modeling, and full-covariance
modeling using CSMAPLR transforms, in addition to several other
techniques that have proved effective in our previous systems.
Subjective evaluation results show that the new system generates
significantly better quality synthetic speech than speaker-depen-
dent approaches with realistic amounts of speech data, and that
it bears comparison with speaker-dependent approaches even
when large amounts of speech data are available. In addition, a
comparison study with several speech synthesis techniques shows
the new system is very robust: It is able to build voices from
less-than-ideal speech data and synthesize good-quality speech
even for out-of-domain sentences.

Index Terms—Average voice, HMM-based speech synthesis,
HMM Speech Synthesis System, HTS, speaker adaptation, speech
synthesis, voice conversion.

I. INTRODUCTION

S
TATISTICAL parametric speech synthesis based on

hidden Markov models (HMMs) [1], [2] is now well-es-

tablished and can generate natural-sounding synthetic speech

[3]. In this framework, we have pioneered the development of

the HMM Speech Synthesis System, HTS (H Triple S) [4].

This research started by developing algorithms for generating

a smooth parameter trajectory from HMMs [5]–[9]. Next, to

simultaneously model the excitation parameters of speech as
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well as the spectral parameters, the multispace probability

distribution (MSD) HMM [10] was developed. Using the log-

arithm of the fundamental frequency and its dynamic

and acceleration features as the excitation parameters, the

MSD-HMM enabled us to treat the sequence, which is

a mixture of one-dimensional real numbers for voiced regions

and symbol strings for unvoiced regions, in a probabilistic

framework. To simultaneously model the duration parameters

for the spectral and excitation components of the model, the

MSD hidden semi-Markov model (MSD-HSMM) [11] was

developed. The HSMM [12]–[14] is an HMM having explicit

state duration distributions instead of transition probabilities,

to directly model duration; it can generate more appropriate

temporal structures for speech. These basic systems [1], [4],

[11] employed a mel-cepstral vocoder with simple pulse or

noise excitation, resulting in synthetic speech with a “buzzy”

quality. To reduce buzziness, mixed or multi-band excitation

techniques [15]–[17] have been integrated into the basic sys-

tems to replace the simple pulse or noise excitation and have

been evaluated [18]–[21]. These basic systems also had another

significant problem: the trajectories generated from the HMMs

were excessively smooth due to statistical processing, resulting

in synthetic speech with a “muffled” quality. To alleviate

this problem, a parameter generation algorithm that considers

the global variance (GV) of a trajectory to be generated was

developed [22].

From the accumulation of these incremental improvements,

several high-quality text-to-speech synthesis systems have

been developed [20], [23]–[25]. They have demonstrated good

performance in the Blizzard Challenges, which are open evalu-

ations of corpus-based text-to-speech (TTS) synthesis systems

[26]–[28]. In the Nitech-HTS system [20] used for the 2005

Blizzard Challenge, a high-quality speech vocoding method

called STRAIGHT (Speech Transformation and Representation

using Adaptive Interpolation of weiGHTed spectrum) [29] was

used, in conjunction with MSD-HSMMs, mixed excitation, and

the GV parameter generation algorithm. STRAIGHT explicitly

uses information for removing the periodic components

from the estimated spectrum: it interpolates missing frequency

components considering neighboring harmonic components

based on an adaptive smoothing process on a time-frequency

region. This enables the generation of better spectral parameters

and consequently more natural synthetic speech [20]. In the

Nitech-NAIST-HTS system [23] for the Blizzard Challenge

2006, semi-tied covariance (STC) modeling [30], [31] was

employed to enable the use of full-covariance Gaussians in

the HSMMs, and the structure of the covariance matrices for
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the GV probability density functions (pdfs) was changed from

diagonal to full. Although the use of GV parameter generation

drastically reduces the muffled quality of synthetic speech, it

was sometimes perceived as more artificial. One reason for

this was that each acoustic feature dimension was optimized

independently. This limitation was addressed by the use of

full-covariance modeling in the HSMMs.

The above systems were speaker-dependent. In parallel,

we have also been developing a speaker-adaptive approach

in which “average voice models” are created using data from

several speakers. The average voice models may then be

adapted using a small amount of speech from a target speaker

(e.g., [32] and [33]). This research started by transforming only

the spectral parameters [34] using several speaker adaptation

techniques developed for automatic speech recognition, such

as maximum-likelihood linear regression (MLLR) [35]. To

adapt spectral, excitation, and duration parameters within the

same framework, extended MLLR adaptation algorithms for

the MSD-HSMM have been proposed [32], [36], [37]. A more

robust and advanced adaptation scheme, constrained structural

maximum a posteriori linear regression (CSMAPLR), has been

proposed and its effectiveness in HMM-based speech synthesis

has been demonstrated [33].

We have also developed several techniques for training the

average voice model. The average voice model is constructed

using training data from several speakers. Because these data

include many speaker-dependent characteristics that affect the

adapted models and the quality of synthetic speech generated

from them, we have employed a model-space speaker-adaptive

training (SAT) algorithm [38] in order to reduce the negative

influence of speaker differences [39]. In the SAT algorithm, the

model parameters for the average voice model were obtained

using a blind estimation procedure assuming that the speaker

difference was expressed by linear transformations of the mean

vectors of Gaussian pdfs in the average voice model. A similar

model-space SAT algorithm for the MSD-HSMM was also

derived [32]. Furthermore, applications to style adaptation

(conversion of speaking styles and emotional expressions) and

to multilingual/polyglot text-to-speech systems have also been

reported [40]–[42]. By using the speaker-adaptive approach,

we can obtain natural-sounding synthetic speech for a target

speaker from as little as a hundred adaptation utterances,

corresponding to about six minutes of speech data. In our

experiments, we have shown that the synthetic speech gener-

ated using this approach is perceived as being more natural

sounding, by many listeners, than that of a speaker-dependent

(SD) system trained using thirty minutes of speech from the

target speaker [32], [33]. The data-rich average voice model

provides a strong prior for speech generation, with the target

adaptation data being used to estimate speaker-specific charac-

teristics.

In this paper, we outline a high quality speaker-adaptive

HMM-based speech synthesis system. We then propose two

new algorithms for acoustic modeling. This system was first

evaluated in the 2007 Blizzard Challenge [28] and several

issues were analyzed from additional evaluation tests. We

then compare the system with several major competing TTS

methods used in the 2007 Blizzard Challenge and assess its

performance and potential.

We have combined several advances in the speaker adaptive

approach with our existing speaker-dependent system that

employs STRAIGHT, mixed excitation, HSMMs, GV, and

full-covariance modeling. 1) First we propose a feature-space

speaker adaptive training (SAT) algorithm for HSMMs to

replace the standard embedded training used in the speaker-de-

pendent system or the model-space SAT algorithm used in

conventional speaker-adaptive systems. The feature-space

SAT algorithm addresses two limitations of the model-space

SAT algorithm mentioned in the next section and hence yields

better speaker normalization of the average voice model. 2)

Second, we propose a modeling technique for the average voice

model called mixed-gender modeling to efficiently construct an

average voice model from a limited amount of training data.

3) To adapt the average voice model, we utilize an algorithm

combining CSMAPLR and maximum a posteriori (MAP)

adaptation [43] for HSMMs. 4) We investigate a full-covari-

ance modeling technique using the CSMAPLR transforms and

adopt it instead of the STC transform. Although CSMAPLR

is a speaker adaptation method rather than a full-covariance

modeling method, it has the same transforms for the covariance

matrices as STC and the additional MAP adaptation estimates

the diagonal elements of the covariance matrix in a similar

way to updating processes for STC. For CSMAPLR, multiple

transforms are estimated using the robust SMAP criterion [44],

which is expected to alleviate the artificiality and to improve

the quality of synthetic speech. We describe the details of

the resulting system, which we call “HTS-2007,” assess its

performance and discuss a number of outstanding issues.

II. HTS-2007 SYSTEM

The HTS-2007 system, outlined in Fig. 1, consists of four

main components: speech analysis, average voice training,

speaker adaptation, and speech generation.

A. Speech Analysis

We use three kinds of parameters for the STRAIGHT

mel-cepstral vocoder with mixed excitation: the STRAIGHT

mel-cepstrum [20], and aperiodicity measures. These

are the same as those of the Nitech-HTS 2005 speaker-depen-

dent system. The mel-cepstral coefficients are obtained from

a STRAIGHT spectral analysis in which -adaptive spectral

smoothing is carried out in the time–frequency domain to

remove signal periodicity. The values are estimated using

a three-stage extraction to reduce errors such as halving

and doubling and to suppress voiced/unvoiced errors. First,

using the instantaneous-frequency-amplitude-spectrum-based

algorithm (IFAS) [45], the system extracts values for all

speech data of each speaker within a common search range.

Second, the range of each speaker is roughly determined

based on a histogram of the extracted values. Third,

values are re-extracted in the speaker-specific range using three

methods: IFAS, a fixed-point analysis called TEMPO [46] and

the ESPS get- tool [47], [48]. The final estimated value for

at each frame is the median of the three extracted values.
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Fig. 1. Overview of the HTS-2007 speech synthesis system which consists of
four main components: speech analysis, average voice training, speaker adapta-
tion, and speech generation.

The aperiodicity measures for mixed excitation are based on a

ratio between the lower and upper smoothed spectral envelopes,

and averaged across five frequency sub-bands (0–1, 1–2, 2–4,

4–6, and 6–8 kHz).

In addition to these static features (STRAIGHT mel-cep-

strum, and 5 aperiodicity measures), dynamic and

acceleration features are also used, which are referred to as the

first and second delta parameter vectors, corresponding to the

first and second time derivative estimates of the static feature

vector. Let be the static vector at frame . For a given

static vector sequence with a length of

frames, the th delta parameter vector for , , is defined

by

(1)

where are coefficients used to obtain delta parameters

and , . For example, if we set ,

then the derived from numerical differentiation are

for (2)

for (3)

The static and delta feature vectors are combined and the obser-

vation vector at frame , denoted by , is

(4)

where denotes matrix transpose.

B. Acoustic Models and Labels

As in our previous systems, we utilize context-dependent

multi-stream left-to-right MSD-HSMMs [11] in order to si-

multaneously model the above acoustic features and duration.

The English phonetic and linguistic contexts that we employ

contain phonetic, segment-level, syllable-level, word-level and

utterance-level features [49]. Japanese phonetic and linguistic

contexts used in the following experiments contain phonetic,

mora-level [50], morpheme, accentual, breath-group-level,

and utterance-level features [39]. In addition to this phonetic

and linguistic information, we added speaker gender context

labels when conducting the mixed-gender modeling described

in Section II-D.

C. Speaker Adaptive Training

We estimated average voice models using the HSMMs de-

scribed above, trained with the SAT algorithm from training data

consisting of several speakers’ speech. Previously, we had uti-

lized a model-space SAT algorithm [38] using linear transfor-

mations of mean vectors of Gaussian pdfs in our average voice

systems [32], [39]. Here, we employ a feature-space SAT algo-

rithm [51] using linear transformations of feature vectors. There

are two major reasons for the change from model-space to fea-

ture-space.

The first reason is computational feasibility. As reported in

[51], in model-space SAT algorithms it is necessary to store a

full matrix for each Gaussian pdf, or to store statistics for each

Gaussian component for every speaker. In our speaker-adap-

tive HMM-based speech synthesis system, there are over 10 mil-

lion Gaussians, which can make parameter estimation imprac-

tical. In particular, the embedded training procedures in which

we could use the model-space SAT were restricted to only the

training procedures in which the mean and covariance param-

eters were tied across several Gaussian pdfs [32], [39]. On the

other hand, the feature-space SAT algorithm can be applied to

all embedded training procedures.

The second reason is the additional use of Gaussian pdf co-

variance matrices for speaker normalization of the average voice

model. A linear transformation of feature vectors can be viewed

as a simultaneous linear transform of both mean vectors and

covariance matrices using the same matrix [51], [52], and thus

we may also regard the feature-space SAT algorithm as a con-

strained model-space algorithm.

We can derive feature-space SAT in the framework of the

HSMM in a similar way to [32]. An -state HSMM is

specified by initial state probabilities , state transition

probabilities , state output probability distribu-

tions , and state duration probability distributions

(see Fig. 2). Let be the total number of training

speakers, be all the training data, and

be training data of length for speaker

. In the feature-space SAT algorithm, we assume that each

state of the HSMM has an output pdf , characterized

by a mean vector and a diagonal covariance matrix
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Fig. 2. Ergodic and left-to-right hidden semi-Markov models. Each state has a
state output distribution � ���� � and a state duration distribution � ���. The state
duration distributions directly model and control within-state duration instead of
the self-transition Markov probabilities. For further explanation of the training,
estimation and implementation and issues for HSMMs, see [11], [40], and [32].
(a) A five-state HSMM (one beginning null state, three emitting states, and one
ending null state). (b) A five -state left-to-right HSMM (one beginning null state,
three emitting states, and one ending null state).

, and a duration pdf characterized by a

scalar mean and variance

(5)

(6)

where and are the observation vector and duration, re-

spectively, at state , and , , , and

are speaker-dependent linear transforms which normalize

the observation vector and its duration for speaker . These

linear transforms can be estimated using the HSMM-based con-

strained maximum-likelihood linear regression (CMLLR) algo-

rithm [33].

Re-estimation formulas based on the EM algorithm [53] for

the Gaussian pdfs are given by

(7)

(8)

(9)

(10)

where is the state occupancy probability of being in state

of the HSMM for the period of time from to given

and is defined as

(11)

Here, the observation probability of the training data given

the model , and the forward and backward probabil-

ities, and , can be written as

(12)

(13)

(14)

where and , and is the initial state prob-

ability of being state at time . For further explanation of

the training, estimation and implementation issues for HSMMs,

see [11], [40], and [32].

D. Mixed-Gender Modeling and Training Procedures

In addition to phonetic and prosodic features, the variability

of speech may be accounted for by speaker-dependent charac-

teristics, some of which may be shared amongst all speakers of

the same gender. If a large amount of training data for male and

female speakers is available, then it is efficient to use gender-de-

pendent average voice models as an initial model before speaker

adaptation [33]. In practice, however, the available training data

from one or both genders may be limited. For example, the

CMU-ARCTIC speech database1 includes four male and two

female speakers. In such cases, it would not be the best choice

to use gender-dependent average voice models.

A gender-independent average voice model may be used, but

our previous work has shown that this results in a degradation in

the naturalness and similarity of the resultant synthetic speech,

1A free database for speech synthesis, http://www.festvox.org/cmu_arctic/.
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Fig. 3. Details of mixed-gender modeling. This modeling technique consists of
speaker adaptive training and decision-tree-based context and gender clustering.

after adaptation, compared with a gender-dependent average

voice model. Alternatively, it is possible to use the gender-de-

pendent average voice models simultaneously to enable them to

complement one another and to perform soft decisions during

the speaker adaptation [33]. However, we found no significant

improvement between the results of the simultaneous use of

the gender-dependent average voice models and those of the

single gender-dependent average voice model. It required twice

as many parameters for adaptation as the gender-dependent av-

erage voice model and seemed to suffer from the “curse of di-

mensionality.” Therefore, we sought an approach which satis-

fies the following three conditions: 1) it reflects the gender-de-

pendent characteristics as prior information; 2) it makes the best

possible use of the training data from both genders, comple-

menting one another if necessary; and 3) it does not increase

the number of parameters required for speaker adaptation.

To achieve this, we propose a mixed-gender modeling tech-

nique, similar to style-mixed modeling [54]. Mixed-gender mod-

eling includes speaker adaptive training and decision tree-based

context and gender clustering, and is outlined in Fig. 3. In order

both to normalize speaker-dependent characteristics and to con-

serve gender-dependent characteristics, we first train gender-

dependent monophone HSMMs using the SAT algorithm with

CMLLR global transforms. These are converted into gender-de-

pendent context-dependent HSMMs, and the model parameters

are re-estimated using the SAT algorithm again. Then, using the

state occupancy probabilities obtained in the SAT framework,

decision-tree-based context clustering (using a minimum de-

scription length (MDL) criterion [55]) is applied to the HSMMs,

and the model parameters of the HSMMs at each leaf node of the

decision trees are tied. We assume that the CMLLR transforms

for the SAT algorithm remain unchanged during the clustering.

The gender of each speaker is treated as a clustering context,

and both the gender-dependent models undergo clustering at the

same time. As a result, the gender information is included in the

single resulting acoustic model. Note that a decision tree was

constructed independently for each combination of state index

and acoustic parameter (mel-cepstrum, , aperiodicity) or

duration. Hence, when the target feature is generally gender-

specific, such as , the gender will tend to be automati-

cally split close to the root of the tree by using gender-related

Fig. 4. Part of a constructed decision tree in the mixed-gender modeling. Gen-
ders of training speakers are split by using gender-related questions as well as
other contexts.

questions, and the pdfs of that feature retain their gender-depen-

dent characteristics. For features which are less gender-depen-

dent, gender will tend to be split deeper down the tree or not at

all, thereby making efficient use of training data from both gen-

ders. Fig. 4 shows a part of the constructed decision tree for the

mel-cepstral part of the fifth state of the HSMMs. In this part

of the tree, we can see that vowels are gender-dependent, but

consonants are not, which seems reasonable. We re-estimate the

clustered HSMMs using SAT with piecewise linear regression

functions. The decision trees constructed for the mixed-gender

model are also used to determine the regression classes, since

these automatically reflect both gender differences and phonetic

and linguistic information.

E. Speaker Adaptation and Full-Covariance Modeling

In the speaker adaptation stage, we adapt the mixed-gender

average voice model to that of the target speaker by using speech

data plus gender information about the target speaker. We utilize

a combined algorithm of HSMM-based CSMAPLR and MAP

adaptation. The CSMAPLR adaptation simultaneously trans-

forms the mean vectors and covariance matrices of state-output

and state-duration distributions of the HSMMs as follows:

(15)

(16)

(17)

(18)

(19)

(20)

where and are the extended obser-

vation and duration vectors.

and are,

respectively, the linear transform matrices for the state output

and duration pdfs.

To robustly estimate and , structural maximum

a posteriori (SMAP) estimation [44] is used, in which tree

structures group the distributions in the model and propagate

priors for MAP estimation. Specifically, we first estimate a

global transform at the root node of the tree structure using

all adaptation data, and then propagate the transform to its

child nodes as their priors. In the child nodes, transforms are

estimated again using their adaptation data, based on MAP
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Fig. 5. Concepts of constrained structural maximum a posteriori linear regres-
sion. Transforms estimated at each node are propagated to its child nodes as their
priors for MAP estimation. A recursive MAP-based estimation of the transforms
from the root node to lower nodes is conducted.

estimation with the propagated priors and

. Then, the recursive MAP-based estimation of the

transforms from the root node to lower nodes is conducted (see

Fig. 5). For the tree structures of the distributions, the decision

trees for the mixed-gender average voice model are used for the

same reason as the above SAT algorithm with piecewise linear

regression functions. Then, since the CSMAPLR adaptation

algorithm estimates a piecewise linear regression, we update

the linearly transformed model using MAP adaptation.

Another advantage of combining CSMAPLR and MAP adap-

tation is that we can efficiently construct full-covariance models.

As we can see from (15), we may use the CSMAPLR transforms

for full-covariance modeling, since is a diagonal covariance

matrix and is a square matrix. In order to precisely model the

full-covariance in the HSMMs, the following update procedures

are used.

1) Train all parameters for the average voice model. Build the

tree structures to group the distributions in the model.

2) Using the current transforms ,

, and the average voice model, estimate the new

transforms and based on the

SMAP criterion as follows.

a) At the root node, estimate the initial transforms

and using the ML criterion (i.e. the CMLLR adap-

tation). Define the priors and for its child

nodes as and .

b) At each child node, estimate new transforms and

using the MAP criterion as follows:

(21)

(22)

where is the th row vector of ,

and . Note that is the th cofactor

row vector of . The terms ,

, , and in

these equations are given by

(23)

(24)

(25)

(26)

where is the th row vector of the prior ,

is the th diagonal element of diagonal covari-

ance matrix , and is the th element of the

mean vector . and are

and 2 2 identity matrices. and are posi-

tive hyperparameters of the prior distributions for the

state output and duration distributions, respectively.

and are, respectively, indices for the set of the

distributions of the state output and duration distribu-

tions belonging to this node. Then and are scalar

values that satisfy the following quadratic equations:

(27)

(28)

Since the cofactor affects all row vectors of , we

update using an iterative method proposed in [51],

whereas we can obtain a closed-form solution for the

estimation of in (22).

c) Redefine the priors for its child nodes as

and and go to step b) until it reaches the

leaf nodes or terminal nodes determined by thresh-

olds.

d) Assign transforms for the distribution belonging to

the leaf or terminal nodes to and

.

3) Using the estimated transforms ,

, and the current average voice model, estimate ,

, , and for the average voice model based on the

MAP criterion as follows:

(29)
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(30)

(31)

(32)

where and are the current mean vectors of the state

output and duration distributions of the average voice

model for th state. and are the current covariance

matrices of the state output and duration distributions

of the average voice model for th state. and are

positive hyperparameters of the prior distributions for the

state output and duration distributions, respectively.

4) Go to step 2) until convergence, or an appropriate criterion

is satisfied.

5) Transform the covariance matrices to full covariance using

the updated parameters. Transform the mean vectors too.

F. Global Variance Parameter Generation Algorithm

Finally, we explain the GV parameter generation algorithm

[22] for the CSMAPLR adapted model. The GV parameter gen-

eration algorithm is a penalized maximum-likelihood method.

First, let us consider the problem of generating a parameter

sequence from HSMM having states, given the transforms

for CSMAPLR

adaptation and frame length in a maximum-likelihood

sense [5]. In this approach, we obtain a suboptimal parameter

sequence without the dynamic and

acceleration features as follows:

(33)

(34)

(35)

where is a hidden state sequence. Since

this equation can be simply rewritten as

(36)

we first determine an optimal state sequence by maximizing

, and then maximize using .

Here, we can obtain the optimal state sequence as

(37)

where state duration is given by

(38)

(39)

(40)

(41)

It is noted that the value of is rounded to the nearest positive

integer.

Given the optimal state sequence , we calculate a subop-

timal parameter vector sequence . is given

by

(42)

where

(43)

(44)

Although Kalman smoothing or regularization theory com-

monly uses or as

continuity constraints, (42) constrains the static features ob-

tained from (1)–(3) in the following way:

(45)

(46)

We can obtain a smoothed parameter sequence which maxi-

mizes from these constraints [5].

In the GV parameter generation algorithm [22], we manip-

ulate the objective function for by adding a penalty term as

follows:

(47)

where is a GV vector having variance of each dimen-

sion of the parameter sequence as shown in Fig. 6. is the

dimension of the static feature. Then, and

are the mean vector and full-covariance matrix of the GV vec-

tors estimated from the training data. is the weight for con-

trolling the balance between these terms, and we set to ,

based on the number of Gaussian distributions included in the

first term. The penalty term for the GV vector is intended to

keep the variance of the generated trajectory as wide as that
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TABLE I
DEFINITION OF HTS-2007 SYSTEM AND RELATIONSHIP TO PREVIOUS SYSTEMS

Fig. 6. A GV vector has variance of each dimension of the parameter sequence
���. ���� is the �th element of the GV vector ���.

of the target speaker, while maintaining an appropriate param-

eter sequence in the sense of maximum likelihood [22]. We use

a Newton–Raphson maximization, and employ a sequence ob-

tained from the maximization of , with a tra-

jectory variance which is manipulated to , as the initial se-

quence for the numerical optimization. Here, it is possible to

adapt the GV pdf using MAP adaptation. However, the number

of parameters of the GV pdf is very small. Specifically, it is equal

to the dimensionality of the static features. Hence, we directly

estimate the GV pdf from the adaptation data in the following

experiments.

Finally, an excitation signal is generated using mixed exci-

tation (pulse plus a noise component band-filtered according

to the five aperiodicity parameters) and pitch-synchronous

overlap add (PSOLA) [56]. This signal is used excite a mel-log-

arithmic spectrum approximation (MLSA) filter corresponding

to the STRAIGHT mel-cepstral coefficients and thus generate

the speech waveform. These vocoder modules are the same

as those of the above Nitech-HTS 2005 speaker-dependent

systems [20].2

2Comparison of these vocoder modules, our conventional vocoder with
simple pulse or noise excitation and natural speech in analysis-synthesized
speech was reported in [57]. Comparison of them in HMM-based speech
synthesis was reported in [20]. Comparison of natural speech, vocoded speech,
and HMM-based synthetic speech was reported in [58].

G. Relationship to Previous Systems

Table I shows definition of the proposed system and its

relationship to previous systems. As can be seen from the

table, two kinds of previous systems can be compared with

the HTS-2007 system: a conventional speaker-adaptive system

[33], [59] and our speaker-dependent systems for the 2005 and

2006 Blizzard Challenges [20], [23]. Comparing the conven-

tional speaker-adaptive and the HTS-2007 systems, we can

assess the effect of the use of STRAIGHT, mixed excitation,

and GV. We have previously analyzed the relation between

speaker-dependent and speaker-adaptive approaches without

STRAIGHT, mixed excitation, and GV [33]. Considering

our Blizzard Challenge 2005 and 2006 systems alongside the

HTS-2007 system, we can compare speaker-dependent and

speaker-adaptive approaches.

The offline procedures such as training, clustering, and adap-

tation for the HTS-2007 system require more computational

costs than those for previous speaker-dependent systems since

the system simply has to handle more data from several training

speakers.3 However, since we can concurrently conduct all the

procedures per state, per stream, per speaker, and/or per subset

of training data, grid computing clusters can straightforwardly

deal with the procedures. Computational costs for the online

procedures such as parameter generation and vocoding are the

same as those for our 2006 systems.

III. EXPERIMENTS

A. Blizzard Challenge 2007

The Blizzard Challenge is an annual evaluation of corpus-

based speech synthesis systems, in which participating teams

build a synthetic voice from common training data, then syn-

thesize a set of test sentences. Listening tests are used to eval-

uate the systems in term of naturalness, similarity to original

speaker and intelligibility. The Blizzard Challenge 2005 used

3Computational costs for each frame are the same as those for our 2006 sys-
tems.
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the CMU-ARCTIC speech database; in 2006, a database con-

sisting of five hours of speech uttered by a male speaker was

released by ATR from their ATRECSS corpus [60]. In the Bliz-

zard Challenge 2007, an extended version of the 2006 corpus

was released by ATR, containing eight hours of speech data ut-

tered by the same male speaker [60].

B. Experimental Conditions

We carried out a number of subjective and objective eval-

uation tests to assess the performance of the new system and

to evaluate the HSMM-based feature-space SAT algorithm and

the mixed-gender modeling technique. In this section, we re-

port on results using the CMU-ARCTIC and ATRECSS speech

databases, employing systems that use a diagonal covariance

model. The accuracy of the full-covariance modeling techniques

depends strongly on the amount of speech data available; this

evaluated in the next section.

The CMU-ARCTIC speech database contains a set of ap-

proximately one thousand phonetically balanced sentences ut-

tered by four male speakers (AWB, BDL, JMK, and RMS) and

two female speakers (CLB and SLT), with a total duration of

about six hours. The ATRECSS speech database was released

from ATR to be used in the 2007 Blizzard Challenge and con-

tains the same sentences as CMU-ARCTIC, together with ad-

ditional sentences, all uttered by a male speaker (EM001), with

a total duration of about eight hours. It contains speech from

three genres: conversation (3617 utterances), news (1930 utter-

ances), and ARCTIC (1032 utterances). We used the U.S. Eng-

lish phone set “radio” of the Festival speech synthesis system

[61], and obtained the phonetic and linguistic contexts from Fes-

tival utterance files (as distributed with these corpora) without

any modifications.

Speech signals were sampled at a rate of 16 kHz and win-

dowed by an -adaptive Gaussian window with a 5-ms shift.

The feature vectors consisted of 24 STRAIGHT mel-cepstral

coefficients (plus the zeroth coefficient), , aperiodicity

measures, and their dynamic and acceleration coefficients.

We used five-state left-to-right context-dependent multistream

MSD-HSMMs without skip transitions. Each state had a single

Gaussian pdf with a diagonal covariance matrix. For speaker

adaptation, the transformation matrices were triblock diag-

onal corresponding to the static, dynamic, and acceleration

coefficients. We set the hyperparameters as and

. We set the number of frames of speech data

to be generated to , that is, .

C. Implementation Issues

Since the HSMM-based feature-space SAT algorithm men-

tioned in Section II-C requires substantial computation [62],

[63] and it was required to build systems within only one month

in the Blizzard Challenge 2007, we had to simplify the training

procedures for the average voice model used in our Blizzard

Challenge 2007 entry. We first trained the acoustic models using

the HMM-based feature-space SAT algorithm. We then roughly

estimated initial duration pdfs from HMM trellises [64], and

conducted the decision tree-based context and gender clustering

for the duration pdfs. Using the tied duration pdfs, we applied

the HSMM-based SAT algorithm with piecewise linear regres-

sion functions in order to normalize speaker characteristics in-

cluded in the duration pdfs as well as other acoustic features.

Subsequent to the Blizzard Challenge 2007, we employed

an efficient forward–backward algorithm for the HSMMs pro-

posed by Yu and Kobayashi [62], [65], which makes training

time for the HSMMs a factor of times shorter,

where is the number of states used in an utterance. is the

maximum state duration.4 Therefore, we were able to use the

HSMM-based feature-space SAT algorithm in all the training

procedures in additional experiments reported in Sections IV-C

and V. The new efficient algorithm for HSMMs has been im-

plemented and released in HTS version 2.1 [4].

D. Evaluation of the Proposed System

We first compared the system proposed in this paper with the

conventional speaker-adaptive system [33], [59] in terms of the

naturalness and similarity of the synthetic speech. Both systems

were constructed using the same training data for the speaker-

independent average voice model, and the same adaptation data

for the target speaker. We chose male speaker AWB as the target

speaker, using three male speakers (BDL, JMK, and RMS) and

two female speakers (CLB and SLT) from the CMU-ARCTIC

database as training speakers for the average voice model. The

average voice model was trained using about 1000 sentences

from each speaker, and the system was adapted to the target

speaker using 100 sentences selected from the corpus randomly.

Finally, a set of ten test sentences—which were not included

in either the training or the adaptation data—were used for the

subjective evaluations.

We carried out paired comparison tests via the internet, in

which 28 subjects were presented with a pair of synthetic speech

utterances generated from the adapted models in random order,

and asked to indicate which sounded more natural. At the same

time, we conducted an “ABX” comparison test to assess the

adaptation performance of the average voice models of both sys-

tems. In this test, the subjects were presented with a reference

utterance from the target speaker, in addition to the above pair

of synthesized utterances, and asked which synthetic utterance

was most similar to the reference. The same test sentences were

used in both tests.

Fig. 7 shows the average preference scores (with 95% confi-

dence interval) of the paired comparison and ABX tests. From

this figure, we can see that the naturalness and similarity of the

synthetic speech generated from the adapted model using the

new system are both greatly improved compared with our pre-

vious system. In order to analyze which technique is responsible

for this positive result, we separately investigated the effects

of STRAIGHT, mixed excitation, feature-space SAT, mixed-

gender modeling and GV parameter generation in some prelim-

inary experiments. The results of these preliminary tests indi-

cated that each of the methods had an effect, with the GV pa-

rameter generation making the largest single contribution. The

4The computational complexity of the new efficient algorithm is ����� �
��� �, where � is the number of states used, � is the maximum state du-
ration, and � is the number of total frames of the observations, whereas the
conventional forward–backward algorithm requires ��� �� � computations
[11], [14].
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Fig. 7. Average preference scores of the paired comparison test and the ABX
test using our conventional system [33], [59] and the proposed system. Target
speaker is the English male speaker AWB.

Fig. 8. Objective evaluation of the SAT algorithms: Average mel-cepstral dis-
tance (dB). Target speaker is the English male speaker EM001.

amount of adaptation data in these experiments was very lim-

ited. The introduction of the new techniques results in an in-

crease in the number of parameters to be estimated. However, it

proved possible to robustly apply the GV parameter generation

algorithm using the adaptation data.

E. Evaluation of Feature-Space SAT

We evaluated the feature-space SAT algorithm using two

types of objective evaluation: the average mel-cepstral dis-

tance for the spectral parameters and the RMSE of .

In these evaluations, we chose the male speaker EM001 as

the target speaker and used six speakers—four male (AWB,

BDL, JMK, and RMS) and two female (CLB and SLT)—from

CMU-ARCTIC to train the average voice model. We con-

structed three kinds of gender-independent average voice

model: one using model-space SAT in HSMM embedded

training; a second using feature-space SAT in embedded

HSMM training; and a third using feature-space SAT for both

HMM and HSMM embedded training. Each average voice

model was constructed using about 1100 training sentences

from each speaker, and the amount of adaptation data ranged

from 10–100 sentences. The test set consisted of a further 1000

test sentences from the target speaker. For simplification of the

calculation of the average mel-cepstral distance and the RMSE

Fig. 9. Objective evaluation of the SAT algorithms: RMSE of ���� (cent).
Target speaker is the English male speaker EM001.

of , the state duration of each HSMM was adjusted after

Viterbi alignment with the corresponding natural utterance.5

The experimental results are shown in Figs. 8 and 9. Fig. 8

shows the average mel-cepstral distance between spectra gener-

ated from the adapted model and spectra obtained by analyzing

the target speakers’ natural utterances. Fig. 9 shows the RMSE

of between patterns of synthetic and real speech. Si-

lence, pause, and consonant regions were eliminated from the

mel-cepstral distance calculation. The RMSE of was cal-

culated in those regions where both the generated and the real

were voiced, since is not defined in unvoiced regions. Com-

paring HSMM-based model-space and feature-space SAT only,

one sees that the feature-space SAT gives slightly better results

in the adaptation of the parameter, whereas the error of the

feature-space SAT is slightly worse for adaptation of the spectral

parameters. However, we can also see that when we consistently

apply the feature-space SAT to all the embedded training pro-

cedures for HMMs and HSMMs, both the mel-cepstral distance

and RMSE of decrease substantially.

F. Evaluation of the Mixed-Gender Modeling

We evaluated mixed-gender modeling using the same ex-

perimental conditions and evaluation measures as for SAT.

We constructed gender-independent, gender-dependent, and

mixed-gender average voice models, and adapted them to

the target speaker using the same adaptation data. Figs. 10

and 11 show the average mel-cepstral distance and RMSE of

between the synthetic and natural speech. As before,

silence, pause, and consonant regions were eliminated from the

mel-cepstral distance calculation, and the RMSE of was

calculated in voiced regions only. Comparing the gender-de-

pendent and mixed-gender average voice models, in the case

of 10–50 adaptation sentences, we can see that the gender-de-

pendent modeling has a lower error than the mixed-gender

modeling, and is thus the most suitable average voice model to

employ in the case of very small amounts of adaptation data.

However, as the number of adaptation sentences increases,

more of the decision tree nodes containing a question about

gender can be used for determining the shared transforms. If

5In all the subjective evaluation tests, the state duration of each HSMM was
automatically determined using (37)–(41).
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Fig. 10. Objective evaluation of the mixed-gender modeling: Average mel-cep-
stral distance (dB). Target speaker is the English male speaker EM001.

Fig. 11. Objective evaluation of the mixed-gender modeling: RMSE of ����
(cent). Target speaker is the English male speaker EM001.

we compare the mel-cepstral distance of the gender-dependent

and mixed-gender average voice models in the case of 50–100

adaptation sentences, we can see that mixed-gender modeling

gradually becomes better. Mixed-gender modeling makes use

of training data from both genders and can create leaf nodes

common to both genders, as well as creating gender-dependent

ones where necessary. On the other hand, we can see that

mixed-gender modeling does not surpass gender-dependent

modeling in terms of error. This is because, in the decision

trees for , gender was always split at the root node; hence,

there are no mixed-gender leaf nodes.

G. Comparison With Nitech-HTS 2005

Finally, we conducted a comparison category rating (CCR)

test to compare the performance of the new system with the

speaker-dependent Nitech-HTS 2005 system. The only differ-

ence between this Nitech-HTS 2005 system and the system de-

tailed by Zen et al. [20] is the dimension of the mel-cepstral co-

efficients. In [20], 39 mel-cepstral coefficients were used. How-

ever, this increases the number of parameters of the matrix for

linear transformation. Hence, we used 24 mel-cepstral coef-

ficients for both systems. The experimental condition on the

training data in this subsection is the same as for the previous

experiments.

We constructed the new system using the training data

and adapted the resulting average voice model to the target

speaker using 100 sentences of the target speaker EM001. The

speaker-dependent system Nitech-HTS 2005 was built using

1000 sentences of the target speaker EM001. For reference, we

also compared synthesized speech generated from an adapted

model using the same 1000 sentences of the target speaker

EM001 as adaptation data. Twenty-five experimental subjects

were first presented with synthetic speech from Nitech-HTS

2005 as a reference, then with speech synthesized from the

adapted models either using 100 sentences or 1000 sentences

(in random order). The subjects were asked to compare the

synthetic speech generated from the adapted models with the

reference speech using a five-point scale: 2 for better, 1 for

slightly better, 0 for almost the same, 1 for slightly worse,

and 2 for worse than the reference speech.

The average values and their 95% confidence interval of each

adapted model in the CCR tests were 0.140 0.145 for 100

sentences and 0.424 0.08 for 1000 sentences, respectively.

The values indicate that the new system can synthesize speech

of about the same quality as the Nitech-HTS 2005 system from

only 100 adaptation sentences—that is, 10% of the training data

for the speaker-dependent systems. This is a significant result,

since the Nitech-HTS 2005 system performed very well in the

Blizzard Challenge 2005. Furthermore, we can see that the syn-

thetic speech generated from the new system using 1000 sen-

tences is judged to be slightly better than that using 100 sen-

tences and Nitech-HTS 2005 system. This result implies that

the speaker-adaptive approach has the potential to surpass the

usual speaker-dependent approach. We therefore decided to use

the speaker-adaptive approach, even given the large amount of

speech data provided in the Blizzard Challenge 2007.

H. Experimental Conditions for The Blizzard Challenge 2007

We used both the CMU-ARCTIC speech database and the

ATRECSS speech database for the Blizzard Challenge 2007 as

the training data for the average voice model, since the amount

of speech data for the target speaker EM001 exceeded that of

CMU-ARCTIC, and the purpose of the experiment was not

rapid adaptation to a given target speaker, but rather improved

quality. To investigate the effect of the corpus size, three sys-

tems could be submitted by all participants: one trained using

all the speech data included in the released database (Voice

A), a second trained using only the ARCTIC subset (Voice B),

and a third system trained using a freely selected subset having

the same duration of speech as that of the ARCTIC subset

(Voice C). Because of the time-consuming training procedures

of the HTS-2007 system, we constructed the HTS-2007 sys-

tems that use full-covariance models for Voices A and B only.

I. Results of the Blizzard Challenge 2007

Synthetic speech was generated for a set of 400 test sentences,

including sentences from conversational, news and ARCTIC

genres (used to evaluate naturalness and similarity) and seman-

tically unpredictable sentences (used to evaluate intelligibility)

[28]. To evaluate naturalness and similarity, five-point mean

opinion score (MOS) and CCR tests were conducted. The scale
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Fig. 12. Mean opinion scores of all systems in the Blizzard Challenge 2007.
Target speaker is the English male speaker EM001.

Fig. 13. Average similarity scores to original speaker of all systems in the Bliz-
zard Challenge 2007. Target speaker is the English male speaker EM001.

for the MOS test was 5 for “completely natural” and 1 for “com-

pletely unnatural.” The scale for the CCR tests was 5 for “sounds

like exactly the same person” and 1 for “sounds like a totally dif-

ferent person” compared to natural example sentences from the

reference speaker (EM001). To evaluate intelligibility, the sub-

jects were asked to transcribe semantically unpredictable sen-

tences; average word error rates (WER) were calculated from

these transcripts. The evaluations were conducted over a six

week period via the internet, and a total of 402 listeners par-

ticipated. For further details of these evaluations, see [28]. For

overall analysis of these evaluations, see [66].

Figs. 12–14 show the evaluation results for Voice A (eight

hours) and Voice B (one hour) of all 16 participating systems.

In these figures, systems “N” corresponds to the HTS-2007

system. In addition “A”, “B” and “J” correspond to the HTS

system developed by USTC (HTS-USTC) [67], iFlytek hy-

brid system [67] and the Festival “Multisyn” speech synthesis

system [68], respectively, with “I” corresponding to real speech.

These four systems represent the three current major com-

peting TTS methods well: One method is the dominant,

established and well-studied technique, “unit-selection.” This

method concatenates units of speech, selected from a corpus of

the target speaker’s speech, to create new utterances [69]; The

next method is often termed “statistical parametric synthesis,”

in which a statistical model (usually a HMM) is trained on, or

adapted to, the target speaker’s speech. Our approach belongs

to this category; The final method is a hybrid of the statistical

parametric and unit-selection techniques [70], [71], which has

been shown to generate very natural-sounding synthetic speech

when clean speech data are available for the target speaker [70].

Fig. 14. Average word error rate (%) of all systems in the Blizzard Challenge
2007. Target speaker is the English male speaker EM001.

We give a brief overview of these systems and their relationship

to one another, since we will focus on these systems in the

following experiments.

Festival Multisyn

Festival [61] is a popular unit-selection speech synthesis

system. In the 2007 Blizzard Challenge, Festival’s new

“Multisyn” module [72], which provides a flexible, gen-

eral implementation of unit selection and a set of associated

voice building tools, was used. HTS-2007 used the existing

modules from Festival, resulting in different phonesets and

front-end text-processing outputs.

HTS-USTC

The HTS-USTC speech synthesis system [67] is also

HMM-based, with context-dependent HMMs for the

STRAIGHT spectrum, and phone duration being

estimated from a single speaker database. There are three

principal differences between HTS-USTC and HTS-2007:

1) HTS-USTC used a minimum generation error (MGE)

criterion [73], whereas HTS-2007 used the ML/MAP

criterion; 2) HTS-USTC used line spectral pair (LSP)

features whereas HTS-2007 used mel-cepstrum features

to represent the spectrum. The order of those spectral

coefficients was also different; 3) HTS-USTC only used

data from the target speaker, whereas HTS-2007 was

speaker-adaptive.

iFlytek Hybrid

The HTS-USTC and iFlytek systems [67] used the same

underlying HMMs but different waveform generation

methods. In the HTS-USTC system, speech parameters

were generated directly from the statistical models using a

parametric synthesiser to reconstruct the speech waveform.

On the other hand, the iFlytek system adopted a waveform

concatenation method, in which a maximum-likelihood

criterion of the statistical models guided the selection

of phone-sized candidate units from the single-speaker

database [70], [71]. Both systems only used data from the

target speaker.

From the results for MOS and CCR tests, we can see that

the hybrid system was generally rated higher than other sys-

tems. In addition to this, we can see several interesting and

important points regarding the HTS-2007 system: 1) the nat-

uralness (Fig. 12) of Voice A for HTS-2007 was evaluated as

worse than that of Festival , whereas the natural-

ness of Voices A and B of another parametric system (HTS-
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USTC) were significantly better than those of Festival

; 2) compared with the similarity scores for the Festival

and HTS-USTC systems (Fig. 13), we observe that HTS-2007

has lower similarity scores in both Voices A and B ;

3) compared with the WER results for all the other systems

(Fig. 14), we can see that systems which obtained WERs of

less than 30% in both Voices A and B are HTS-USTC (“J”),

“M”, and HTS-2007 (“N”) only. Although it is pleasing that

the speaker-adaptive HTS-2007 system provides good intelli-

gibility without requiring either manual adjustment of tuning

parameters or manual modifications to the database, including

speech and label files, the lower naturalness and similarity of the

HTS-2007 voices need to be further explored. We analyze this

next.

IV. ANALYSIS AND IMPROVEMENT OF THE HTS-2007 SYSTEM

Ideally, we would analyze the reasons for the lower nat-

uralness and similarity of the HTS-2007 voices using the

same speech database used for the 2007 Blizzard Challenge.

However, the license agreement, concluded with ATR for the

speech database, forced us to delete both the speech database

and constructed systems immediately after the 2007 Blizzard

Challenge. Moreover we identified a number of issues that

made our analysis either from the above results or from per-

fectly simulated conditions difficult. Hence, in this section, we

have utilized different speech databases for our analysis. In

particular we have addressed five main aspects.

Amount of Available Speech Data (Section IV-A): Evalua-

tions for Voice A and Voice B were separately performed

in both the above MOS and CCR tests. Thus, because the

listeners differed, strictly speaking, we cannot discuss the

differences between Voice A and Voice B (that is, the ef-

fect of the amount of speech data available).

However, the speaker-adaptive HTS-2007 system works

well on the limited amount of speech data available com-

pared to the speaker-dependent HMM-based speech syn-

thesis systems or unit-selection systems trained on enough

amount of speech data. Hence, we have simultaneously

evaluated the systems built on different amount of speech

data and assess the effect of the amount of speech data

available.

Configurations for HMMs (Section IV-A): In the previous

comparison of HTS-2007 and HTS-USTC, the different

criteria used for training/adaptation of HMMs, the spectral

representation, and the order of spectral parameters appear

to have had a decisive influence on the results.

The benefits of the MGE criterion and LSP features over

the ML criterion and mel-cepstrum features were reported

in [73]. However, the effect due to the order of spectral

parameters is not clear. In particular full-covariance mod-

eling, where the number of parameters to be estimated de-

pends on the order of spectral parameters, should be dealt

with both from the point of view of the order of spectral

parameters and the amount of speech data available.

Number of target speakers (Section IV-B)

A single target speaker was used in the previous evaluation,

rather than evaluating the systems using multiple speakers.

Text processing and contextual features for acoustic units

(Section IV-C)

The results in Figs. 12–14 were influenced by the different

phonesets and front-end text-processing used in each

system. Since the front-end text-processing includes at

least lexicon/dictionary, letter-to-sound rules/predictors

for out-of-vocabulary words, part-of-speech tagging,

pause/phrase break predictors, and accent/stress predic-

tors, the accuracy of each module can affect the quality

of synthetic speech. Moreover, the different front-end

text-processing always results in different contextual fea-

tures for acoustic units in HMM-based speech synthesis.

Open and new domain (Section IV-C)

All the test sentences used in the above MOS and CCR tests

for naturalness and similarity were closed/in-domain sen-

tences. The three genres used in the test sentences—con-

versation, news and ARCTIC—were the same as those pre-

defined in the training corpus. Although some unit-selec-

tion methods have been developed for closed domain ap-

plications (and perform very well in such cases), it would

be more desirable to be domain-independent and not re-

quire information about the domains of either training or

test sentences. It would be better to evaluate the systems

using new- and open-domain sentences.

Based on these points, we designed the following analysis.

In Section IV-A, we first analyze the effects of the amount

of speech data available and the order of mel-cepstral anal-

ysis in the HTS-2007 system. At the same time, we compare

the speaker-adaptive approach of the HTS-2007 system with

the previous speaker-dependent approaches, and compare

the system using full-covariance modeling using CSMAPLR

transforms with those using diagonal covariance and semi-tied

covariances (STC) [30], since the relative performance of

these methods depends on the amount of data available. In

Section IV-B, we evaluate full-covariance modeling using

multiple target speakers, since we found the effect of full-co-

variance modeling varies by speaker. In Section IV-C, we then

reevaluate the selected four systems from above, using identical

labels, in order to exclude any effect of differing phonesets and

front-end text-processing.

A. Evaluation of Amount of Speech Data Available, Order of

Mel-Cepstral Analysis and Full-Covariance Modeling

To investigate the effect of the amount of speech data avail-

able, we built two speaker-dependent systems (Nitech-HTS

2005, Nitech-NAIST-HTS 2006) and one speaker-adaptive

system (HTS-2007) using several sets of sentences spoken by

the target speaker EM001. These consisted of: 100 randomly

chosen CMU-ARCTIC sentences (6-min duration); the 1032

CMU-ARCTIC sentences used for Voice B (1-h duration);

all 6579 sentences used for Voice A (8-h duration). In all

HTS-2007 systems, the speech data from the CMU-ARCTIC

database was used as part of the training data for the average

voice model. For reference, the Festival speech synthesis

system using the same speech data of the speaker EM001 was

also evaluated as a baseline unit-selection speech synthesis

system.
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We built the HTS-2007 systems using either 24 or 39 order

STRAIGHT mel-cepstral coefficients for each voice, in order

to investigate the effect of the model order of the STRAIGHT

mel-cepstra. At the same time, systems using diagonal covari-

ance and semi-tied covariance were also built, in order to eval-

uate full-covariance modeling techniques. In order to assess the

effect on only the SMAP criterion and multiple transforms in

CSMAPLR, systems with diagonal covariance or semi-tied co-

variance were built using the following procedures after step 5)

for the CSMAPLR and MAP adaptation.

6) Diagonalize the covariance matrices of the transformed

model from step 5).

7) Update the mean, diagonalized covariance, and weight

of the transformed model based on the MAP criterion.

Repeat the update.

8) Using the current semi-tied transform, estimate diagonal

elements of the covariance matrices based on the MAP

criterion.

9) Using the estimated diagonal elements of the covari-

ance matrices, estimate the current semi-tied transform,

which is equivalent to the transform of only the covari-

ance matrices of (15), based on the ML criterion.

10) Go to step 8) unless convergence, or some other appro-

priate criterion is satisfied.

11) Transform the covariance matrices to full-covariance

using the estimated semi-tied transform.

Models with diagonal covariance from step 7) and with semi-

tied full-covariance from step 11) were compared to models

with CSMAPLR-based full-covariance.

Tables II and III show the number of leaf nodes of the con-

structed decision trees and memory footprints corresponding to

the acoustic models and linear transforms for each system. The

number of leaf nodes for the Nitech-NAIST-HTS 2006 system

is the same as for Nitech-HTS 2005. Since the number of leaf

nodes corresponds to the number of parameter-tied Gaussian

pdfs included in the model, we see that the HTS-2007 system

can use many more Gaussians compared with speaker-depen-

dent approaches. The memory footprints for the HTS-2007 sys-

tems depend on the condition of the speaker adaptation algo-

rithms. For example, when we use a global transformation of

the CSMAPLR adaptation only, the speaker-specific part of the

memory footprint is 40–55 kB. The remainder of the memory

usage is common to all speakers. However, since we focused

not on memory requirements but on the quality of synthetic

speech, we utilized combined piecewise CSMAPLR and MAP

adaptation, which increased the memory footprint (Table III).

If we diagonalize the covariance matrices of the adapted model

in the parameter generation stage, it would be a better choice

to transform the average voice model in advance. In this case,

the footprint of the adapted model is identical to that of the

average voice model and we can reduce the footprint for the

transforms. With full-covariance matrices using the CSMAPLR

transforms, the footprint for the transforms are also required.

TABLE II
NUMBER OF LEAF NODES OF CONSTRUCTED DECISION TREES FOR EACH

SYSTEM OF EACH VOICE. (a) 6 min. (b) 1 h. (c) 8 h

Note that no compression techniques were applied to the piece-

wise CSMAPLR transforms.6

We evaluated naturalness and similarity. The reference

speech included two recorded sentences spoken by target

speaker EM001. In those tests, 33 subjects were presented with

a set of synthetic speech utterances generated from the systems

in random order.

In order to evaluate naturalness and similarity to the orig-

inal speaker on out-of-domain sentences, 14 semantically

unpredictable test sentences (as used in Blizzard 2007 [28])

were randomly chosen for each subject, from a set of 50 test

sentences. Semantically unpredictable sentences were the only

out-of-domain sentences in the 2007 Blizzard Challenge. Sub-

jects were asked to rate them using a five-point scale, where 5

corresponded to natural (MOS test) or very similar (CCR test),

and 1 corresponded to poor (MOS test) or very dissimilar (CCR

test).

Fig. 15 shows the mean scores and 95% confidence intervals

for the MOS and CCR tests. For both tests, there are significant

differences between the HTS-2007 systems and the speaker-de-

pendent systems when six minutes or one hour of target speech

data is used. As the amount of training data available decreases,

the differences become more significant. In order to make this

speaker-adaptive approach beneficial even when large amounts

of target speech data are available, we should train the average

voice model from much larger amounts of speech data.

Further results from these experiments concern feature

dimensionality and covariance modeling. In the CCR test,

there are significant differences between the systems using

24th- or 39th-order STRAIGHT mel-cepstral coefficients when

one or eight hours of target speech data are used. The higher

feature dimensionality can improve the similarity of synthetic

speech, when a large amount of speech data is available.

6Voice sizes for Festival above are about 233 MB and 2080 MB, respectively.
Note that no compression techniques were applied to waveforms or utterance
files.
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TABLE III
MEMORY FOOTPRINT (MB) FOR EACH SYSTEM. (a) 6 min. (b) 1 h. (c) 8 h

Thus, we can conclude that one of the reasons the HTS-2007

system had poorer similarity scores in Fig. 13 is the use of

24th-order STRAIGHT mel-cepstral coefficients. The fact that

the HTS-USTC system utilized 40th-order STRAIGHT LSP

coefficients supports this finding. Contrary to this, in the MOS

test there is a significant difference between systems using

different order coefficients only in the case of six minutes of

target speech data. The HTS-2007 system using 39-dimen-

sion mel-cepstra was found to be less natural than that using

24-dimension mel-cepstra only in the case of six minutes of

target speech data, presumably due to the number of additional

parameters that need to be estimated for the linear trans-

form in the case of higher feature dimensionality. Although

CSMAPLR-based full-covariance modeling had the highest

scores in the CCR test, the differences were not significant. We

discuss the effect of full-covariance modeling more fully in the

next subsection.

We can see some important differences to the results reported

earlier (Section III-I, Figs. 12–14). First, in Fig. 15(a), the nat-

uralness scores of Voice A of HTS-2007 are now significantly

better than those of Festival , whereas before the

naturalness (Fig. 12) of Voice A for HTS-2007 was evaluated

as worse than that of Festival . Moreover, the natu-

ralness of synthetic speech generated from the Festival unit-se-

lection speech synthesis system becomes much worse as the

amount of target speech data becomes smaller .

It can be also seen that synthetic speech generated from the

HTS-2007 system using six minutes of speech data was rated

to be more natural than that of the unit-selection approach using

one hour of speech data . This is most likely due

to differences in the type of test sentences used in these ex-

periments. The test sentences used in the experiments reported

in this subsection were semantically unpredictable sentences

[74], with a simple grammatical structure det-adj-noun-verb-

det-adj-noun, using words of between low and medium fre-

quency. Table IV illustrates how the unit selection system makes

more concatenations (as opposed to selecting contiguous units

from the database) for the semantically unpredictable sentences.

In Fig. 15(b), the similarity scores of the HTS-2007 system are

comparable to those of Festival for Voice A and are better for

Voice B, whereas we previously observed that HTS-2007 had

lower scores in both Voices A and B than Festival

(Fig. 13). In addition to the effect of the semantically unpre-

dictable sentences described above, the differences in the order

of the STRAIGHT mel-cepstral analysis also affected the results

as shown in Fig. 15(b). These experiments indicate that unit-se-

lection works well for in-domain sentences with eight hours of

speech data. In particular, synthetic speech generated by unit-se-

lection has good similarity. However, it loses similarity, and par-

ticularly naturalness, for out-of-domain sentences or when little

speech data is available. On the other hand, the speaker-adaptive

system proposed here is able to maintain naturalness and sim-

ilarity even for out-of-domain sentences, or when little speech

data is available.
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Fig. 15. Subjective evaluation of the English HTS-2007 and previous systems.
Target speaker is the English male speaker EM001. (a) MOS test: naturalness.
(b) CCR test: similarity.

TABLE IV
PERCENTAGES OF SELECTED DIPHONE UNITS WHICH WERE CONTIGUOUS

IN THE CORPUS WITH THE PRECEDING SELECTED DIPHONE IN THE

FESTIVAL MULTISYN SYSTEM. AVERAGE, MINIMUM, AND MAXIMUM

PERCENTAGES PER UTTERANCE WERE CALCULATED FOR THE

TEST SENTENCES FOR THE BLIZZARD CHALLENGE

B. Evaluation of Full-Covariance Modeling With Multiple

Target Speakers

The previous experiments involved the evaluation of a single

target speaker in English. We also conducted experiments

for Japanese speech synthesis using the Nitech-HTS 2005,

Nitech-NAIST-HTS 2006, and HTS-2007 systems. To build

the Japanese HTS-2007 systems, we used two data sets: first,

the ATR Japanese speech database Set B,7 containing a set

of 503 phonetically balanced sentences each uttered by ten

7http://www.atr-p.com/sdb.html.

speakers (six male: MHO, MHT, MMY, MSH, MTK, and MYI;

four female: FKN, FKS, FTK, and FYM), with a duration

of about 30 minutes per speaker; Second, a database which

contains the same sentences as those of the ATR Japanese

speech database (Set B) uttered by a female speaker (FTY)

and two male speakers (MJI and MMI), also with a duration of

about 30 minutes per speaker. We utilized all the speakers for

the training of a Japanese mixed-gender average voice model.

Although the effect of full-covariance modeling in the English

experiment above was not statistically significant, we found

in preliminary experiments that the effect of full-covariance

modeling varies by speaker. Thus, in this experiment, we used

multiple target speakers for the adaptation of the average voice

model. From the training corpus for the average voice model,

we chose two female and two male speakers (FTY, FYM, MJI,

and MYI) as target speakers. About 30 minutes of adaptation

data for each target speaker was available. We also used one

female and one male speaker (F109 and M001) as additional

target speakers, not included in the training set. Speech data for

the speaker F109 was obtained from the ATR Japanese speech

database Set C,8 containing a set of 100 phonetically balanced

sentences of the ATR Japanese speech database (Set B), with

a duration of about six minutes. Speech data for the speaker

M001 was obtained from a Japanese database available from

the HTS website,9 which contains the same sentences as those

of the ATR Japanese speech database (Set B), with a duration

of about 30 minutes. About six minutes of speech data was

used for F109. Two different amounts of data were used for

M001: six minutes (the same set of sentences as for F109), and

30 minutes. The evaluation methods that we employed were

the same MOS and CCR tests as in the above experiments on

English. Ten Japanese male subjects were used, each listening

to six test sentences randomly chosen from 50 test sentences

from ATR Set B.

Fig. 16 shows the mean scores with 95% confidence interval

for the MOS and CCR tests for the Japanese systems using the

seven target speakers. Total scores and individual scores for

each amount of speech data are shown. From the total scores,

it can be seen that CSMAPLR-based full-covariance modeling

slightly improves similarity of synthetic speech compared to

that using diagonal covariance. Further, from the total scores

we can also see that there are significant differences between

the speaker-adaptive and speaker-dependent systems in both the

MOS and CCR tests. The HTS-2007 system generates better

quality synthetic speech than that of the speaker-dependent sys-

tems since the amount of speech data used for the target speakers

is relatively small. The differences between the HTS-2007 and

speaker-dependent systems become even clearer when only six

minutes of speech data are used. These results are in agreement

with our findings for English.

The effect of full-covariance modeling varied by speaker and

did not have much effect for some speakers, while improving

similarity others. Fig. 17 shows the scores for the CCR tests

for the male speaker M001. Average scores for each amount of

8http://www.atr-langue.com/product/index.html.

9http://hts.sp.nitech.ac.jp/?Download.
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Fig. 16. Subjective evaluation of the Japanese HTS-2007 and past systems.
Target speakers are six Japanese speakers. (a) MOS test: naturalness. (b) CCR
test: similarity.

Fig. 17. Subjective evaluation using the CCR test of the Japanese HTS-2007
and past systems. Target speaker is M001.

speech data are shown. For this speaker, the CSMAPLR-based

full-covariance modeling is highly effective.

C. Reevaluation With the Same Front-End Text-Processing

We now analyze the influence of the use of different front-end

text processing. The easiest way to do this is to separate the

influence of the front-end text processing and speech synthesis

methods and compare the performance of several systems.

In order to do that, we built voices for each of four synthe-

sisers—Festival, HTS-2007, HTS-USTC, and iFlytek Hybrid

systems—using the same front-end processing and the same

corpus.

Since its use was limited to the 2007 Blizzard Challenge, we

were not able to use the ATRECSS speech database, so we se-

lected a different corpus for this evaluation. This corpus con-

tains high quality clean speech data collected under controlled

recording studio conditions by a male British English speaker

with a received pronunciation (RP) accent. Subsets consisting

of 768 randomly chosen sentences (about 1 h in duration), 3063

randomly chosen sentences (about 4 h in duration) and 6691

randomly chosen sentences (about 9.5 h in duration) were used.

In all experiments, only target speaker data from the chosen

subset was used to build the voice. For example, we did not uti-

lize the full data set to train acoustic models used for segmen-

tation, when building voices on the smaller sets. Note that the

speaker-adaptive HTS-2007 system was trained on a substantial

amount of clean speech data from other speakers, then adapted

using the chosen subset of data from the target speaker. In all

the procedures, MSD-HSMMs were used throughout.

Speech signals were sampled at 16 kHz. for use in all syn-

thesis methods was estimated using the voting method described

in Section II-A. The spectral analysis methods varied according

to system: Festival uses 12 MFCC coefficients (in the join cost),

HTS-2007 uses 39 mel-cepstral coefficients, HTS-USTC uses

40 LSP coefficients, and the iFlytek hybrid system uses 12 mel-

cepstral coefficients. Each system may also have energy or the

0th coefficient.

In order to exclude differences in front-end text processing,

we used the same labels and lexicon for the voice building and

test sentence synthesis in all systems. The labels were generated

using Unilex [75] and Festival’s Multisyn module. Likewise,

the same question set for the clustering of context-dependent

HMMs was used in the HTS-2007, HTS-USTC, and iFlytek hy-

brid systems.

All the systems were used to synthesise the fairy tale

“Goldilocks and the Three Bears” and the Festival, HTS-2007,

and iFlytek hybrid systems were used to synthesise the story

“The Little Girl and the Wolf” by James Thurber. Neither of

these texts were in the training data. The reasons we used

children’s stories for the evaluation were 1) a new domain (this

genre was not represented in the training data) and 2) increased

naturalness compared with the semantically unpredictable

sentences used in Section IV-A. The stories were split up into

12 and 22 utterances, respectively. In the “Little Girl” story,

each utterance consisted of a single sentence, whereas each

utterance consisted of two sentences in the “Goldilocks” story.

55 subjects (of whom 47 were native speakers) were presented

with synthetic speech utterances from the various systems in a

random order. They were then asked to score the naturalness

of the utterance using MOS on a five point scale, where 5

corresponds to natural and 1 corresponds to unnatural. The

listening tests were separately carried out for each story. For

the “Goldilocks” story the systems using different amounts of

speech data above were evaluated together.

Fig. 18 shows the mean opinion scores, with 95% confidence

intervals for the “Little Girl” utterances. From this result, we can

see that the HTS-2007 and hybrid system are rated as more nat-

ural than the Festival unit-selection system, even for out-of-do-

main children’s story sentences. This confirms our hypothesis

that the unit-selection system is less robust for out-of-domain
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Fig. 18. Subjective evaluation using the “Little Girl” test utterances (one sen-
tence per utterance) synthesized from voices built using the Festival, HTS-2007,
HTS-USTC, and iFlytek Hybrid systems. The same front-end text-processing
and the same corpus were used in all the systems.

Fig. 19. Subjective evaluation using the “Goldilocks” test utterances (two sen-
tences per utterance) synthesized from voices built using the Festival, HTS-
2007, HTS-USTC, and iFlytek Hybrid systems. The same front-end text-pro-
cessing and the same corpus were used in all the systems.

sentences. However, the hybrid system also uses a unit search

and waveform concatenation method similar to that of the unit-

selection system, but with a different unit selection criterion.

Thus, we can conclude that it is the statistical models used in

the HTS-2007 and hybrid systems that provide the robustness

to the out-of-domain sentences. The models successfully guide

unit selection in the hybrid system by using a maximum-like-

lihood criterion [70], [71]. In other words, the hybrid system

finds better units to concatenate than the unit-selection system,

given the same database. Fig. 19 shows the mean opinion scores,

with 95% confidence intervals, for the “Goldilocks” utterances.

From this figure we can also verify that 1) the unit-selection

system is less robust for the out-of-domain sentences, 2) sta-

tistical parametric systems are robust by comparison, and 3)

the hybrid system benefits from the robustness offered by the

statistical parametric models. Comparing Fig. 19 and Fig. 18,

we notice that subjects no longer rate the hybrid system as the

most natural. Further work is needed to discover if this is be-

cause the test utterances consisted of two sentences, or whether

there is some other reason. However, this is beyond the scope of

this paper and thus we leave that analysis for the future. Com-

pared to Fig. 12, it is surprising how strong the effects of test

text and the front-end text processing are. This gives cause for

concern and deserves further investigation, in order that we can

better understand these various speech synthesis methods. The

HTS-2007 system proposed here is comparable in quality to the

HTS-USTC or iFlytek systems. The HTS-USTC system bene-

fits from the use of the MGE criterion and LSP features. Inte-

grating those advances into the HTS-2007 system should further

improve the quality of synthetic speech.

D. Blizzard Challenge 2008

In the Blizzard Challenge 2008,10 an English speech data-

base consisting of 15 h of speech uttered by a British male

speaker and a Mandarin speech database consisting of about 6 h

of speech uttered by a Beijing female speaker were released by

the Centre for Speech Technology Research (CSTR), Univer-

sity of Edinburgh, U.K., and the National Laboratory of Pattern

Recognition, Institute of Automation, Chinese Academy of Sci-

ences, Beijing, China, respectively.

For the 2008 Blizzard Challenge, we used the same speaker-

adaptive approach to HMM-based speech synthesis that was

used for the 2007 challenge, but an improved system was built

in which the multi-accented English average voice model was

trained on 41 h of speech data with high-order mel-cepstral

analysis using an efficient forward-backward algorithm for the

HSMM, based on the analysis results above. The listener evalu-

ation scores for the synthetic speech generated from this system

was much better than in 2007: the system had the equal best

naturalness on the small English data set and the equal best in-

telligibility on both small and large data sets for English, and

had the equal best naturalness on the Mandarin data. In fact, the

English system was found to be as intelligible as human speech

[76]. These facts also underpin the importance of the above anal-

ysis results.

V. ROBUST SPEECH SYNTHESIS

Our final experiment concerns what we consider to be a

major advantage of the HTS-2007 system over other syn-

thesis methods: it is speaker-adaptive. This system can create

synthetic speech with diverse speaker characteristics by trans-

forming the parameters of the average voice models using

speaker adaptation techniques. Here, we report an experiment

which tests this claim.

The ability to create diverse voices has many potential at-

tractive commercial applications, such as virtual celebrity actors

[77], as well as clinical applications such as synthetic replace-

ment voices. The ability to create speech with the characteristics

of a particular speaker could be combined with spoken language

translation, to personalize speech-to-speech translation: a user’s

speech in one language can be used to produce corresponding

speech in another language, while continuing to sound like the

user’s voice. This technology would also have applications in

dubbing foreign-language television programmes or movies.

In many of these applications, the available speech for the

target speaker will always suffer from noise or fluctuations in

the recording conditions (changes in environment, microphone

type and placement, etc.); this would be expected to signifi-

cantly degrade the quality of the synthetic speech. Moreover,

such “found” speech is unlikely to be phonetically balanced and

10http://www.synsig.org/index.php/Blizzard_Challenge_2008.
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Fig. 20. Subjective evaluation using the “Goldilocks” test utterances (two
sentences per utterance) synthesized from voices built using the Festival,
HTS-2007, HTS-USTC, and iFlytek Hybrid systems with noisy data. The same
front-end text-processing and the same corpus were used in all the systems.

will therefore lack some essential acoustic units. This causes se-

vere problems in some systems: for example, concatenative sys-

tems must back off to some other unit, which may or may not

sound acceptable.

It is not impossible to use unit-selection speech synthesis or

other techniques in such applications. However, we would ex-

pect their performance to be severely impacted by the imperfect

data quality. In this section, we therefore analyze how robust the

Festival, HTS-2007, HTS-USTC, and iFlytek Hybrid systems

are to such less favorable conditions. This is, as far as we know,

a new research topic, which we have termed “Robust speech

synthesis.”

A. Experimental Conditions

The voices for each system were built in the same way as

in Section IV-C except for the use of a different corpus. The

corpus used here consists of noisy data and was constructed

from audio freely available on the web, of a well-known

American politician. These data were not recorded in a studio

and have a small amount of background noise. The recording

condition of the data is not consistent: the environment and

microphone may vary. Subsets consisting of 978 randomly

chosen sentences (about one hour in duration) and 3846 ran-

domly chosen sentences (about 4 h in duration) were used. For

details of this data, please see [77].

B. Evaluation of Speech Synthesis Systems Built From

Imperfect and Noisy Data

The evaluation of the voices was also carried out in the

same way as in Section IV-C. The same subjects evaluated the

“Goldilocks” test utterances. Fig. 20 shows the mean opinion

scores, with 95% confidence intervals, for the “Goldilocks”

utterances. We can see completely different tendencies from

this figure. Comparing Figs. 19 and 20, we notice first that

the unit-selection method is very poor indeed on noisy data.

This is because inconsistency in the recording conditions from

session to session translates into inconsistency in the synthetic

speech from unit to unit, which makes the resulting synthetic

speech “patchy” and very unnatural sounding. The hybrid

system is also vulnerable to the same problem to some extent,

since it also concatenates waveforms to generate speech. The

speaker-adaptive HTS-2007 system is clearly the most robust

of the systems: its performance is least degraded by the use of

noisy data. The naturalness of the HTS-2007 system increases

as more data become available: the other systems are unable

to improve naturalness by using more data. We believe that

there are two principal reasons for the superior robustness of

the speaker-adaptive HTS-2007 system. The first is that the

average voice model is trained from a large amount of clean

speech data. Therefore, the decision trees used for tying of

HMM parameters are not affected by the noisy data at all. The

second is that the speaker adaptation algorithms used in the

system include feature transforms. These feature transforms are

a generalization of several normalization techniques mentioned

previously. They can normalize the fluctuations of the recording

conditions, assuming that these can be approximated by linear

or piecewise linear regression. The reasons the HTS-USTC

system is worse on noisy data constitute a reversal from the

advantages for the speaker-adaptive HTS-2007 system; both

the estimation and tying of HMM parameters are affected by

the noisy data. The MGE criterion used in the HTS-USTC

system is especially sensitive to the noisy data.

Our results therefore demonstrate a newly discovered signif-

icant advantage of speaker-adaptive HMM-based speech syn-

thesis: “robustness.” This ability to generate a synthetic voice

from noisy data further expands the potential applications of this

technique, and of course dramatically increases the amount of

existing data that can now be considered usable for speech syn-

thesis.

VI. CONCLUSION

We have described the development and evaluation of a

speaker-adaptive HMM-based speech synthesis system. The

speaker-adaptive approach was further enhanced by two new

algorithms: 1) feature-space adaptive training for HSMMs and

2) mixed-gender modeling, and two advanced techniques: 3)

CSMAPLR+MAP speaker adaptation and 4) full-covariance

modeling using the CSMAPLR transforms. These enhance-

ments were successfully incorporated into our systems that

employ STRAIGHT, mixed excitation, HSMMs, GV, and

full-covariance modeling.

We demonstrated the effect of the new algorithms in the ob-

jective evaluations. In a subjective comparison with a conven-

tional speaker-adaptive system, we showed that the GV algo-

rithm results in synthetic speech of substantially higher quality.

Furthermore, from several subjective comparisons with conven-

tional speaker-dependent systems, we found that the speaker-

adaptive approach is able to synthesize speech that is signif-

icantly better than that synthesized by speaker-dependent ap-

proaches in situations with realistic amounts of target speaker

data, and bears comparison with those speaker-dependent ap-

proaches even when large amounts of speech data are available.

We also compared the performance of the proposed system

with several other speech synthesis techniques, representative of

the state of the art. From subjective evaluation results (including
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the Blizzard Challenge 2007) we show that the new system gen-

erates high quality speech.11 In particular, we have shown that

the proposed system is robust, in several ways. It is able to syn-

thesize speech well, even for out-of-domain sentences or when

little speech data is available. It can also generate good-quality

synthetic speech from less-than-ideal speech data where the data

is not perfectly clean, recording conditions are not consistent,

and/or the phonetic balance of the texts is not controlled. This

robustness is unique to the proposed speaker-adaptive system

and opens up possible novel applications for speech synthesis.

The current adaptation framework in HTS-2007 system is su-

pervised: Although it does not require time-alignment informa-

tion for the target speaker adaptation data, it does require com-

plex context-dependent labels for that data. In order to build

voices from only speech data, in a completely automatic fashion,

we need to perform the speaker adaptation without such com-

plex context-dependent labels. We now are developing methods

to enable unsupervised speaker adaptation for speech synthesis,

to enable adaptation either without labels or with only simple

labels.
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