
Robust speaker identification via fusion of subglottal resonances and cepstral features
Jinxi Guo, Ruochen Yang, Harish Arsikere, et al.

Citation: The Journal of the Acoustical Society of America 141, EL420 (2017); doi: 10.1121/1.4979841
View online: https://doi.org/10.1121/1.4979841
View Table of Contents: https://asa.scitation.org/toc/jas/141/4
Published by the Acoustical Society of America

ARTICLES YOU MAY BE INTERESTED IN

 The role of vocal tract and subglottal resonances in producing vocal instabilities
The Journal of the Acoustical Society of America 141, 1546 (2017); https://doi.org/10.1121/1.4976954

Subglottal resonances of American English speaking children
The Journal of the Acoustical Society of America 144, 3437 (2018); https://doi.org/10.1121/1.5082289

On the limits of automatic speaker verification: Explaining degraded recognizer scores through acoustic changes
resulting from voice disguise
The Journal of the Acoustical Society of America 146, 693 (2019); https://doi.org/10.1121/1.5119240

Effects of signal bandwidth and noise on individual speaker identification
The Journal of the Acoustical Society of America 144, EL447 (2018); https://doi.org/10.1121/1.5078770

 Speaker height estimation from speech: Fusing spectral regression and statistical acoustic models
The Journal of the Acoustical Society of America 138, 1052 (2015); https://doi.org/10.1121/1.4927554

Subglottal resonances of adult male and female native speakers of American English
The Journal of the Acoustical Society of America 132, 2592 (2012); https://doi.org/10.1121/1.4748582

https://images.scitation.org/redirect.spark?MID=176720&plid=1857437&setID=407059&channelID=0&CID=683628&banID=520741327&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=89271b903397cb56bf0893f678c2b2841a3cd06f&location=
https://asa.scitation.org/author/Guo%2C+Jinxi
https://asa.scitation.org/author/Yang%2C+Ruochen
https://asa.scitation.org/author/Arsikere%2C+Harish
/loi/jas
https://doi.org/10.1121/1.4979841
https://asa.scitation.org/toc/jas/141/4
https://asa.scitation.org/publisher/
https://asa.scitation.org/doi/10.1121/1.4976954
https://doi.org/10.1121/1.4976954
https://asa.scitation.org/doi/10.1121/1.5082289
https://doi.org/10.1121/1.5082289
https://asa.scitation.org/doi/10.1121/1.5119240
https://asa.scitation.org/doi/10.1121/1.5119240
https://doi.org/10.1121/1.5119240
https://asa.scitation.org/doi/10.1121/1.5078770
https://doi.org/10.1121/1.5078770
https://asa.scitation.org/doi/10.1121/1.4927554
https://doi.org/10.1121/1.4927554
https://asa.scitation.org/doi/10.1121/1.4748582
https://doi.org/10.1121/1.4748582


Robust speaker identification via fusion
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Abstract: This letter investigates the use of subglottal resonances
(SGRs) for noise-robust speaker identification (SID). It is motivated by
the speaker specificity and stationarity of subglottal acoustics, and the
development of noise-robust SGR estimation algorithms which are reli-
able at low signal-to-noise ratios for large datasets. A two-stage frame-
work is proposed which combines the SGRs with different cepstral
features. The cepstral features are used in the first stage to reduce the
number of target speakers for a test utterance, and then SGRs are used
as complementary second-stage features to conduct identification.
Experiments with the TIMIT and NIST 2008 databases show that
SGRs, when used in conjunction with power-normalized cepstral coeffi-
cients and linear prediction cepstral coefficients, can improve the perfor-
mance significantly (2%–6% absolute accuracy improvement) across all
noise conditions in mismatched situations.
VC 2017 Acoustical Society of America
[DDO]
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1. Introduction

Robustness of automatic speaker identification (SID) is important for real-world situa-
tions. Research has shown that SID systems achieve high accuracy in clean matched
conditions, but the performance decreases dramatically for noisy and mismatched con-
ditions (clean training) (Reynolds, 1994; Zhao et al., 2012; Liu and Hansen, 2012).
Mel-frequency cepstral coefficients (MFCCs), which are computed by using a Mel-
scaled filter-bank, are commonly used features for clean speech SID. However MFCCs
are sensitive to noise and the performance degrades significantly in noisy conditions.

In this letter, we investigate the utility of noise-robust subglottal features (cap-
turing the acoustics of the trachea-bronchial airways) for noise robust SID. Since
MFCCs are not reliable for SID under noisy conditions, two noise-robust features:
high order linear prediction cepstral coefficients (LPCCs) (Reynolds, 1994) and power-
normalized cepstral coefficients (PNCCs) (Kim and Stern, 2012) are used as the SID
baseline. High order LPCCs represent the smoothed spectrum which is more robust
to noise and also keeps speaker specific information; PNCCs use a power-law nonline-
arity to suppress small signals, a noise-suppression algorithm based on asymmetric fil-
tering that suppresses background excitation, and a module that models temporal
masking. The utility of the noise robust subglottal features [subglottal resonances
(SGRs)] in conjunction with PNCCs and LPCCs for SID are studied for two models:
Gaussian mixture models adapted from universal background models (UBM-GMM)
(Reynolds and Rose, 1995) and i-vector/probabilistic linear discriminate analysis
(PLDA) framework (Dehak et al., 2011; Prince, 2007).

We studied the characteristics of SGRs by manually analyzing accelerometer
recordings of subglottal acoustics. An automatic algorithm was developed to estimate
SGRs from speech signals based on the property that SGRs form the boundary for the
front/back and high/low vowel space relative to their relationship with the formant fre-
quencies (Lulich, 2010).

The reasons for the interest in using SGRs as noise robust SID features are as
follows. First, the subglottal acoustics are speaker specific owing to some extent to
their dependence on body height. We found speech-based SGR estimates to be effec-
tive for speaker height estimation (Arsikere et al., 2013a) and adaptation (Arsikere
et al., 2013b; Guo et al., 2015). Second, the spectral characteristics of subglottal acous-
tics are much less variable than the spectral characteristics of the corresponding speech
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signal for a given speaker. The stationary nature can be beneficial especially for limited
data and short utterances, which can alleviate the mismatch between training and test-
ing utterances (Guo et al., 2016). Third, previous research has shown that the estima-
tion algorithm of the SGRs is reliable down to 0 dB signal-to-noise ratio (SNR)
(Arsikere et al., 2013a). Finally, while the majority of front-end features are related to
the supraglottal acoustics, the subglottal features can complement the supraglottal fea-
tures for SID.

In this letter, we propose a two-stage framework, using LPCCs or PNCCs to
reduce the number of target speakers to top N for a given test utterance first and then
using SGRs as the complementary features to conduct identification within these N
speakers. We evaluate our approach on TIMIT and NIST 2008 databases and show
that SGRs offer great complementary information to the baseline systems.

2. Proposed framework

We propose a two-stage framework to fuse the information provided by SGRs and
cepstral features.

During the first stage of the proposed system, we use the cepstral features
(PNCC and LPCC) as the front-end feature to find the top N most likely speaker mod-
els for a test utterance. Within these N speakers, the SGRs are used as new features in
the second stage. A multilayer perception (MLP) model (feedforward neural network)
is used as the classifier to generate new scores for these N speakers with respect to the
corresponding test utterance. The cepstral and SGR scores of the N speakers are then
combined in a weighted fashion and the combined scores are used to make the final
decision. An overview of the proposed framework is presented in Fig. 1 and the imple-
mentation details are provided in Sec. 4.

This two-stage method is adopted here for several reasons. First, since SGRs
have negative correlation with speaker height, speakers similar in height might have
similar SGRs. Using SGRs to perform identification tasks among a large number of
speakers may not be discriminative enough. Pilot experiments showed that, when com-
bining two systems trained using PNCC/LPCC and SGRs individually for all speakers,
performance improvement is not significant. However, reducing the number of target
speakers to a small number, N, may help SGRs to better discriminate speakers and
give useful complimentary information. Furthermore, compared with the traditional
single stage combination of two individual systems, the proposed two-stage framework
can reduce the latency by limiting the number of evaluation targets in the second
stage.

3. SGR estimation

3.1 Estimation algorithm

The SGR estimation algorithm follows the algorithm proposed in Arsikere et al.
(2013a). The algorithm is based on the following idea: Sg1 acts as a boundary between
high and low vowels so that two acoustic features characterizing vowel frontness—the
Bark difference between F3 and F1 (denoted as B31) and the Bark difference between
F1 and Sg1 (denoted as B1,s1)—are correlated. Similarly, for Sg2 estimation, the Bark
difference between F3 and F2 (denoted as B32) was found to be related to the bark dif-
ference between F2 and Sg2 (denoted as B2,s2), since both measures characterize vowel
backness. Two empirical equations were derived to predict B1,s1 and B2,s2 using regres-
sion models as in Eqs. (1) and (2). Sg3 is estimated based on its correlation with Sg2
using a first-order linear regression, as in Eq. (3):

B1;s1 ¼ 0:011 B31ð Þ3 � 0:269 B31ð Þ2 þ 1:322 B31ð Þ þ 2:455: (1)

Fig. 1. (Color online) System flow chart.
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B2;s2 ¼ �0:004 B32ð Þ3 þ 0:134 B32ð Þ2 � 1:958 B32ð Þ þ 6:182; (2)

Sg3 ¼ 1:079 � Sg2þ 763:676: (3)

Given a speech utterance, the first three formants of the voiced frames are esti-
mated using SNACK and voiced activity detection (VAD). The three SGRs can then
be estimated using the above empirical relations. Note that formant values used in the
equations are in the Bark scale. Since Sg1 and Sg2 act as boundaries in the vowel
space, estimation results are expected to be largely phoneme independent (Arsikere
et al., 2013a). For noise-robust SGR estimation, what we need is to make the estima-
tion of noisy-speech formants reasonably close to the corresponding clean-speech for-
mants, even though the absolute values of the estimated formants are not very accu-
rate. In general, SNACK’s estimates of formants between clean and noisy speech were
found to be close in voiced regions even for low local SNRs (Sjolander, 2004).
Therefore, the proposed SGR estimation algorithm is expected to be noise robust.

3.2 Results

Three additive noises (i.e., babble, factory, and pink) collected from the NOISEX-92
database were used for representing different noise conditions. The speech segment was
degraded by adding a specific type of noise at SNRs of 5, 10, 15, 20 dB, respectively,
using FaNT (Hirsch, 2005).

SGRs for all 630 Speakers in TIMIT are estimated based on one clean utter-
ance per speaker, as well as the same utterance with additive noise of different SNRs.
Two speakers (denoted as Speaker 160 and 600) are selected to show the effectiveness
of the estimation algorithm. Figure 2 illustrates the comparison of estimated SGRs
across all the frames for a selected clean utterance and 12 different noise/SNR combi-
nations for two speakers (1 female and 1 male). The x axis indicates noise conditions:
1, clean; 2–5, Babble 5/10/15/20 dB; 6–9, Factory1 5/10/15/20 dB; and 10–13, Pink 5/10/
15/20 dB. Each symbol represents the mean value of each SGR estimate given a noise
condition. The bars correspond to the standard deviation (STD) of each estimate. The
means of the estimated SGRs for different conditions are similar, and this implies that
the estimated SGRs are fairly constant across all test noise conditions. The narrow
STD intervals indicate that, given a noise condition, the estimation algorithm is quite
noise robust. Moreover, comparing the two speakers in Fig. 2, it is clear that their esti-
mated SGRs are distinctly different.

To further quantify the SGR estimation accuracy for all speakers, the average
root mean square error (denoted as RMSEavg) is used, which measures the differences
between the SGRs estimated from the clean and corresponding noisy utterances. Table
1 shows the RMSEavg of the averaged SGR estimates under all noise types compared
to clean for a given SNR. As expected, the RMSE of SGRs is fairly small even for
low SNRs. Table 2 also demonstrates that the overall RMSEavg across all SNRs is
small for a given noise type and the estimation error for the babble noise case is
smaller than factory and pink noise. The results confirm the robustness of the SGR
estimation algorithm on a large SID data set. Similarly, the experiment on NIST
SRE08 yields similar results, which shows relatively small estimation errors between
clean and corresponding noisy conditions. Thus, it is beneficial to incorporate the
SGRs for noise robust SID tasks.

Fig. 2. (Color online) SGR estimation for speaker 160 (left) and speaker 600 (right) (the x axis indicates noise
conditions: 1, clean; 2–5, Babble 5/10/15/20 dB; 6–9, Factory1 5/10/15/20 dB; and 10–13, Pink 5/10/15/20 dB).
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4. SID experiments and results

All experiments were conducted under mismatched conditions with clean training
utterances evaluated against noisy test utterances.

The TIMIT SID acoustic models are UBM GMMs (Reynolds and Rose,
1995). Since TIMIT only has files with very short utterances, the UBM GMM frame-
work is used here. On the other hand, the state of the art i-vector/PLDA model is used
on the NIST08 dataset. Given the enrollment data, speech segments are first detected
using a statistic-based VAD algorithm (Sohn et al., 1999) to discard non-speech
frames. In total four front-end features are extracted: LPCCs, PNCCs, SGRs, and
MFCCs. For MFCCs and PNCCs, we use the first 20 coefficients and their first- and
second-order derivatives, resulting in 60-dimensional features. For LPCCs, the first 24
coefficients are used for our experiment (adding derivatives did not result in improve-
ment). Note that all the cepstral features are computed for all speech frames whereas
SGRs are computed for voiced frames only.

Given a test utterance, the cepstral features and SGRs are computed as
described above. The cepstral features are scored with their respective models. The
scores are log likelihoods and are normalized using Sinorm ¼ Si � Smin=Smax � Smin. The
top N highest scoring speakers are selected for the test utterance. The selected top N
scores are further normalized to a score between 0 and 1 (by dividing by the sum of
the scores). For these N speakers, SGRs are used as the new features and MLP as the
new classifier. One hidden layer with sigmoid activation function is used for training,
and the softmax function is adopted to get the normalized scores from the output
layer. The scores from the two stages are combined in a weighted fashion, and the
weights are two positive scalars and summed up to one. Weights are determined empir-
ically across the whole test set such that the highest accuracy is achieved. The com-
bined scores are used to make a decision. Note that, since the training of the shallow
neural network model (MLP) for the selected three speakers using three SGRs is very
time-efficient, for online testing in real applications, the MLP can be trained online
after the top N candidates are selected from the pre-trained first-stage model.

4.1 SID on TIMIT database

TIMIT consists of 10 utterances spoken by 630 speakers, with a sampling rate 16 kHz
(Garofolo, 1988). The average utterance length is around 3 s. One of the ten utterances
is used as the test trial for each speaker and the remaining nine sentences are used for
acoustic modeling. Cepstral features are modeled with 128-component GMMs. SID
performance is evaluated in 12 different SNR conditions. The number of speakers, N,
chosen for the second stage is set to 3, 5, and 10. Pilot results indicated that there is
no significant advantage using a larger N. Therefore we set N to 3 for fast training and
testing; evaluation results are shown in Table 3. Table 3 shows the SID results for the
MFCC, PNCC, LPCC baseline systems, and PNCCþSGRs, LPCCþSGRs combined
systems with best weights. The percentage of the predication accuracy for SID is used
as the metric. Since the MFCC baseline was low in noisy conditions, we did not evalu-
ate it with SGRs. The combined feature systems perform the best across all noise con-
ditions, and give relatively bigger improvement for pink, factory, and low-SNR babble
noise. Figure 3 shows the weight ratios of SGRs across SNRs for pink noise, when

Table 1. Overall RMSE (in Hz) of SGRs under several SNRs (TIMIT).

5 dB 10 dB 15 dB 20 dB

SGR1 41.0753 30.0358 20.3100 11.6578
SGR2 77.8863 58.1728 40.9838 25.5018
SGR3 83.7503 62.4795 42.8535 27.2275

Table 2. Overall RMSE (in Hz) of SGRs under several noise types (TIMIT).

Babble Factory1 Pink

SGR1 19.3118 25.4771 31.9324
SGR2 37.5271 49.8199 63.0521
SGR3 40.4917 53.7557 68.0332
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combining with LPCCs. SGR weights increase as SNR decreases, which indicates that
SGRs are more effective in low-SNR.

4.2 SID on NIST 2008 database

NIST 2008 data are widely used for evaluating speaker verification (SV) algorithms
(Martin and Greenberg, 2009). Compared with TIMIT, it has higher speaker and
channel variability. Note that unlike the standard SV task, in this letter we only focus
on the SID task and demonstrate the efficacy of the SGRs in the presence of larger
speaker and channel variability. Therefore, we randomly chose 947 speakers from the
evaluation dataset (3conv part of the training set). Each speaker participates in three
telephone conversations. For each utterance in the telephone conversations (approxi-
mately 5 min long), a 10 s segment is extracted as the test utterance and the remaining
part is used for training the speaker model.

Since our experiment is only concerned with the closed-set SID task, the train-
ing data can be used to set up the i-vector/PLDA system. A gender independent UBM
of 1024 GMM components was built. A total variability matrix T of 400 factors was
used and the dimension of the resultant i-vector was further reduced via PLDA model-
ing with 200 latent components.

Table 4 summarizes the results for the performance of the proposed combined
features system and the baselines. The baseline for 20 dB SNR and matched clean con-
ditions are above 98% and the improvement is small; we show results for 5/10/15 dB
here. Similar to the TIMIT experiment, the combined features system outperforms the
other baselines in all noise conditions, which shows the significant complementary

Table 3. SID accuracies (%) under different noise and SNR combinations for TIMIT (boldface numbers indi-
cate best results).

MFCC PNCC LPCC PNCCþSGRs LPCCþSGRs

Babble
5 dB 46.7 53.5 64.7 56.4 70.8
10 dB 85.2 80.6 93 82.4 94.1
15 dB 95.7 89.8 98 92.0 98.4
20 dB 97.7 91.7 99.2 92.4 99.3
Factory
5 dB 14.3 24 23.1 30 27.8
10 dB 41.9 59.3 56.6 63.4 60.5
15 dB 73.8 83.6 81.9 84.7 86.9
20 dB 92.5 91.4 95.8 92.4 97.3
Pink
5 dB 4.6 18.9 7.4 22.1 10.9
10 dB 17 34.7 26.1 39.9 31.6
15 dB 42.4 57.9 52.8 61.3 59.7
20 dB 71.9 80.6 78.8 83.2 85.2

Fig. 3. (Color online) SGR ratio across SNRs for pink noise.
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effect for SGRs to the baseline cepstral features. The best SGR weights for the com-
bined systems also increase for a low-SNR condition.

To further analyze how SGRs help improve the SID accuracy, we check the
top three cepstral scores for the clean test utterances and the corresponding noisy utter-
ances. As expected, the scores for noisy data are not prominent for a certain speaker,
since cepstral features tend to be suboptimal in the presence of noise, which leads to
greater confusion among acoustically-similar speakers. Since the SGRs are more noise
robust and speaker specific, when we fuse the cepstral score with scores from SGRs,
the fused scores become more prominent for the target speaker, which indicates that
the SGRs actually help the decision making.

Another reason why using SGRs give improvement to the SID system is that,
since SGRs are more stationary compared with standard cepstral features which repre-
sent the vocal tract information, it can help to alleviate the phoneme mismatch
problem between train and test utterances when only short utterances are available
(e.g., 10 s).

5. Conclusions

In this letter, a two-stage noise robust SID system is proposed to demonstrate the effi-
cacy of the SGRs as complementary noise-robust features. SID experiments on TIMIT
and NIST 2008 database demonstrates that SGRs can provide complimentary speaker
information to noise robust features, such as PNCCs and LPCCs.
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