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Abstract—This paper investigates the problem of speaker identi-
fication and verification in noisy conditions, assuming that speech
signals are corrupted by environmental noise, but knowledge
about the noise characteristics is not available. This research is
motivated in part by the potential application of speaker recog-
nition technologies on handheld devices or the Internet. While
the technologies promise an additional biometric layer of security
to protect the user, the practical implementation of such systems
faces many challenges. One of these is environmental noise. Due to
the mobile nature of such systems, the noise sources can be highly
time-varying and potentially unknown. This raises the require-
ment for noise robustness in the absence of information about the
noise. This paper describes a method that combines multicondi-
tion model training and missing-feature theory to model noise
with unknown temporal-spectral characteristics. Multicondition
training is conducted using simulated noisy data with limited
noise variation, providing a “coarse” compensation for the noise,
and missing-feature theory is applied to refine the compensation
by ignoring noise variation outside the given training conditions,
thereby reducing the training and testing mismatch. This paper
is focused on several issues relating to the implementation of the
new model for real-world applications. These include the gener-
ation of multicondition training data to model noisy speech, the
combination of different training data to optimize the recognition
performance, and the reduction of the model’s complexity. The
new algorithm was tested using two databases with simulated and
realistic noisy speech data. The first database is a redevelopment
of the TIMIT database by rerecording the data in the presence of
various noise types, used to test the model for speaker identifica-
tion with a focus on the varieties of noise. The second database is
a handheld-device database collected in realistic noisy conditions,
used to further validate the model for real-world speaker verifica-
tion. The new model is compared to baseline systems and is found
to achieve lower error rates.

Index Terms—Missing-feature theory, multicondition training,
noise compensation, noise modeling, speaker recognition.

I. INTRODUCTION

A
CCURATE speaker recognition is difficult due to a

number of factors, with handset/channel mismatch and

environmental noise being two of the most prominent. Re-

cently, much research has been conducted with a focus on
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reducing the effect of handset/channel mismatch. Linear and

nonlinear compensation techniques have been proposed, with

applications to feature, model and match-score domains. Some

of the techniques were first developed in speech recognition

research. Examples of the feature compensation methods in-

clude well-known filtering techniques such as cepstral mean

subtraction or RASTA (e.g., [1]–[5]), discriminative feature de-

sign (e.g., [6]–[9]), and various feature transformation methods

such as affine transformation, nonlinear spectral magnitude

normalization, feature warping, and short-time Gaussianization

(e.g., [10]–[13]). Score-domain compensation aims to remove

handset-dependent biases from the likelihood ratio scores.

The most prevalent methods include H-norm [14], Z-norm

[15], and T-norm [16]. Examples of the model-domain com-

pensation methods include the speaker-independent variance

transformation [17], and the transformation for synthesizing

supplementary speaker models for other channel types from

multichannel training data [18]. Additionally, channel mis-

match has also been dealt with by using model adaptation

methods, which effectively use new data to learn channel

characteristics (e.g., [19], [20]).

To date, research has targeted the impact of environmental

noise through filtering techniques such as spectral subtraction

or Kalman filtering [21], [22], assuming a priori knowledge of

the noise spectrum. Other techniques focus on noise compensa-

tion, for example, parallel model combination (PMC) [23]–[25],

or Jacobian environmental adaptation [26], [27], assuming the

availability of a statistical model of the noise or environment.

Researchers in [28] and [29] have discussed the use of micro-

phone arrays to improve noise robustness. Recent studies on

missing-feature approaches suggest that, when knowledge of

the noise is insufficient for cleaning up the speech data, one may

alternatively ignore the severely corrupted speech data and base

the recognition only on the data with little or no contamination

(e.g., [30], [31]). Missing-feature techniques are effective given

partial noise corruption, a condition that may not be realistically

assumed for many real-world problems.

This paper investigates the problem of speaker recognition

using speech samples distorted by environmental noise. We as-

sume a highly unfavorable scenario: an accurate estimation of

the nature and characteristics of the noise is difficult, if not im-

possible. As such, traditional techniques for noise removal or

compensation, which usually assume a prior knowledge of the

noise, become inapplicable. It is likely that the adoption of this

worst-case scenario will be necessary in many real-world ap-

plications, for example, speaker recognition over handheld de-

vices or the Internet. While the technologies promise an addi-

tional biometric layer of security to protect the user, the prac-

tical implementation of such systems faces many challenges.

For example, a handheld-device based recognition system needs

1558-7916/$25.00 © 2007 IEEE
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to be robust to noisy environments, such as office/street/car en-

vironments, which are subject to unpredictable and potentially

unknown sources of noise (e.g., abrupt noises, other-speaker

interference, dynamic environmental change, etc.). This raises

the need for a method that enables the modeling of unknown,

time-varying noise corruption without assuming prior knowl-

edge of the noise statistics. This paper describes such a method.

The new approach is an extension of missing-feature theory, i.e.,

recognition based only on reliable data but robust to any cor-

ruption type, including full corruption that affects all time-fre-

quency components of the speech. This is achieved by a com-

bination of multicondition model training and missing-feature

theory. Multicondition training provides a “coarse” compen-

sation for the noise; missing-feature theory is applied to deal

with the remaining training and testing mismatch, by ignoring

noise variation outside the given training conditions. The paper

demonstrates that based on limited training data, the new ap-

proach has the potential to model a wide variety of noise condi-

tions without assuming specific information about the noise.

As preliminary studies, the proposed approach was first tested

for speech recognition (e.g., [32]) and later for speaker iden-

tification [33], both using artificially synthesized noisy speech

data. This paper extends the previous research by focusing on

several issues relating to the implementation of the new ap-

proach towards real-world applications. Specifically, we will

study new methods for generating multicondition training data

to better characterize real-world noisy speech, investigate the

combination of training data of different characteristics to opti-

mize the recognition performance, and look into the reduction

of the model’s complexity through a balance with the model’s

noise-condition resolution. The proposed model was evaluated

using two databases with simulated and realistic noisy speech

data. The first database is a redevelopment of the TIMIT data-

base by rerecording the data in various controlled noise con-

ditions, with a focus on the varieties of noise. The proposed

model, along with the methods for generating the training data

and reducing the model complexity, was tested and developed

on this database for speaker identification. The second database

is a handheld-device database collected in realistic noisy con-

ditions. The new model was tested on this database for speaker

verification assuming limited enrollment data. This study serves

as a further validation of the proposed model by testing on a

real-world application.

The remainder of this paper is organized as follows. Section II

describes the new model and the methods for generating the

training data and controlling the model’s complexity. Section III

presents the experimental results for speaker identification on

the noisy TIMIT database, and Section IV presents the exper-

imental results for speaker verification on the realistic hand-

held-device database. Finally, Section V presents a summary of

the paper.

II. PROPOSED METHOD

A. Model

Let denote the training data set, containing clean speech

data, for speaker , and let represent the like-

lihood function of frame feature vector associated with

speaker trained on data set . In this paper, we assume

that each frame vector consists of subband features:

, where represents the feature for

the th subband. We obtain by dividing the whole speech

frequency-band into subbands, and then calculating the

feature coefficients for each subband independently of the

other subbands. The subband feature framework has been used

in speech recognition (e.g., [34] and [35]) for isolating local

frequency-band corruption from spreading into the features of

the other bands.

The proposed approach for modeling noise includes two

steps. The first step is to generate multiple copies of training

set , by introducing corruption of different characteris-

tics into . Primarily, we could add white noise at various

signal-to-noise ratios (SNRs) to the clean training data to

simulate the corruption. Assume that this leads to augmented

training sets , where denotes the th training

set derived from with the inclusion of a certain noise con-

dition. Then, new likelihood function for the test frame vector

can be formed by combining the likelihood functions trained

on the individual training sets

(1)

where is the likelihood function of frame vector

trained on set , and is the prior probability for the

occurrence of the noise condition , for speaker . Equation

(1) is a multicondition model. A recognition system based on

(1) should have improved robustness to the noise conditions

seen in the training sets , as compared to a system based on

.

The second step of the new approach is to make (1) robust

to noise conditions not fully matched by the training sets

without assuming extra noise information. One way to this is

to ignore the heavily mismatched subbands and focus the score

only on the matching subbands. Let be

a test frame vector and be a subset in containing

all the subband features corrupted at noise condition . Then,

using in place of as the test vector for each training noise

condition, (1) can be redefined as

(2)

where is the marginal likelihood of the matching

feature subset , derived from with the mis-

matched subband features ignored to improve mismatch

robustness between the test frame and the training noise

condition . For simplicity, assume independence between the

subband features. So the marginal likelihood for

any subset can be written as

(3)

where is the likelihood function of the th subband

feature for speaker trained under noise condition .
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Multicondition or multistyle model training [e.g., (1)] has

been a common method used in speech recognition (e.g., [36]

and [37]), to account for varying noise sources or speaking

styles. The new model expressed in (2) is novel in that it

combines multicondition model training with missing-feature

theory, to ignore noise variation outside the given training

conditions. This combination makes it possible to account for

a wide variety of testing conditions based on limited training

conditions, as will be demonstrated later in the experiments.

We say that missing-feature theory is applied in (2) for ig-

noring the mismatched subband features. However, it should be

noted that the approach expressed in (2) extends beyond tradi-

tional missing-feature approaches in one aspect: traditional ap-

proaches assess the usability of a feature against its clean data,

while the new approach assesses this against the data containing

variable degrees of corruption, modeled by the different training

conditions through . This allows the model to use noisy

features, close to or matched by the noisy training conditions,

for recognition. These noisy features, however, may become less

usable or unusable with traditional missing-feature approaches

due to their mismatch against the clean data.

Given a test frame , the matching feature subset for each

training noise may be defined as the subset in that gains

maximum likelihood over the appropriate noise condition. Such

an estimate for is not directly obtainable from (3) by max-

imizing with respect to . This is because

the values of for different sized subsets

are of a different order of magnitude and are thus not directly

comparable. One way around this is to select the matching fea-

ture subset for noise condition that produces maximum

likelihood for noise condition , as compared to the likeli-

hoods of the same subset produced for the other noise condi-

tions , for each speaker . This effectively leads to

a posterior probability formulation of (2). Define the posterior

probability of speaker and noise condition given test subset

as

(4)

On the right, (4) performs a normalization for

using the average likelihood of subset calculated

over all speakers and training noise conditions, with

being a prior probability of

speaker and noise condition . Maximizing posterior prob-

ability with respect to leads to an estimate

for the matching feature subset that effectively maximizes

the likelihood ratios for

compared to all .1

1Dividing the numerator and denominator of (4) by p(X jS;� ) gives
the equation shown at the bottom of the page. Therefore, maximizing
P (S;� jX ) with respect to X is equivalent to the maximization of the
likelihood ratios p(X jS;� )=p(X jS ;� ) by choosing X .

To incorporate the posterior probability (4) into the model,

we first rewrite (1) in terms of , i.e., the posterior

probabilities of speaker and noise condition given frame

vector . Using Bayes’s rule it follows

(5)

The last term in (5), , is not a function of the speaker index

and thus has no effect in recognition. Replacing in

(5) with the optimized posterior probability for the test feature

subset and assuming an equal prior for all the speakers,

we obtain an operational version of (2) for recognition

(6)

where is defined in (4) with replaced

by due to the assumption of a uniform .

The search in (6) for the matching feature subset can be com-

putationally expensive for large frame vectors . We can sim-

plify the computation by approximating each in

(4) using the probability for the union of all subsets of the same

size as . As such, can be written, with the

size of indicated in brackets, as [38]

(7)

where represents a subset with features .

Since the sum in (7) includes all feature subsets, it includes the

matching feature subset that can be assumed to dominate the

sum due to the best data-model match. Therefore, (4) can be

rewritten, by replacing with ,

as

(8)

Note that (8) is not a function of the identity of but only a

function of the size of (i.e., ). Using

in place of in (6), we therefore effectively turn

the maximization for the exact matching feature subset

, of a complexity of to

the maximization for the size of the matching feature subset

with a lower complexity of .

The sum in (7) over all for a given number

of features, for , can be computed efficiently

using a recursive algorithm assuming independence between

the subbands [i.e., (3)]. We call (8) the posterior union model

(PUM), which has been studied previously (e.g., [39]) as a

missing-feature approach without requiring identity of the

P (S;� jX ) =
P (S;� )

P (S;� ) + P (S ;� )p(X jS ;� )=p(X jS;� )
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noisy data. The new model (6) is reduced to a PUM with single,

clean condition training (i.e., ).

So far we have discussed the calculation of the likelihood for

a single frame. The likelihood of a speaker given an utterance

with frames can be defined as

(9)

where is defined by (6). Since is a properly

normalized probability measure, the value of , with

normalization against the length of the utterance as shown in

(9), is used directly for speaker verification as well as for speaker

identification in our experimental studies.

B. Training Data Generation and Model Complexity Reduction

As shown in (2), the new model effectively practices a recon-

struction of the test noise condition using a limited number of

training noise conditions. To make the model suitable for a wide

variety of noises, the multicondition training sets

may be created from (i.e., the clean training set) by adding

white noise to the clean training data at consecutive SNRs, with

each corresponding to a specific SNR. This accounts for

the noise over the full frequency range and a wide amplitude

range and therefore allows the expression of sophisticated noise

spectral structures by piecewise (i.e., bandwise) approximation.

Instead of white noise, we may also consider the use of low-

pass filtered white noise at various SNRs in the creation of

the multicondition training data. The low-pass filtering simu-

lates the high-frequency rolloff characteristics seen in many mi-

crophones. Finally, a combination of different types of noise,

including real noise data as in common multicondition model

training, can be used to create the training data for the model.

A simple example of the combination will be demonstrated in

the paper. Without prior knowledge of the structure of the test

noise, a uniform noise-condition prior can be used to

combine different noise conditions.

In the above, we assume that the noisy training data are

generated by adding noises electronically to the clean training

data. The potential of the new model, that allows the use of

a limited number of noise conditions to model potentially

arbitrary noise conditions, makes it feasible to add noise acous-

tically into the training data, thereby more closely matching

the physical process of how real-world noisy test data are

generated. Fig. 1 shows an example, in which white noise at

various SNRs are added acoustically to clean speech to produce

the multicondition noisy training data. The new system shares

the same principle as the systems used to collect HTIMIT [40],

NTIMIT [43], and CTIMIT [42], which were attempting to

model handset, telephone line, and cellular channel noise by

rerecording the TIMIT sentences after transmission over the

appropriate handsets or networks. The new system is designed

to generate training data for the new model, with an attempt

to model general environmental noise. In the system shown,

loudspeakers are used to simultaneously play clean speech

recordings and wide-band noise at different controlled volumes

(to simulate white noise of different SNRs), and microphones

are used to collect the mixed data that are used to train the new

Fig. 1. Illustration of the system used to generate multicondition training data
for the new model, with wide-band noise of different volumes added acousti-
cally to the clean training data. This system is also used in the experiments to
produce noisy test data, by replacing the wide-band noise source with a test
noise source.

model. This is considered to be feasible because in this data

collection we only need to consider a limited number of noise

conditions, e.g., white noise at several different SNRs (with an

appropriate quantization of the SNR), as opposed to different

noise types multiplied by different SNRs—the large number

of possibilities makes data collection extremely challenging in

conventional multicondition model training. The advantages of

the system, in comparison to electronic noise addition, include

the capture of the acoustic coupling between the speech and

noise (e.g., the nonlinearities in the handset transducer or the

medium), which is assumed to be purely linear in electronic

noise addition, and the capture of the effect of the handset trans-

ducer on the noise. Additionally, the system may also be able

to capture the effect of the distance between the handset and

the speech/noise sources, and the effect of room reverberation.

A further advance from the system, where applicable, is the

replacement of the loudspeaker for speech in Fig. 1 by the true

speaker. It is assumed that this will help to further capture the

speaker’s vocal intensity alternation as a response to ambient

noise levels (i.e., the Lombard effect). Other effects, such as

the coupling of the transducer to the speech source [40], may

also be captured within the system.

The first part of our experiments was concerned with speaker

identification. The system shown in Fig. 1 was used to gen-

erate the required multicondition training data and the testing

data, the latter being obtained by replacing the wide-band noise

source with an appropriate test noise source. While capturing

the coupling between the speech and environmental noise, the

system also captured the reverb characteristics of the recording

room. A drawback of the system, as with the other TIMIT-de-

rived databases (e.g., NTIMIT, HTIMIT, CTIMIT), is that it is

unable to capture Lombard effects, because the speech material

were presented by a loudspeaker, not by a person. Neverthe-

less, the system is useful as an engineering tradeoff that tries

to balance getting more realistic data and getting lots of data.

In the second part of our experiments for speaker verification, a

realistic noisy speech database was used. The second database
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captured realistic noise effects, including the Lombard effect,

within the environment it was taken.

As the number of training noise conditions increases, the size

of the model increases accordingly based on (1). To limit the

size and computational complexity of the model, we can limit

the number of mixtures in (1) by pooling the training data from

different conditions together and training the model as a usual

mixture model to a desired number of mixtures by using the EM

algorithm. In this case, the index in model (1) does not address

a specific noise condition any longer, and rather, it is only an

index for a mixture component with being the mixture

weights and being the total number of mixtures for the

speaker. This modeling scheme will be examined in our exper-

iments, as a method to reduce the model’s complexity through

a tradeoff of the model’s noise-condition resolution.

III. SPEAKER IDENTIFICATION EXPERIMENTS

A. Database and Acoustic Modeling

In the following, we describe our experiments conducted

to evaluate the new model for both speaker identification and

speaker verification. In the first part of the evaluation, we

consider speaker identification. We have developed a new

database offering a variety of controlled noise conditions for

experiments. This section describes the experiments conducted

on this database for closed-set speaker identification. This study

is focused on the varieties of noise, and on the development of

new methods for generating the training data and reducing the

complexity for the new model.

The database contains multicondition training data and test

data, both created by using a system illustrated in Fig. 1. To

create the multicondition training data for the new model,

computer-generated white noise, of the same bandwidth as

the speech, was used as the wide-band noise source. Two

loudspeakers were used, one playing the wide-band noise and

the other playing the clean training utterances. Each training ut-

terance was repeated/recorded in the presence of the wide-band

noise times, once without noise (forming ) and the

remaining times corresponding to different SNRs (forming

). In this system, the SNR can be quantified conve-

niently using the same method as for electronic noise addition.

Specifically, for each utterance, the average energy of the clean

speech data is calculated, which is used to adjust the average

energy of the noise data to be played simultaneously with the

speech data subject to a specific SNR. The resulting speech and

noise data are then passed to their respective loudspeakers for

play and recording, and it is assumed that the recorded noisy

speech data can be characterized by the source SNR used to

generate the playing data as described above. The test data were

generated in exactly the same way as for the training data, by

replacing the wide-band noise source in Fig. 1 with a test noise

source. As described above, the system captured the acoustic

coupling between the speech and noise, which is assumed to be

purely additive in electronic noise addition.

The TIMIT database was used as the speech material. This

database was chosen primarily for two reasons. First, it was orig-

inally recorded under nearly ideal acoustic conditions without

noise; this makes it suitable for being used as pristine speech

data in our controlled simulation of noisy speech data with the

system in Fig. 1. Second, many previous studies on this data-

base, assuming no noise corruption, have shown good recogni-

tion accuracy (see, for example, [31], [41], and [44]); this makes

it suitable for being used to isolate and quantify the effect of

noise on speaker recognition. One disadvantage of the TIMIT

database is the lack of handset variability. To make the database

also suitable for studying the handset effect, we may follow the

way of collecting HTIMIT [40] and use multiple microphones

with different characteristics to collect the data in the system of

Fig. 1. However, in this study, we focus on the problem of noise

effects and assume the use of a single microphone to record

the training and test data. In Section IV, we will consider the

handset/session variability for speaker verification on a realistic

handheld-device database. It is worthwhile to mention that both

the PUM approach and the new model described in the paper

have been tested previously positively on the SPIDRE database

(a subset of the Switchboard corpus) [33], [39]. These early pre-

liminary results were not used in this paper for two reasons:

SPIDRE is smaller than TIMIT, and the noise was added ar-

tificially while this paper is focused on more realistic noise ad-

dition.

The data were recorded in the middle of an office room, with

the use an Electret LEM EMU 4535 microphone, placed about

10 cm from the center of the two loudspeakers (i.e., the speech

and noise sources) 20 cm away from each other. The room

has a dimension of about m m m (length, width,

and height), with brick walls, a synthetic carpeted floor, and

a plaster ceiling. The room is furnished with three computer

desks against three walls, plus one bookshelf beside one of the

desks. The multicondition training utterances for the new model

were recorded in the presence of the wide-band noise at six dif-

ferent SNRs from 10 to 20 dB (increasing 2 dB every step), plus

one recording without noise (i.e., clean). While capturing the

background noise, the recording system also captured the re-

verb characteristics of the room. However, reverb effects were

not the focus of the paper. Since both the training and testing

data were recorded in the same room, we assumed that in our

experimental system it is the environmental noise rather than the

room reverberation that mainly contributed to the performance

degradation.

Six different types of real-world noise data were used, re-

spectively, as the test noise source. These were: 1) jet engine

noise; 2) restaurant noise; 3) street noise; 4) polyphonic mo-

bile-phone ring, 5) a pop song with mixed music and voice of a

female singer; and 6) a broadcast news segment containing an

interview conversation between two male speakers recorded on

a highway flyover. Examples of the spectra of these noises are

shown in Fig. 2. As can be seen, most of the noises were nonsta-

tionary and broad banded, with significant high-frequency com-

ponents to be accounted for. The durations of these noise files

range from about 1 min to about 5 min. For each noise type,

we simulated the noisy background by playing the noise in an

endless loop, and then obtained the noisy test data by playing

and recording the test utterances in the presence of the noise.

Data at three different SNRs were recorded: 20, 15, and 10 dB,

plus one recording without noise. Because the speech utterances
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Fig. 2. Noises used in identification experiments, showing the spectra over a period of about three seconds. (a) Jet engine, (b) Restaurant. (c) Street. (d) Mobile-
phone ring. (e) Pop song. (f) Broadcast news.

were much shorter than the noise files, each noisy test utterance

effectively contained a different portion of the noise file.

The TIMIT database contains 630 speakers (438 male, 192

female), each speaker contributing ten utterances and each ut-

terance having an average duration of about 3 s. Following the

practice in [41], for each speaker, eight utterances were used

for training, and the remaining two utterances were used for

testing. This gives a total of 1260 test utterances across all the

630 speakers. The multicondition training set for each speaker

contained 56 utterances (seven SNRs eight utterances/SNR).

Instead of estimating a separate model for each training SNR

condition [which is the model implied in (1)], we pooled all

56 training utterances together and estimated a Gaussian mix-

ture model (GMM) for each speaker, by treating (1) as a normal

GMM. As described in Section II-B, by controlling the number

of mixtures in this GMM, we gain a control over the the model’s

complexity. This offers the flexibility to balance noise-condition

resolution and computational time.

The speech was sampled at 16 kHz and was divided into

frames of 20 ms at a frame period of 10 ms. Each frame was

modeled by a feature vector consisting of subband features

derived from the decorrelated log filter-bank amplitudes [45],

[46]. Specifically, for each frame, a 21-channel Mel-scale

filter bank was used to obtain 21 log filter-bank amplitudes,

denoted by . These were decorrelated

by applying a high-pass filter over ,

obtaining 20 decorrelated log filter-bank amplitudes, denoted

by .

These 20 decorrelated amplitudes were then uniformly grouped

into ten subbands, i.e.,

, each subband containing two decorre-

lated amplitudes corresponding to two consecutive filter-bank

channels. These ten subbands, with the addition of their corre-

sponding first-order delta components, form a 20-component

vector , of a size

of 40 coefficients, for each frame.2

We implemented three systems all based on the same subband

feature format.

2Note that we independently model the static components and delta compo-
nents. This allows the model [i.e., (6)] to only select the dynamic components
for scoring. This has been found to be useful for reducing the handset/channel
effect, which usually affects the static features more adversely than the dynamic
features.
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TABLE I
IDENTIFICATION ACCURACY (%) FOR THE NEW MODEL AND BASELINE MULTICONDITION MODEL BSLN-MUL TRAINED USING SIMULATED, ACOUSTICALLY

MIXED MULTICONDITION DATA AT SEVEN DIFFERENT SNRS, AND FOR THE BASELINE MODEL BSLN-CLN TRAINED USING CLEAN DATA, ALL USING SUBBAND

FEATURES. THE LAST CATEGORY SHOWS THE ACCURACY BY A BASELINE GMM USING FULL-BAND MFCC, TRAINED ON THE MULTICONDITION DATA (MUL)
AND CLEAN DATA (CLN), RESPECTIVELY. THE NUMBER ASSOCIATED WITH EACH MODEL INDICATES THE NUMBER OF GAUSSIAN MIXTURES IN THE MODEL

1) BSLN-Cln: A baseline GMM trained on clean data and

tested using the full set of subband features, with 32 mix-

tures per speaker.

2) BSLN-Mul: A baseline GMM trained on the simulated

multicondition data and tested using the full set of subband

features, with 128 Gaussian mixtures per speaker.

3) New model: The proposed model (6), trained on the

simulated multicondition data and tested using optimally

selected subband features for each training condition,

with 32, 64, and 128 Gaussian mixtures, respectively, per

speaker.

Additionally, for comparison, we also implemented a baseline

GMM system that used conventional full-band Mel-frequency

cepstral coefficients (MFCC) instead of the above subband fea-

tures. In the system, each frame was modeled by a 24-compo-

nent vector, consisting of 12 MFCC plus 12 first-order delta

MFCC, derived from a 26-channel Mel-scale filter bank (this

corresponds to the default configuration used in the HTK system

for the TIMIT database).

B. Identification Results

Table I presents the identification accuracy obtained by the

various models in all the tested conditions. The accuracy of

98.41% for the clean test data by the clean baseline BSLN-Cln

represents one of the best identification results we have ever

obtained on the TIMIT database. This may indicate that the

distortion on the speech signal imposed by our play/recording

procedure for data collection (Fig. 1) is negligible and that the

acoustic features and models used to characterize the speakers

are adequate.

For the new model, given a noise/SNR condition, the accu-

racy improved as the number of mixtures increased because of

a higher noise-level resolution. We only experienced exceptions

for the engine noise in the 10/15-dB SNR cases, which showed

a small fluctuation in accuracy when the number of mixtures

increased from 64 to 128. With 128 mixtures (on average,

about 128/7 18 mixtures per SNR condition), the new model

was able to outperform the baseline model BSLN-Cln in all

tested noisy conditions, with a small loss of accuracy for the

noise-free condition. Compared to the baseline multicondition

model BSLN-Mul, the new model obtained improved accuracy

in the majority of test conditions. As expected, the improvement

is more significant for those noise types that are significantly

different from the wide-band white noise used to train the

new model and the BSLN-Mul model. In our experiments,

for example, these noises include the mobile phone ring, pop

song, and broadcast news, all showing very different spectral

structures from the white noise spectral structure (Fig. 2). For

these noises, the new model improved over BSLN-Mul by

focusing less on the mismatched noise characteristics. How-

ever, for those noises that are close to wide-band white noise

and thus can be well modeled by BSLN-Mul, the new model

offered less significant improvement or no improvement. In our

experiments, these noises include the engine noise, restaurant
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Fig. 3. Identification accuracy in clean and six noisy conditions averaged over
SNRs between 10–20 dB, and the overall average accuracy across all the condi-
tions, for the new model and the BSLN-Mul model trained using simulated,
acoustically mixed multicondition data at seven different SNRs, and for the
BSLN-Cln model trained using clean data. The number associated with each
model indicates the number of Gaussian mixtures in the model.

noise, and street noise.3 For these noises, the new model and

the BSLN-Mul model achieved similar performances, and,

because of being trained in the well-matched wide-band noise,

BSLN-Mul performed significantly better than BSLN-Cln

trained only using clean data. The improvement of BSLN-Mul

over BSLN-Cln was much less significant for the other three

mismatched noises—mobile phone ring, pop song, and broad-

cast news. Fig. 3 shows the average performance by the three

systems across all the tested clean/noisy conditions. All the

three new models, with 32, 64, and 128 mixtures, respectively,

showed better average performance than the other two systems,

indicating the potential of the new system for dealing with a

wider variety of noisy conditions. The relative processing time

for the BSLN-Mul model with 128 mixtures compared to the

new model also with 128 mixtures was about 1:6. This ratio

dropped almost linearly to about 1:3 for the new model with 64

mixtures and to about 1:1.5 for the new model with 32 mixtures.

The last category of Table I shows the identification accuracy

obtained by the baseline GMM using full-band MFCC. It

is noticed that on this database, the full-band, MFCC-based

baseline (Mul, Cln) performed poorer than the corresponding

subband-based baseline (BSLN-Mul, BSLN-Cln) in the ma-

jority of test conditions. We also tested the application of

sentence-level cepstral mean normalization to the full-band

MFCC and found no improvement in identification accuracy.

C. Acoustic Noise Addition Versus Electronic Noise Addition

In the above experiments, the multicondition training data for

the new model were created using the system shown in Fig. 1,

in which the wide-band noise was acoustically mixed into the

3We have conducted an extra experiment that is not included in the paper.
In the experiment, we trained a baseline multicondition model by replacing the
wide-band noise in Fig. 1 with each of the three test noises—engine, restaurant,
and street—at 20, 15, and 10 dB, and thereby created a model that almost exactly
matches the test conditions with the three noises. The identification accuracy
produced by this “matching” model for the matched noise conditions is very
similar to the accuracy obtained by the BSLN-Mul model. This indicates the
similarity in characteristics between the three noises and the simulated wide-
band noise.

Fig. 4. Absolute improvement in identification accuracy for the new model
trained on multicondition data with acoustically added noise, compared to
trained on multicondition data with electronically added noise, tested on data
with acoustically added noise, with 128 Gaussian mixtures per speaker.

clean training data; the noisy test data were also created in the

same way, i.e., acoustic noise addition (ANA). This model is

different from the commonly used additive-noise model, which

assumes, among other assumptions, that the coupling of speech

and background noise is a linear sum of the clean speech signal

and the noise signal. The additive-noise model allows the sim-

ulation of noisy speech by electronically adding noise to clean

speech, i.e., electronic noise addition (ENA). In the following

we describe an experiment to compare ENA and ANA for being

used to generate the multicondition training data for the new

model. Specifically, in the experiment, we assumed that the test

data were generated in the same way as above using ANA,

but the multicondition training data were generated using ANA

and ENA, respectively. This comparison is of interest because

it could offer an idea about how accurate the additive-noise

model is for characterizing acoustically coupled noisy speech

signals, in terms of the recognition performance. To keep the

other conditions exactly the same in the comparison, the noise

data associated with each training utterance in ANA were saved

and later played/recorded alone without presence of speech; the

recorded pure noise was then added electronically to the previ-

ously recorded clean speech to form a noisy training utterance.

This procedure minimized the SNR difference between the data

generated by the two methods and introduced the same trans-

ducer and room reverb effects on the resulting noisy training

data.

Fig. 4 shows the absolute improvement in identification accu-

racy obtained by ANA-based training over ENA-based training,

for the noisy test signals generated with an ANA model. Small,

positive improvements were observed in all tested conditions

except for the 20-dB street noise case. The results in Fig. 4 indi-

cate little degradation from ANA to ENA, appearing to suggest

that given the speech and noise signals, ENA is a reasonably

accurate model for their physical coupling. Research should

thus focus on the factors that directly modify the signal sources

(e.g., Lombard effects [47], [48]), and the factors that alter the

characteristics of the observed signals (e.g., handset/channel ef-

fects [40], room reverberation [49], etc.). Later in Section V

we will discuss a possible extension of the new model and the

training data collection system for modeling new forms of signal

distortion.



MING et al.: ROBUST SPEAKER RECOGNITION IN NOISY CONDITIONS 1719

Fig. 5. Spectra of utterances recorded in (a) office and (b) street intersection, using the internal microphone.

IV. SPEAKER VERIFICATION EXPERIMENTS

A. Database and Acoustic Modeling

This section describes further experiments to evaluate the new

model with the use of real-world application data. The MIT Mo-

bile Device Speaker Verification Corpus [50] was used in the

experiments (which extend previous results reported in [51]).

The database was designed for speaker verification with lim-

ited enrollment data, and was collected using a handheld-de-

vice in realistic conditions with the use of an internal micro-

phone and an external headset. The database contains 48 en-

rolled speakers (26 male, 22 female) and 40 impostors (23 male,

17 female), each reciting a list of name and ice-cream flavor

phrases. The part of the database containing the ice-cream flavor

phrases was used in the experiments. There were six phrases ro-

tated among the enrolled speakers, with each speaker reciting an

assigned phrase four times for training and four times for verifi-

cation. The training and test data were recorded in separate ses-

sions, involving the same or different background/microphone

conditions and different phrase rotation. The same practice ap-

plies to the impostors, with each impostor repeating an assigned

phrase four times in each given background/microphone con-

dition with condition-varying phrase rotation. The impostors

saying the same phrase as an enrolled speaker were grouped

to form the impostor trials for that enrolled speaker. Then, in

each test, there were a total of 192 enrolled speaker trials and a

slightly varying number of impostor trials ranging from 716 to

876 depending on the test conditions.

We considered the data collected in two different environ-

ments: office (with a low level of background noise) and street

intersection (with a higher level of background noise). Fig. 5

shows the typical characteristics of the environments. We as-

sumed that the speaker models were trained based on the office

data and tested in matched and mismatched conditions without

assuming prior information about the test environments. The

office data served as , from which multicondition training

sets were generated by introducing different cor-

ruptions into . In our experiments, we tested the addition

of wide-band noise and narrow-band noise, respectively, to the

clean training data for creating the noisy training data sets. The

noise was added electronically. The wide-band noise was ob-

tained by passing a white noise through a low-pass filter with the

same bandwidth as the speech spectrum, and the narrow-band

noise was obtained in the same way but with a lower 3-dB cutoff

frequency, i.e., 800 Hz, for the low-pass filter. The latter simu-

lates the weakening high-frequency components for the noise,

as may be seen in Fig. 5. We have tested other cutoff frequen-

cies within the range 700–2000 Hz for the narrow-band training

noise and found that they offered similar performances. In the

following, we first present the experimental results for the sep-

arate use of the wide-band noise and the narrow-band noise for

training the models. It was found that wide-band training noise

was not the best choice for this database with relatively weak

high-frequency noise components. However, we have seen ear-

lier in Section III that wide-band training noise is needed for

dealing with noise sources with significant high-frequency com-

ponents. In the final part of this experiment, we demonstrate

a model built upon mixed wide-band and narrow-band noise

training, to optimize the performance for varying noise band-

widths.

We added the simulated noise to each training utterance at

nine different SNRs between 4–20 dB (increasing 2 dB every

step). This gives a total of ten training conditions (including the

no corruption condition), each characterized by a specific SNR.

We treated the problem as text-dependent speaker verification,

and modeled each enrolled speaker using an eight-state HMM,

with each state in each condition (i.e., , which now

models the observation likelihood in state within a speaker’s

HMM) being modeled by two diagonal-Gaussian mixtures. Ad-

ditionally, three states with 16 mixtures per state were used to

account for the beginning and ending backgrounds within each

utterance; these states were tied across all the speakers. The

for different were combined based on (1) as-

suming a uniform prior ; no model size reduction was

considered in this case because of the small number of mixtures

in each . The signals were sampled at 16 kHz and

were modeled using the same frame/subband feature structure

as described in Section III-A, with an additional sentence-level

mean removal for the subband features (similar to cepstral mean

subtraction).

We implemented three systems all based on the same subband

feature format, and all having the same state-mixture topology

as described above.

1) BSLN-Cln: A baseline system trained on “clean” (office)

data.

2) BSLN-Mul: A baseline system trained on the simulated

multicondition data.
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Fig. 6. DET curves in matched training and testing: Office/headset, for the new
model and the BSLN-Mul model trained using simulated narrow-band noise
(NB) and wide-band noise (WB) at ten different SNRs, and for the BSLN-Cln
model trained using clean data.

3) New model: The proposed model (6) trained on the simu-

lated multicondition data.

Two cases were further considered for the new model and the

BSLN-Mul model: 1) the use of wide-band noise and 2) the

use of narrow-band noise to generate the multicondition training

data.

B. Verification Results

We first compared the three systems assuming matched con-

dition training and testing, both in the office environments with

the use of a headset. Fig. 6 presents the detection-error-tradeoff

(DET) curves, for the new model and the BSLN-Mul model

trained using narrow-band noise (NB) and wide-band noise

(WB), respectively, and for the BSLN-Cln model trained using

clean data. The office data are not perfectly clean, often with

burst noise at the time the microphone being switched on/off

and some random background noise. Fig. 6 indicates the use-

fulness for reducing the mismatch by training the models in

narrow-band noise, as seen for the better performances obtained

by the two multiconditionally trained, narrow-band noise-based

models New (NB) and BSLN-Mul (NB), over the single-condi-

tionally trained model BSLN-Cln. However, training the models

using the wide-band noise hurt the performance, particularly

for BSLN-Mul (WB), due to the serious mismatch between the

training and testing conditions. The new model improved the

situation by ignoring some of the mismatched data, and offered

better performance over its counterpart BSLN-Mul in both

narrow-band noise and wide-band noise training conditions.

Table II summarizes the equal error rates (EERs) associated

with each system in different training/testing conditions. As

shown in the table, for this matched condition training/testing

case (index: OH-OH), the new model obtained lower EERs

than the other systems assuming the same information about

the test condition.

TABLE II
EQUAL ERROR RATES (%) FOR THE NEW MODEL AND THE BSLN-MUL MODEL

TRAINED USING SIMULATED NARROW-BAND NOISE (NB), WIDE-BAND NOISE

(WB) AND COMBINATION (NB+WB) AT TEN DIFFERENT SNRS, AND FOR

THE BSLN-CLN MODEL TRAINED USING CLEAN DATA (INDEX: O—OFFICE,
S—STREET INTERSECTION, H—HEADSET, I—INTERNAL MICROPHONE)

Fig. 7. DET curves with mismatch in environments: training—office,
testing—street intersection, both using internal microphone, for the new model
and the BSLN-Mul model trained using simulated narrow-band noise (NB)
and wide-band noise (WB) at ten different SNRs, and for the BSLN-Cln model
trained using clean data.

Next, we tested the three systems assuming there is

training/testing mismatch in environments but no mismatch

in microphone type. The models were trained using the office

data and tested using the street intersection data, both collected

using the internal microphone. Fig. 7 shows the DET curves,

and Table II shows the corresponding EERs (index: OI-SI).

The new model offered improved performance, reducing the

EER by 42.5/24.9% (NB/WB) as compared to BSLN-Cln.

While the narrow-band noise-based BSLN-Mul (NB) improved

over BSLN-Cln, the wide-band noise-based BSLN-Mul (WB)

performed worse than BSLN-Cln, with a higher EER. This is

due to the severe mismatch in the noise characteristics (e.g.,

bandwidth) between the training and testing. This mismatch

was reduced in the new model by focusing on the matching

subbands. As seen, the new model (WB) trained on the less

matched wide-band noise performed similarly to BSLN-Mul

(NB) trained on the better matched narrow-band noise, in

terms of the EER. The new model (NB/WB) reduced the EER

by 23.4/34.8% as compared to the corresponding BSLN-Mul

(NB/WB).
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Fig. 8. DET curves with mismatch in both environments and microphones:
training—office/internal microphone, testing—street intersection/headset, for
the new model and the BSLN-Mul model trained using simulated narrow-band
noise (NB) and wide-band noise (WB) at ten different SNRs, and for the
BSLN-Cln model trained using clean data.

Further experiments were conducted assuming mismatch in

both environments and microphone types. The models were

trained using the office data with an internal microphone and

tested using the street intersection data with a headset. Fig. 8

presents the DET curves with the corresponding EERs shown

in Table II (index: OI-SH). Again, the new model offered

improved performance over both BSLN-Cln and BSLN-Mul.

Compared to BSLN-Cln, the new model (NB/WB) reduced the

EER by 53.4/41.4%, and compared to BSLN-Mul (NB/WB),

the reductions were 37.2/42.4%. It is noted that in this case

of combined mismatch, the new model (WB) offered lower

EER than BSLN-Mul (NB)—the latter was trained using

narrow-band noise that better matched the test environment

than the wide-band noise (WB). Therefore, the new model

resulted in the lowest EERs among all the tested systems.

The above experimental results reveal that a knowledge

of the noise bandwidth could help improve the new model’s

performance. By training the model using low-pass filtered

white noise matching the noise bandwidth, the model would

ideally pick up information both from the noisy subbands (due

to the compensation) and from the remaining little corrupted

subbands (through matched clean subbands between the model

and data), and therefore obtain more information, i.e., a larger

subset in (2), for recognition. Otherwise, if the model

is trained using wide-band white noise, the infor-

mation from the clean subbands of the test signal would have

to be ignored to reduce the model-data mismatch, resulting in a

loss of information. Without assuming knowledge of the noise

bandwidth, we may consider building the model by using mixed

noise data, with increasing bandwidths, to offer improved accu-

racy for modeling band-limited noise while providing coverage

for wide-band noise. In the following, we show an example by

combining the two new models described above, one trained

on the narrow-band noisy data and the other on the wide-band

noisy data, to form a single model based on (1). The results

Fig. 9. Comparison between the new models trained using simulated
narrow-band noise (NB) and mixed narrow-band noise and wide-band noise
(NB+WB), for different training-testing environment/microphone conditions
(Index: O—office, S—street intersection, H—headset, I—internal micro-
phone).

are shown in Fig. 9, for all the above examined training/testing

conditions and including a comparison with the narrow-band

noise-based model (NB). As can be seen, the combined model

improved over the wide-band noise-based model (WB), per-

formed similarly to the narrow-band noise-based model (NB),

and, at the same time, retained the potential of the wide-band

noise-based model (WB) for dealing with wide-band noise

corruption. The EERs for the combined model are included in

Table II.

As mentioned earlier, multicondition model training using

added noise at various SNRs to account for unknown noise

sources has been studied previously in speech recognition (e.g.,

[37]). The above experimental results indicate that, compared

to clean-data training, multicondition training may or may

not offer improved performance, depending on how well the

training noise data match the testing noise data in characteris-

tics. The training/testing mismatch can be reduced, and hence

improved robustness obtained, by combining multicondition

training with a missing-feature model, as evident by the perfor-

mance differences between the new model and the BSLN-Mul

model.

V. SUMMARY

This paper investigated the problem of speaker recognition

in noisy conditions assuming absence of information about the

noise. We described a method that combines multicondition

model training and missing-feature theory to model noise with

unknown temporal-spectral characteristics. Multicondition

training is conducted using simulated noisy data of simple

noise characteristics, providing a coarse compensation for the

noise, and missing-feature theory is applied to refine the com-

pensation by ignoring noise variation outside the given training

conditions, thereby accommodating training and testing mis-

match.
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We studied the new model for both speaker identification and

speaker verification. The research is focused on new methods

for creating multicondition training data to model noisy speech,

on the combination of training data of different characteristics

to optimize the recognition performance, and on the reduction

of the model’s complexity by training the model as a usual

GMM. So far we have experimented the addition of wide-band

white noise, and a combination of wide-band white noise and

low-pass filtered white noise, to cover various noises of dif-

ferent spectral shapes and bandwidths. We expect further im-

proved simulation accuracy by additionally including realistic

noises into the corruption, depending on the expected environ-

ments. Two databases were used to evaluate the new algorithm.

The first was a noisy TIMIT database obtained by rerecording

the data in various controlled noise conditions, used for an ex-

perimental development of the new model with a focus on the

varieties of noise. The second was a handheld-device database

collected in realistic noisy conditions, used to further validate

the model by testing on a real-world application. Experiments

on both databases have shown improved noise robustness for

the new model, in comparison to baseline systems trained on

the same amount of information. An additional experiment was

conducted to compare the traditional additive-noise model and

acoustic noise addition for modeling noisy speech. Acoustic

noise addition is feasible in the new model due to its potential

of modeling arbitrary noise conditions with the use of a limited

number of simulated noise conditions. Currently, we are consid-

ering an extension of the principle of the new model to model

new forms of signal distortion, e.g., handset variability, room re-

verberation, and distant/moving speaking. We will modify the

system in Fig. 1 so that it can be used to collect training data

for these factors. To make the task tractable, these factors can

be “quantized” as we did for the noise bandwidth and SNR.

Missing-feature approaches will be used to deemphasize the

mismatches while exploiting the matches arising from the quan-

tized data.
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