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Abstract—In this paper, we consider the problem of unsu-
pervised feature selection. Recently, spectral feature selection
algorithms, which leverage both graph Laplacian and spectral
regression, have received increasing attention. However, existing
spectral feature selection algorithms suffer from two major prob-
lems: 1) since the graph Laplacian is constructed from the original
feature space, noisy and irrelevant features may have adverse
effect on the estimated graph Laplacian and hence degenerate
the quality of the induced graph embedding; 2) since the cluster
labels are discrete in natural, relaxing and approximating these
labels into a continuous embedding can inevitably introduce
noise into the estimated cluster labels. Without considering the
noise in the cluster labels, the feature selection process may be
misguided. In this paper, we propose a Robust Spectral learning
framework for unsupervised Feature Selection (RSFS), which
jointly improves the robustness of graph embedding and sparse
spectral regression. Compared with existing methods which are
sensitive to noisy features, our proposed method utilizes a robust
local learning method to construct the graph Laplacian and a
robust spectral regression method to handle the noise on the
learned cluster labels. In order to solve the proposed optimization
problem, an efficient iterative algorithm is proposed. We also
show the close connection between the proposed robust spectral
regression and robust Huber M-estimator. Experimental results
on different datasets show the superiority of RSFS.

I. INTRODUCTION

In many tasks of machine learning and data mining, the
high dimensionality of data presents challenges to the current
learning algorithms. Feature selection, which selects a sub-
set of relevant features, is an effective way to solve these
challenges. Recently, a lot of methods have been proposed to
address the problem of unsupervised feature selection [1], [2],
[3], [4], [5], [6], [7], [8]. These methods usually characterize
the structure of data by graph Laplacian, which is defined
based on the nearest neighbor graph. In [2], [7], each feature is
selected independently according to some specified criterion.
Spectral feature selection algorithms, which explore the graph
embedding and jointly evaluate features using sparse spectral
regression, have received increasing attention in these years.
These methods include [1], [3], [4], [5], [6].

Though many spectral feature selection algorithms have
been proposed, at least two problems remain not addressed
properly. One problem is the construction of graph Laplacian,
which can reflect the structure (such as discriminative and
geometrical information) of the data. The quality of the con-
structed graph Laplacian are vitally important to the success of
the induced graph embedding (which is also known as pseudo

cluster label) and further spectral feature selection algorithms.
However, since these methods construct the graph Laplacian
from the original uniform feature space, noisy features and
outliers will have an adverse effect on the construction of
the graph and hence deteriorate the performance of feature
selection. Another problem lies on the cluster structure induced
by graph embedding. Due to the discrete nature of class labels,
these approaches relax and approximate the desired class label
to continuous graph embedding, and noises will be inevitably
introduced. Since the spectral regression model usually adopts
the estimated graph embedding to supervise the evaluation
of the importance of features through group sparse induced
regularization (i.e. �21-norm), without considering the noise
and outliers in the estimated cluster structure, the feature
selection process may be misguided.

In this paper, we propose a Robust Spectral learning
framework for unsupervised Feature Selection (RSFS), which
jointly improves the robustness of graph embedding and sparse
spectral regression, and hence more faithful feature selection
result could be expected. The basic idea of our method is:

• We utilize the local kernel regression to capture the
nonlinear geometrical information, where we adopt
the �1-norm to measure the local learning estimation
error. Unlike the traditional �2-norm used in most
existing feature selection approaches, the proposed �1-
norm based local kernel regression is more robust to
large reconstruction errors, which are often caused by
noisy features and outliers. It has been shown that,
by utilizing the structure of scaled partition matrix,
the introduced �1-norm local learning can also be
reformulated as a graph embedding problem [9]. In
this way, effects of noise and outliers are reduced
and hence the structure of the data can be better
characterized by the learned graph Laplacian.

• The discrete class label is often relaxed and approx-
imated into continuous values by graph embedding;
such continuous relaxation may introduce additional
noise, so that the feature selection process may be
misled in the sparse spectral regression model. In
this paper, we propose a robust sparse spectral re-
gression model by explicitly extracting sparse noise
in the continuous approximation. Interestingly, it can
be shown that our proposed robust spectral regression
model has a dual equivalence with Huber M-estimator
in robust statistics [10]. Thus, the robustness of our
proposed spectral regression model can be interpreted
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as reducing the effects of large regression errors,
which are often caused by outliers and noise.

To select the most discriminative features robustly, we
perform the robust graph embedding and robust spectral re-
gression simultaneously. We propose an efficient iterative al-
gorithm to solve the proposed optimization problem. Extensive
experiments are conducted on data sets with and without
explicit noise and outliers. Experimental results show the
superiority of RSFS when compared with others.

II. RELATED WORK

Feature selection is a fundamental problem in machine
learning and has been studied extensively in the literature.
Based on the availability of class labels, feature selection
algorithms can be classified as supervised algorithms and
unsupervised algorithms. Based on whether taking the learning
algorithm (e.g., a classification algorithm) into consideration
when performing feature selection, the feature selection algo-
rithms can be grouped into three categories, including filter,
wrapper and embedded methods.

Compared with supervised feature selection, unsupervised
feature selection is a much harder problem due to the absence
of class labels. Unsupervised filter methods usually assign each
feature a score which can indicate the feature’s capacity to
preserve the structure of data. Top ranked features are selected
since they can best preserve the structure of data. The typical
methods include Maximum Variance, Laplacian Score [2],
SPEC [11] and EVSC [7]. Unsupervised wrapper methods [3]
”wrap” the feature selection process into a learning algorithm
and leverage the learning results to select features. Unsuper-
vised embedded methods perform feature selection as a part
of model training process, e.g., UDFS [4] and NDFS [5].

Among all the unsupervised feature selection methods,
spectral feature selection methods have received increasing
attention in recent years. The typical spectral feature selection
methods include MCFS [3], MSRF [12], FSSL [13], LGDFS
[8], UDFS [4], JELSR [14], NDFS [5] and RUFS [6]. Most of
these methods involve the following two steps. The first step is
to explore the cluster structure of data by spectral analysis of
graph Laplacian or by nonnegative matrix factorization, and the
second step selects features via sparsity regularization models,
i.e. �1-norm and �21-norm regularized spectral regression, to
preserve the estimating cluster structure. MCFS, MRSF and
FSSL apply these two steps separately, while UDFS, JELSR,
NDFS and RUFS perform them jointly. Most of the above
methods pay no special attention to the noise in features and
data points when constructing the graph Laplacian, making
the learned graph Laplacian unreliable. On the other hand,
since the cluster labels are discrete in natural, relaxing and
approximating these labels into a continuous embedding will
inevitably introduce noise into the estimated cluster labels. The
unreliable graph Laplacian and noise in the cluster labels will
degenerate the performance of feature selection.

III. THE PROPOSED METHOD

In this section, we present our proposed Robust Spec-
tral learning framework for unsupervised Feature Selection
(RSFS), which selects feature by performing robust graph
embedding to effectively learn the cluster structure and robust

spectral regression to handle sparse noise on estimated cluster
structure simultaneously. After discussing the robust graph em-
bedding and robust sparse spectral regression, we formulate the
optimization problem of RSFS. We also present the algorithm
to solve the optimization problem of RSFS.

A. Robust Graph Embedding

Discriminative information is very important for feature se-
lection. In supervised scenario, the discriminative information
is encoded in the class labels. By exploring the class labels,
it’s convenient for supervised feature selection algorithms
to select discriminative features. However, in unsupervised
scenario, there is no label information available. Thus, it is
much more difficult to select discriminative features. One way
to select discriminative features in unsupervised scenario is
to learn pseudo cluster labels (graph embedding), which can
guide the feature selection process. [5] and [3] employed
spectral analysis to predict cluster labels. However, since the
spectral analysis in [5] and [3] depends on the similarity graph
constructed from the original feature space, noise and outliers
will have an adverse effect on predicting the pesudo labels
and hence deteriorate the performance of feature selection. [6]
proposed to learn pseudo labels by local learning regularized
nonnegative matrix factorization (NMF). Although the loss
function of NMF adopts �21-norm, the local learning term
employs a square loss, which is sensitive to noise and outliers.

It has also been shown that the local structure of data is
very important for exploring the cluster structure of data [15].
By exploring local structure of data, we can get more accurate
pseudo cluster labels. Our goal is to design a method which can
both utilize the local structure of data and handle noisy features
and outliers for robust graph embedding. In the following, we
introduce such a robust local learning method.

Let X = {x1, ..., xn} ∈ R
d×n denote the data matrix,

whose columns correspond to data instances and rows to
features. Suppose these n instances belong to c classes. Denote
Y = [y1, ..., yc] = [yil] ∈ {0, 1}n×c as a partition matrix
of data matrix X. To utilize the local structure of data,
we assume the label of a data point can be predicted by
its neighbors. Formally, for each data point xi, the label
predictor pil(·) is constructed based on its neighborhood
information {(xj , yjl)|xj ∈ Ni)}, where Ni is the neigh-
borhood of xi. Suppose P = [p1, ...,pc] ∈ R

n×c, where
pl = [p1l(x1), p2l(x2), ..., pnl(xn)]

T ∈ R
n. Then, the objec-

tive function can be written as

min
Y∈Rn×c

J(Y) = L(Y,P), (1)

where L is a loss function which is robust to noise and outliers
and P is the cluster structure estimated by local learning.

There are many choices for the local predictor p. In order
to effectively capture the structure of data, we choose kernel
regression as our local predictor. The basic idea of kernel
regression is that the prediction of a data point takes the
weighted average of the target values of the training data
points. The weight is defined by the kernel function. Formally,
for each data point xi, a local kernel regression pil(·) is
constructed to estimate the cluster label of xi, i.e.,

pil(xi) =

∑
xj∈Ni

K(xi, xj)yjl∑
xj∈Ni

K(xi, xj)
(2)
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where Ni is the neighborhood of xi. Define a matrix S =
[sij ] ∈ Rn×n as follows

sij =

{
K(xi,xj)∑

xj∈Ni
K(xi,xj) xj ∈ Ni

0 xj /∈ Ni

(3)

Thus, we have pl = Syl and P = SY.

In order to alleviate the side effect of irrelevant and noisy
features, here we employ �1-norm, which reduces the effect of
large fitting error. Thus, we have,

min
Y∈Rn×c

J(Y) =
c∑

l=1

||yl − Syl||1. (4)

Although the above objective function with respect to
the partition matrix Y is attractive, it’s difficult to derive a
quadratic form. Following [9], we employ the scaled partition
matrix G = Y(YT Y)−1. Balanced clusters, which can lead
to better performance in practice, is obtained by the scaling
procedure. It can be proved that

min
G

||G− SG||1

is equivalent to minimizing the following problem [9],

J(F) = Tr(FT MF) (5)

where M = (B−S−ST ). B is the degree matrix of (S+ST ).

F = [f1, ..., fc] is defined as F = Y(YT Y)−
1
2 , and FT F = Ic.

B. Robust Sparse Spectral Regression

The graph embedding is discrete in natural. By relaxing
and approximating it in continuous values, noise is inevitably
introduced. Without considering the noise on the estimated
cluster structure, the feature selection process may be mis-
guided. Motivated by the recent development in robust prin-
ciple component analysis [16], we propose a robust spectral
regression model, which assumes the learned cluster structure
may be arbitrarily corrupted, but the corruption is sparse. We
introduce a sparse matrix Z ∈ R

n×c to explicitly capture the
sparse noise. Thus, the goal of robust spectral regression is to
approximate F as

min
W,Z

||(F− Z)− XT W||2F , s.t.|Z|1 < η1, ||W||2,1 < η2,

(6)
where η1 and η2 are very small positive numbers. W is the
spectral regression coefficients where �21-norm is imposed to
pursue row-wise sparsity; Such property makes it suitable for
the task of feature selection [17]. Specifically, wi shrinks to
zeros if the i-th feature is less relevant to the estimated cluster
structure. Interestingly, it can be shown later in Eq. (12),
Eq. (13) and Eq. (14) that the above problem is equivalent
to minimizing the regression error with Huber M-estimator,
which actually reduces the large regression error caused by
noise and outliers.

C. The Objective Function of RSFS

In the previous subsections, we present a robust method to
explore the graph embedding and a robust spectral regression
to handle sparse noise on the estimated cluster structure. By
combining the robust graph embedding (Eq. (5)) and robust
sparse spectral regression (Eq. (6)) into a unified framework,
we obtain the following objective function,

min
F,W,Z

Tr(FT MF) + α||(F− Z)− XT W||2F
+ β||W||2,1 + γ||Z||1

s.t. F ∈ Rn×c
+ ,F = Y(YT Y)−

1
2

(7)

where α, β, γ ∈ R+ are parameters. Since the elements in F
are discrete values in nature, the optimization problem in Eq.
(7) is an NP-hard problem [15]. By relaxing these discreate
values to continuous ones [15], [18], the objective function in
Eq. (7) can be relaxed to

min
F,W,Z

Tr(FT MF) + α||(F− Z)− XT W||2F
+ β||W||2,1 + γ||Z||1

s.t. F ∈ Rn×c
+ ,FT F = Ic

(8)

D. Algorithm to Solve RSFS

In this subsection, we present an efficient algorithm to solve
the optimization problem in Eq. (8). Let

L(W,Z,F) = Tr(FT MF) + α||(F− Z)− XT W||2F
+ β||W||2,1 + γ||Z||1,

(9)

where three variables W, Z and F are involved. Due to the non-
smoothness of the row-sparsity induced �21-norm, we develop
an coordinate descent algorithm to alternatively minimizing
the above objective function with respect to W, Z, and F,
separately. This procedure is repeated until convergence.

1) Optimize W for fixed F and Z: The optimization prob-
lem for updating W is equivalent to minimizing

L1 = ||(F− Z)− XT W||2F +
β

α
||W||2,1 (10)

Let ∂L1

∂W = 2X(XT W − (F − Z)) + 2β
αDW = 0, thus we get

the close-form solution to update W,

W = (XXT +
β

α
D)−1X(F− Z) (11)

where D is a diagonal matrix with Dii =
1

2||wi||
1.

2) Optimize Z for fixed W and F: The optimization prob-
lem of updating Z is equivalent to minimizing

L2 = ||E− Z||2F +
γ

α
||Z||1, E = F− XT W. (12)

The optimization problem in Eq. (12) can be solved effi-
ciently via the soft-thresholding operator [19] and the closed
form solution is as follows,

Zij =

{
0, if |Eij | ≤ γ

2α

(1− γ
2α|Eij | )Eij , otherwise

(13)

1To avoid zero values, We use a very small constant σ to regularize Dii =
1

2
√

wiwT
i +σ

[17].
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By substituting Eq. (13) into Eq. (12), we get

minL2 =
∑
ij

Eij , (14)

where

Eij =

{
E2
ij , if |Eij | ≤ γ

2α
γ
α |Eij | − ( γ

2α )
2, otherwise

The right part of Eq. (14) is denoted as Huber-estimator in
robust statistics [10]. Based on the duality between Eq. (12)
and Eq. (14), we can find that Eq. (12) imposes an �2-norm
on small errors (|Eij | ≤ γ

2α ) and imposes an �1-norm on large
errors (|Eij | > γ

2α ). Different from other feature selection
methods [3], [5], which use spectral regression with squared
loss, our method can adaptively impose the �1-norm on large
errors, which are often caused by noise and outliers. In this
way, our method can have better performance even when the
data are noisy or corrupted.

3) Optimize F for fixed W and Z: By incorporating the
orthogonal constraint of F into the objective function via
Langrange multiplier, it is equivalent to optimizing

L3 = Tr(FT MF)+α||F−A||2F +
ν

2
||FT F− Ic||2F s.t. F ≥ 0

(15)
where A = XT W+Z. In practice, ν is set to be large to ensure
the orthogonal condition. Inspired by recent development in
non-negative matrix factorization community [20] , we present
an iterative multiplicative updating rule to solve Eq. (15). Let
Φ ∈ R

n×c be the Lagrangian multiplier, then we have

L(F) = Tr(FT MF) + α||F− A||2F
+

ν

2
||FT F− Ic||2F + Tr(ΦFT ).

(16)

Setting
∂L(F)
∂F = 0, we get Φ = −2(MF+αF+νFFT F−νF−

αA). By employing the KKT condition ΦijFij = 0, we get

[MF + αF + νFFT F− νF− αA]ijFij = 0. (17)

Algorithm 1 The Optimization Algorithm of RSFS

Input: The data matrix X ∈ Rd×n, the parameters α, β, γ,
ν and k.

Output: Sort all the d features according to ||Wi||2 (i =
1, ..., d) in descending order and select the top q ranked
features.

1: Construct the k-nearest neighbor graph and calculate S by
Eq. (3)

2: Calculate B as the degree matrix of (S + ST ) and M =
B− S− ST

3: The iteration step t = 1; Initialize Ft ∈ R
n×c and Zt ∈

R
n×c; set Dt ∈ R

d×d as an identity matrix
4: repeat
5: Wt+1 = (XXT + β

αDt)−1X(Ft − Zt)
6: update Z by Eq. (13)

7: Ft+1
ij ← Ft

ij

√
[M−Ft+νFt+αA+]ij

[M+Ft+αF+νFt(Ft)T Ft+αA−]ij

8: update the diagonal matrix D as Dt+1
ii = 1

2||wt+1
i || ;

9: t = t+1;
10: until Convergence criterion satisfied
11: Sort each feature according to ||wi|| and select the top

ranked ones.

Though the non-negative constraint has been adopted in
NDFS [5], the optimization schema developed in NDFS can
not be used directly. The problem is due to the fact that M
and A in Eq. (17) are mix signed. To tackle this problem, we
introduce M = M+ − M− and A = A+ − A− [20], where
M+

ij = (|Mij |+ Mij)/2 and M−
ij = (|Mij | −Mij)/2. We get

[(M+ −M−)F + αF + νFFT F− νF− α(A+ − A−)]ijFij = 0.

Then, we obtain the following updating rule

Fij ← Fij

√
[M−F + νF + αA+]ij

[M+F + αF + νFFT F + αA−]ij
. (18)

We summarize the optimization algorithm in Algorithm 1.

IV. EXPERIMENTS

A. Data Sets

Six data sets are used in our experiments, including two
face data sets, i.e., ORL [3] and Jaffe [21], one object image
data set, i.e., COIL20 [3], two text data sets, i.e., BBCSport
[22] and WebKB4 [23], and one handwritten data set, i.e.,
MNIST [24]. Table I gives a summary of these data sets.

TABLE I. SUMMARY OF DATA SETS

Dataset Size Dimensions Classes

BBCSport 737 1000 5

WebKB4 4199 1000 4

ORL 400 1024 40

COIL20 1440 1024 20

MNIST 4000 784 10

Jaffe 213 676 10

B. Methods to Compare

We systematically compare 3 weak baselines (AllFea,
Laplacian Score [2], MCFS [3]) and 3 strong baselines (UDFS
[4], NDFS [5] and RUFS [6]) in unsupervised feature selection
literatures.

• AllFea, which selects all the features.

• LS2 [2], which selects those features that can best
preserve the local manifold structure of data.

• MCFS3 [3], which selects the features by adopting
spectral regression with �1-norm regularization. The
neighborhood size is set to 5.

• UDFS4 [4], which exploits local discriminative
information and feature correlations simultaneously
and considers the manifold structure as well.
The parameters are searched from the grid
{10−9, 10−6, 10−3, 1, 103, 106, 109} and the
neighborhood size is 5 as used in [4].

• NDFS5 [5], which selects features by a joint frame-
work of nonnegative spectral analysis and �2,1-norm
regularized regression. The parameters are searched
from the grid {10−6, 10−4, 10−2, 1, 102, 104, 106} and
the neighborhood size is 5 as used in [5].

2http://www.cad.zju.edu.cn/home/dengcai/Data/code/LaplacianScore.m
3http://www.cad.zju.edu.cn/home/dengcai/Data/code/MCFS p.m
4http://www.cs.cmu.edu/∼yiyang/UDFS.rar
5https://sites.google.com/site/zcliustc/home/publication/AAAI2012.m
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Fig. 1. Clustering accuracy and normalized mutual information versus the number of selected features on all the data sets

• RUFS6 [6], which selects feature by robust non-
negative matrix factorization and robust regres-
sion. The parameters are searched from the grid
{10−6, 10−4, 10−2, 1, 102, 104, 106} and the neigh-
borhood size is 5 as used in [6].

• RSFS7, which is proposed in this paper. We tune the
parameters from {10−3, 10−2, 10−1, 1, 101, 102, 103}.
The neighborhood size is set to be 5.

For each method, the parameters are searched in the grid
as described. For the selected features, the K-means algorithm
is applied 20 times with random initiation and the best average
result is reported. Clustering Accuracy and Normalized Mutual
Information are used to evaluate the performance of different
algorithms.

C. Clustering on Data Sets without Explicit Noise

We first evaluate the performance of the seven methods
on data sets without explicit noise. The clustering results,
in terms of NMI and ACC, are reported in Figure 1. We
have the following observations. Firstly, by selecting features
jointly and utilizing discriminative information, MCFS, UDFS,
NDFS, RUFS and RSFS have a better performance than
LS. By learning graph embedding and performing feature
selection simultaneously, RSFS, RUFS and NDFS have a better
performance over most of the datasets. By considering outliers
and noise, RSFS and RUFS achieve better performance than

6http://web.engr.illinois.edu/∼mqian2/upload/research/RUFS/RUFS.m
7http://kingsleyshi.com/codes/RSFS.rar

other methods. At last, out proposed RSFS achieves the best
performance. This can be explained by the following main
reasons. First, the robust graph embedding learning method
can learn better cluster structure. It also explores the local
structure of data, which has been shown to be important for
data analysis. Second, by assuming sparse noise in the learned
pseudo label matrix, we propose a robust regression model to
handle the noise. Third, the robust graph embedding method
and the robust spectral regression are performed jointly to
handle noise and outliers in data.

D. Clustering on Data Sets with Malicious Occlusion

In this subsection, we describe the experimental results on
data sets with explicit noise and outliers. In this experiment, we
use the ORL data set, which contains 400 gray scale images of
40 individuals. In order to impose some noise to the original
ORL data set, different ratio (0.2, 0.3) of images are randomly
selected and partially occluded with random blocks. 10 tests
were conducted on different randomly chosen percentage of
outliers, and the average performance over the 10 data sets is
reported.

Figure 2 shows the clustering results in term of ACC for the
methods over datasets with different ratio of noise. We have
two observations. First, our proposed method can achieve the
best performance over all the corrupted data sets. Second, the
improvement between our method and other methods increases
when the ratio of corruption varies from 0.2 to 0.3.
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Fig. 2. Clustering Accuracy on ORL with different ratio of noisy images
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Fig. 3. Clustering Accuracy with different parameters

E. Effects of the Parameters

In this subsection, we study the sensitiveness of parameters.
Due to space limit, we only report the results on COIL20
and Jaffe in Figure 3. Figure 3 shows the best clustering
accuracy with respect to each of the parameters over the
selected features. The results show that our method is not very
sensitive to the parameters α, β and γ.

V. CONCLUSION

We have proposed a novel robust unsupervised feature se-
lection framework, called RSFS, which is a unified framework
that jointly performs robust graph embedding learning and ro-
bust sparse spectral regression. To solve optimization problem
of RSFS, an efficient iterative algorithm was proposed. The

extensive experimental results show that our proposed method
outperforms other state-of-the-art methods.
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