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Spectrum Sensing (SS) is an important function in Cognitive Radio (CR) to detect primary users.�e design of SS algorithms is one
of the most challenging tasks in CR and requires innovative hardware and so	ware solutions to enhance detection probability and
minimize low false alarmprobability. Although several SS algorithms have been developed in the specialized literature, limitedwork
has been done to practically demonstrate the feasibility of this function on platforms with signi
cant computational and hardware
constraints. In this paper, SS is demonstrated using a low cost TV tuner as agile front-end for sensing a large portion of the Ultra-
High Frequency (UHF) spectrum. �e problems encountered and the limitations imposed by the front-end are analysed along
with the solutions adopted. Finally, the spectrum sensor developed is implemented on an Android device and SS implementation
is demonstrated using a smartphone.

1. Introduction

Spectrum Sensing (SS) is one of the most challenging tasks in
Cognitive Radio (CR) [1]. In particular, SS consists of scan-
ning a large portion of the Radio Frequency (RF) spectrum
and detecting the presence of possibly weak signals in the fre-
quency band of interest. A cognitive device has to determine
with a high level of con
dence if a speci
c band is unoccupied
before using it for its own operations. High detection proba-
bility is required to ensure that primary users are adequately
protected, while minimization of false alarms improves the
e�ciency of secondary users to transmit in RF spectrum
bands not occupied by primary users. For this reason, several
techniques have been developed to improve the sensitivity of
SS. �ese techniques include the energy detector, the cyclo-
stationarity detector and the matched 
lter detector [1–3].
�e energy detector is the most simple technique available
in the literature because of its low computational and imple-
mentation complexity. In addition, the energy detector does
not require a priori knowledge of the primary user Signal-of-
Interest (SOI) and it is therefore more versatile and it can be
adopted for the di�erent types of signals. �ese techniques

are designed assuming an ideal front-end for the collection
of the samples used for signal detection.�us, the presence of
spurs and gain variations are usually neglected.�e oscillator
used for signal down-conversion can however introduce
harmonics and power can “leak” from adjacent bands if the
front-end 
lter has insu�cient side-band rejection. Front-
end nonidealities can strongly impact the detection process
and need to be accounted for. Although these nonidealities
are considered in the recent literature [4–6], only ad hoc
solutions, including the increase of the decision threshold
[4, 5] and the usage of frequency domain excision techniques
[6], were suggested.

In this paper, practical SS is demonstrated using a low-
cost TV tuner, the Realtek RTL2832U [7] device, which is
adopted as agile front-end. �e nonlinearities caused by the
low-cost device are accounted for using a robust approach for
spurious removal.�e technique proposed requires a reduced
computation load and can thus be implemented on devices
with limited computational resources.

�e contribution of this paper is twofold. At 
rst the
propagation impairments caused by a low-cost front-end are
experimentally characterized. It is shown that SS has to take
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into account the spurs and interfering signals caused by the
front-end, that is, the sensor used for sensing. Traditional
techniques such as the energy detector can be negatively
a�ected by the presence of such interfering terms and robust
detection techniques [8] should be employed. In this respect,
the classical energy detector is modi
ed using robust opera-
tors such as the median. �e development of robust energy
detection techniques is the second major contribution of
the paper. �e advantages of the technique developed are
analysed in terms of probability of false alarm, that is,
the probability of incorrectly declaring a frequency band
occupied. �e use of the median as robust operator allows
the removal of spurious components improving the overall
performance of the system.

�e technique proposed is computationally e�cient and
can be implemented in platforms with limited computational
resources. In this respect, the developed SS technique has
been implemented on an Android device and SS is demon-
strated using a smartphone.

�e remainder of the paper is organized as follows: the
problem of SS and classical SS techniques are discussed in
Section 2 whereas the signal model adopted for the detector
design is provided in Section 3. �e robust energy detector
proposed to deal with interference is described in Section 4
and characterized from a statistical point of view in Section 5.
�e system architecture and its implementation are detailed
in Section 6. Experimental results are 
nally provided in
Section 7. Section 8 concludes the paper.

2. Spectrum Sensing Techniques

SS is the process of detecting the signal presence in a spe-
ci
c frequency band. �us, it is a binary hypothesis testing
problem where it is necessary to decide between

�0 : � [�] = � [�] , � = 0, . . . , � − 1,
�1 : � [�] = � [�] + � [�] , � = 0, . . . , � − 1, (1)

where �0 and �1 are the null and alternative hypothesis,
respectively. �e null hypothesis assumes that the band of
interest (portion of spectrum under analysis) is not occu-
pied by a signal component and only the noise term,�[�], is present. On the contrary, the alternative hypothesis,�1, assumes that also a useful signal component, �[�], is
present. In (1), the di�erent components are digital sequences
obtained by digitizing an analog signal using a sampling
frequency, ��.

Note that (1) de
nes the simplest form of the problem
addressed by SS. In particular, under the assumption that �[�]
is a complex circularly symmetric Gaussian process, model
(1) de
nes a simple Additive White Gaussian Noise (AWGN)
channel. E�ects such as interference and channel distortions
are neglected. More complex models accounting for fading
and interference are to be considered in order to handle real
channel e�ects [3, 9]. In this paper, a signal model accounting
for frequency-dependent interference terms is considered.
Moreover, �at spectral characteristics are assumed on the
frequency band considered for sensing. More details on the
model adopted in this paper are provided in Section 3.
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Figure 1: Principles of signal detection: the decision variable, 	,
is computed from the input sample, �[�]. Several detectors can
be adopted in parallel to compute a set of decision variables. A
combining strategy is then adopted to evaluate the 
nal decision
statistic.

In order to decide between�0 and�1, di�erent detectors
have been suggested in the literature [10, 11]. A detector is
a function of the input data which is used to compute a
decision variable which, in turn, is compared with a decision
threshold [12].�ebasic principle of signal detection is shown
in Figure 1.�e input samples,�[�], are combined to form the
decision statistic,	.�e alternative hypothesis is selected if	
passes the decision threshold, 
ℎ. Note that several detectors
can be adopted in parallel as shown in Figure 1. In this case,
a combining strategy is required to form a new composite
decision variable which is then compared against the decision
threshold. �e use of several detectors can improve the
reliability of the 
nal decision.

A review of the di�erent detectors adopted in the litera-
ture for SS can be found in [10, 11]. At the basis of the design of
a signal detector, there is usually a model which incorporates
the information available on the signal and noise components
in (1). In general, themore information on the signal structure
is exploited, the more the detector will be e�ective. �is
principle is valid only in the absence of model mismatches:
if errors are present in the signal and noise descriptions then
the detectormay su�er signi
cant performance degradations.
�us, the design of a signal detector is usually a compro-
mise between detection performance and robustness against
model mismatches.

A signal detector widely adopted in the literature is the
energy detector:

	� = 1�
�−1∑
�=0

����� [�]����2 , (2)

where 	� represents an estimate of the energy of the input
samples, �[�]. �e assumptions behind (2) are that both
signal and noise samples can be modelled as zero mean cir-
cularly symmetric Gaussian random processes.

When the energy detector is used, a signal in a speci
c
frequency band is declared present if its energy exceeds a
decision threshold, 
ℎ. �is threshold depends on the noise
variance, 
2, which should be known.When 
2 is not known,
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it needs to be estimated. For this reason, noise �oor estimators
are required. A simple approach is to measure 
2 by consid-
ering signals in frequency bands that are known to be unoc-
cupied and contain noise only. Note that the problem of noise
�oor estimation is a commonproblem in communication and
navigation. Examples of noise �oor estimators adopted for
the detection of Global Navigation Satellite System (GNSS)
signals can be found in [13]. �e basic principle of noise
�oor estimation is to remove 
rst the signal component and
measure the noise power alone. Errors in the knowledge of 
2

can signi
cantly reduce detection performance.
�e energy detector has been used as starting point for the

design of several SS techniques which account, for example,
for communication channels with non-�at spectral charac-
teristics [9] and for other transmission impairments [3].

More advanced detectors employed for SS exploit the
knowledge of speci
c signal properties and are o	en referred
to as feature detectors [10]. For example, communication
signals are o	en characterized by nonstationary correlation
functions (second order statistics) and detection can be
performed in the signal correlation domain. �ese detectors
include the cyclostationary detector and the peak autocorrela-
tion magnitude detector. �e former tries to identify the pres-
ence of periodic patterns in the time-varying autocorrelation
function of the input sample, �[�]; the latter veri
es if the
maximum of the autocorrelation function (computed on a
sliding window) is higher than the decision threshold. More
recently, Compressive Sensing (CS) approaches have also
been adopted for SS [14].�ese techniques allow a signi
cant
reduction in the number of samples required for detecting the
signal presence.

Several other detectors have been suggested and addi-
tional details can be found in [10, 11] and in the references
therein.

3. Signal Model

Low-Cost So	ware De
ned Radio (SDR) front-ends, such as
the Realtek RTL2832U [7] device, are able to collect relatively
narrowband signals with a speci
ed centre frequency, ��. In
particular, the centre frequency of the band of interest can
be easily speci
ed using the Application Program Interface
(API) of the device [7].

�e signals are 
ltered, down-converted, sampled, and
digitized. �e output of the front-end is thus a digital
sequence which can be e�ectively modelled as

� (�
�, ��) = 
�� (�
�, ��) +� (��) � (�
�, ��)
+ � (�
�, ��) , (3)

where 
� = 1/�� is the sampling interval used to digitize
the input analog signal. In (3), �(�
�, ��) is the useful signal
normalized in order to have real and imaginary parts with
unit power. Depending on the SOI, di�erent models can be
adopted to describe �(�
�, ��). Moreover, additional factors
can be added in order to take into account propagation e�ects
such as the channel impulse response. In this paper, nar-
rowband SS is performed; that is, relatively small frequency
bands are considered during sensing. In this way, it is possible

to assume a �at frequency channel on the frequency band
selected. �is model is justi
ed by the experimental results
reported in Section 7.

When TV White Spaces (WSs) are considered, �(�
�, ��)
is modelled as a zero mean complex circularly symmetric
Gaussian random process with real and imaginary parts with
unit variance. �is type of model is justi
ed for Orthogonal
Frequency Division Multiplexing (OFDM) modulations [15]
where the central limit theorem can be applied. �e symbol,
�, determines the total power, � = 2
2

� , of the useful signal.
When
� = 0, the useful signal components are absent and the
channel is available for secondary users. Detection problem
(1) can be restated in terms of 
�: the goal of SS is to determine
if 
� is equal to zero or not.

Finally, it is noted that low-cost front-ends are char-
acterized by relatively low sampling frequencies, ��. �us,�(�
�, ��) represents only a narrow portion of the SOI.
Components from several frequencies should be considered
to detect the presence of wideband signals.

Signal �(�
�, ��) is a complex interfering termwith ampli-
tude, �(��), dependent on the centre frequency, ��. It will
be shown that, in the absence of interference from adjacent
bands, �(�
�, ��) can be e�ectively described as a Continuous
Wave (CW). More complex models should be considered
to account for the impact of receiver nonlinearities in the
presence of strong signals on adjacent bands [4]. When� = 0, no interference is present. �(�
�, ��) is the receiver
noise modelled as a zero mean complex circularly symmetric
Gaussian random process with real and imaginary parts with
variance, 
2(��).

�e interference term is due to Local Oscillator (LO)
leakage, In-Phase/Quadrature (I/Q) imbalances, and Direct
Current (DC) o�set. LO leakage occurs when the signal
generated by the local oscillator enters the reception path of
the front-end and thus a CW interference is perceived by
the receiver. I/Q imbalances are due to a nonideal behaviour
of the two arms of the front-end demodulator whereas the
DC o�set is due to power supply noise leaking on the
demodulator output.

Standard SS techniques neglect the presence of the inter-
fering term, �(�
�, ��), and thus can su�er signi
cant perfor-
mance degradation. In the next section, an approach robust
to frequency outliers is derived. An empirical justi
cation to
model (3) is provided in Section 7.

4. Robust Energy Detection

In order to be able to perform SS in the presence of interfer-
ence, a robust algorithm is required. In this paper, robustness
is intended in the distributional sense; that is, it is the ability
of a system to deal with model mismatches [8]. Consider, for
example, a simple energy detector, in the absence of signal,
the input samples are assumed to be made of noise only.
�e noise term is assumed to follow a complex Gaussian
distribution and the decision threshold is set according to this
hypothesis.When oscillator spurs are present, this hypothesis
is violated and the model is no longer valid. A robust SS
technique has to be able to deal with this type of model
mismatch. In addition to this, the algorithms have to be
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Figure 2: Two-stage detector architecture.

computationally e�cient in order to be able to operate in real-
time, for example, on an Android platform.

As mentioned in Section 2, the energy of a signal is
de
ned as

� (��) = 1�
�−1∑
�=0

����� (�
�, ��)����2 . (4)

�is is the energy measured around the centre frequency, ��,
considering a narrowportion of the spectrum.�is frequency
band is dictated by the sampling capabilities of the front-end.
If the SOI is wideband, then its total energy is given by

	� = 1�
�−1∑
	=0

� (�min + �Δ�) , (5)

where �min is the minimum centre frequency considered, Δ�
is the frequency step used to explore the di�erent frequency
values, and� is the number of frequency bands analysed.�e
maximum centre frequency considered is given by

�max = �min + (�− 1) Δ�. (6)

Equations (4) and (5) de
ne a two-stage procedure for
computing the energy of the SOI. Energy (5) is not robust
and if �(�
�, ��) is contaminated by interference, then an
anomalous total energy will be estimated.

In order, to obtain robust energy estimation, (5) is
generalized and the two-stage detection scheme detailed in
Figure 2 is suggested. � realizations of �(��) are selected
on adjacent frequency bands using the analysis window in
Figure 2 and are used to compute a robust decision variable,	. 	 is obtained as the output of a nonlinear combining
function:

	 = �� [� (�min) , . . . , � (��) , . . . , � (�max)] . (7)

�e 
rst stage of the detection scheme signi
cantly reduces
the computational complexity whereas the nonlinear com-
bining strategy adopted for the second stage improves the
robustness of the system.

In this paper, we consider the class of �-estimators [8]
for the design of �� in (7).�-estimators have been proposed
as robust solutions for estimating the location (mean) of a
sequence of random variables [8]. In this respect, 	 can be
interpreted as an estimate of the energy measured on the
frequency band

�tot = �Δ�, (8)

where Δ� is the frequency band of the samples collected for
a 
xed centre frequency, ��. Δ� is de
ned by the capabilities
of the front-end used for SS. �e standard energy detector in
(5) can, for example, be obtained by choosing

�� [⋅] = mean (⋅) . (9)

Equation (9) will be used as baseline for assessing the
robustness of the algorithm selected. In this paper, the sample
median [16] is used as a robust location estimator:

�� [⋅]
= median [� (�min) , � (�min +Δ�) , . . . , � (�max)] . (10)

When the number of samples used to compute partial energy
(4) is large, then it is possible to invoke the central limit
theorem and approximate �(��) as a real Gaussian random
variable:

� (��) ∼ N(2 (
2 +
2

� )
+�2, 4� (
2 +
2

� ) (�2 +
2 +
2

� )) , (11)

where the dependence on �� has been dropped for ease of
notation. �e mean and variance of �(��) are computed in
the Appendix.

�e presence of an interfering term in (3) increases the
mean and variance of the energy measured in a speci
c
channel. From the results presented in Section 7, it is shown
that interference is present only at speci
c frequencies and
thus it is reasonable to assume that � is nonzero only for a
limited number of bands. For this reason, it is possible to
model � as a scaled Bernoulli random variable:

� = {�0 with probability #
0 with probability 1 − #. (12)

Equations (11) and (12) de
ne a contaminated model where #
is the contamination percentage. �e sample median is able
to e�ectively cope with contaminationmodels and thus it has
been selected for the robust estimation of the signal energy.

5. Statistical Characterization

�e performance of a detector is usually characterized
in terms of probability of false alarm and probability of
detection [12]. �e probability of false alarm quanti
es the
occurrence of type 1 errors, that is, the incorrect detection
of signals in an unoccupied frequency band. �e probability
of detection is the probability of correctly detecting the
signal presence. �e probability of false alarm is particularly
important since it is usually adopted for setting the decision
threshold, 
ℎ. In this section, the impact of interference on
the false alarm probability is analysed. In particular, the false
alarm probability is de
ned as

$fa (
ℎ) = $ (	>
ℎ | �0) , (13)

where �0 is the null hypothesis de
ned in (1). �e decision
threshold is obtained by 
xing a target probability of false
alarm and inverting (13).
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When standard energy detector (9) is used, and in the
absence of interference, the false alarm probability associated
to the decision variable,	�, is given by

$fa (
ℎ) = 1−%( 
ℎ − 2
2

4
4/ (� ⋅ �)) , (14)

where %(⋅) is the Cumulative Density Function (CDF) of a
standard Normal Gaussian random variable. Equation (14)
has been obtained by considering the fact that, in the absence
of interference and under�0, the mean and variance of �(��)
become 2
2 and (4/�)
4, respectively. Mean operator (9)
leaves the mean of 	� unaltered and reduces the variance of�(��) by a factor�.

�e threshold, 
ℎ, is obtained by 
xing $fa and inverting
(14). In the presence of outliers, that is, in the presence
of energy spikes due to interference, the actual probability
of false alarm signi
cantly increases with respect to the
desired value.�is performance degradation is analysed here
as a function of the contamination percentage, #, and the
Interference-to-Noise power ratio (*/�) is de
ned as

*� = �2

2
2
. (15)

Although the sample median does not, in general, follow
a Gaussian distribution, it is possible to show [16] that a
Gaussian approximation can be e�ectively adopted for large
values of �. In this case, the variance of 	 is increased by a
factor -/2 [16] with respect to the mean operator. �is is the
loss of e�ciency to be paid to improve the robustness of the
system. �us, the Gaussian approximation of the probability
of false alarm for the median case is given by

$fa (
ℎ) = 1−%( 
ℎ − 2
2

2-
4/ (� ⋅ �)) . (16)

�is probability of false alarm is used in the following
paragraph to set the decision threshold in the median case.

�e false alarm probability degradation, considering
mean and median operators, is shown in Figure 3 where the
estimated $fa is plotted as a function of the desired proba-
bilities, (14) and (16), for a 
xed */� = 0 dB. For the simu-
lations, the parameters reported in Table 1 have been used.
�ese parameters correspond to the values that could be
encountered for a typical Digital Video Broadcast-Terrestrial
(DVB-T) signal with a total frequency occupation equal to
8MHz. In the absence of degradation, the curves shown in
Figure 3 should coincide with the diagonal of the square with
corners (0, 0) and (1, 1): the higher the distance from such
diagonal is, themore the detector is a�ected by the interfering
term. As expected, all the curves in Figure 3 are above the
diagonal and thus all the detectors su�er some degradations.
�edetector based on themedian is however signi
cantly less
a�ected by the presence of outliers and only relatively small
displacements from the diagonal are observed. Degradations
become more and more severe as the contamination factor,#, is increased. For # = 0.3, the mean detector provides an
actual false alarm probability practically saturated to 1: this
implies that the detector will always declare the signal present

Table 1: Parameters adopted for the simulation performed in
Figures 3 and 4.

Parameter Value

� 8

Δ� 1MHz

SOI total bandwidth 8MHz

Mean-p = 0.1

Mean-p = 0.2

Mean-p = 0.3

Median-p = 0.1

Median-p = 0.2

Median-p = 0.3

J/N = 0dB

P
fa

E
st

Pfa

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
11

Figure 3: Degradation in terms of false alarm probability as a
function of the contamination probability, #, for a 
xed */� = 0 dB.Δ� = 1MHz, � = 8. Probabilities of false alarm have been plotted
in logarithmic scale.

even if the frequency channel is unoccupied. �is makes the
standard energy detector unusable.

�e degradation is analysed for a 
xed contamination
probability (# = 0.1) and for di�erent */� values, that is −10,−5, and 0 dB in Figure 4. �ese low */� values demonstrate
the lack of robustness of standard techniques which su�er a
signi
cant increase in terms of false alarm probability even
in the presence of weak interference. �e performance of
the median operator does not depend on the */� of the
interfering signal and thus only the worst case is considered
in Figure 4.

Curves relative to the standard approach tend to the sat-
uration curve $fa,sat which can be expressed as

$fa,sat (
ℎ) = (1−#)� $fa + (1− (1−#)�) , (17)

where$fa is the target probability of false alarm used to set the
detection threshold. Equation (17) is obtained by assuming
that in the presence of at least one outlier the probability
of false alarm is equal to 1. As expected, the mean operator
shows a strong sensitivity to the */� variations whereas the
median is robust to these �uctuations. In particular, from
Figure 4 it emerges that the probability of false alarm of the
mean energy detector already saturates for */� = −5 dB.

�e analyses performed in Figures 3 and 4 highlight
the fact that the mean shows the greatest performance
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Figure 4: Degradation in terms of false alarm probability as a
function of the */� for a 
xed contamination probability, # = 0.1.Δ� = 1MHz, � = 8. Probabilities of false alarm have been plotted
in logarithmic scale.

degradation in the presence of interference. �ese results
clearly show the advantages of a robust detector in reducing
and controlling the false alarm probability of the system.

6. System Architecture and Implementation

In order to prove the bene
ts of robust energy sensing and
the possibility of implementing CR capabilities using a low-
cost front-end, a SDR system has been developed using the
Realtek RTL2832U device.

�e system developed had to meet two basic require-
ments: (1) being able to operate in real-time and (2) allow-
ing data recording. Real-time operations are necessary to
obtain a preliminary analysis of the data streamed by the
Realtek RTL2832U device and demonstrate SS whereas data
recording is fundamental to allows postmission operations.
�e samples collected using the Realtek RTL2832U device are
valuable data which can be used to design and test new SS
algorithms. For this reason, the general architecture depicted
in Figure 5 has been adopted. �e TV tuner is interfaced
to the main so	ware through dedicated drives. �e API
provided by the OsmocomSDR Project [7] was used in a PC
implementation whereas the driver developed by Marinov
[17] was adopted for the Android port of the spectrum sensor.
�e API allows a user to set the di�erent parameters of the
TV tuner including the centre and sampling frequencies.
A so	ware controller is used to progressively change the
signal centre frequency and to start the streaming of the I/Q
samples which are stored in a circular bu�er. �e bu�er is
accessible via two di�erent threads: the 
rst is used for real-
time processing whereas the second is responsible for storing
data to disk. (In the Android implementation, data are stored
on a Secure Digital (SD) card.) Data are stored according

to the format described in Figure 5(a): a synchronization
pattern is inserted at the beginning of each data block and
it is followed by the centre frequency of the samples. �e
synchronization pattern is a sequence of 20 bytes whereas the
centre frequency is saved as a 32-bit unsigned integer.�e I/Q
samples are stored in an interleaved way and the size of each
data block is a parameter selectable by the user.

�is architecture is very generic and allows both real-time
and postprocessing operations. �e samples provided by the
Realtek RTL2832U device are a function of both time and
centre frequency and correspond to the samples, �(�
�, ��),
considered in Section 3.

�e architecture detailed above has been implemented on
both PC and Android platforms. For the PC implementation,
SS capabilities have been implemented in the JRC Interfer-
enceMonitor (JIM) so	ware, a real-time platform is designed
for interferencemonitoring and extended here to process I/Q
samples from the Realtek RTL2832U device. JIM has been
developed in C++ using the Object Oriented Programming
(OOP) paradigm. �e main elements of JIM are as follows.

(i) A front-end: a hardware device providing samples to
the so	ware. Although this is not an element of the
so	ware, JIM has to be aware of the front-end used in
order to adopt the correct protocol for data streaming.

(ii) SampleSources: these objects provide a standard so	-
ware interface to the hardware device connected to
JIM. All the sample sources are derived from a base
class (“BaseSampleSource”) and thus have the same
basic interfaces. �e main goal of a sample source is
to provide the samples to be processed.

(iii) SampleConsumerDataProducers: these objects con-
sume the samples provided by a SampleSource and
generate data which can be then displayed. An exam-
ple is theHistogramConsumer which uses the samples
provided by a SampleSource to compute their relative
frequencies (probabilities) of the input samples. �e
HistogramConsumer produces a list of pairs contain-
ing the sample value and its relative frequency. �ese
data are then ready to be displayed in some form.

(iv) DataDisplayer: these objects get the data from the
SampleConsumerDataProducers and either display
them on the screen or save them to a 
le.

�e processing chain describing the principles of operations
of JIM is shown in Figure 6. A screen-shot of the JIM
so	ware for SS is shown in Figure 7(a). �e di�erent views
of the so	ware are progressively updated showing the signal
evolution as a function of the selected centre frequency.

�e Android so	ware has been developed in Java using
an architecture similar to that adopted for JIM. �e main
activity of the Android implementation of the spectrum
sensor based on the Realtek RTL2832U front-end is shown
in Figure 7(b). �e interface allows a user to set di�erent
parameters such as the frequency range to sweep and the
sampling frequency. �e application implements the robust
energy detection algorithms detailed in Section 4.
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Figure 5: Architecture adopted for the real-time processing and storage of the I/Q samples streamed by the Realtek RTL2832U device. A
so	ware controller is used to scan a large frequency band. �e data are stored according to the format detailed in the bottom part of the

gure.
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Figure 6: Processing chain implemented in the JIM so	ware.

7. Experimental Results

Several experiments were conducted to test the capabilities of
the system developed and the sample results are provided in
this section.

A 
rst set of experiments was conducted in order to
experimentally verify the validity of model (3). In partic-
ular, we were interested in showing the presence of self-
interference, that is, that formof interference generated by the
front-end itself. For this reason, the antenna port of the Real-
tek device was terminated by a 50 Ohm resistance. Moreover,
the device was closed in a box covered by RF absorbers as
shown in Figure 8. In this way, it was possible to measure the
energy of the signal components generated by the device. In
Figure 9, the energy measured in the Ultra-High Frequency
(UHF) band is shown when the experimental setup shown in
Figure 8 is adopted. �e blue curve denoted as “Un
ltered”

shows the energy, �(��), computed using (4) and with no
further processing. �e sampling frequency of the Realtek
RTL2832U was set to 1.024MHz in order to obtain a signal
bandwidth, Δ�, close to that in Table 1. Spurs and oscillator
artefacts are clearly visible; moreover, small variations in the
noise �oor can be observed as a function of ��. �ese results
support the signal model adopted in Section 3. It is possible
to observe that spurs occur at regular intervals spaced by
28.8MHz. �is is the fundamental frequency of the crystal
oscillator mounted on the Realtek RTL2832U device.

Estimates of the total energy in a 8MHz bandwidth are
also provided in Figure 9. When the mean operator is used
for computing the total energy, spurs are still present. �ese
artefacts can bias the detection process.�emedian operator
is an e�ective tool to remove those artefacts and frequency
spikes are no longer present. A	er spike removal, the energy
measured in Figure 9 can be used to estimate the noise
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(a) (b)

Figure 7: (a) Screen-shot of the JIM so	ware for SS. �e di�erent views of the so	ware GUI are progressively updated showing the signal
evolution as a function of the selected centre frequency. (b) Main activity of the Android implementation of the spectrum sensor based on
the Realtek RTL2832U front-end.�e spectrogram showing the energy estimated in the di�erent bands is progressively depicted in the lower
part of the GUI.

Figure 8: �e Realtek RTL2832U device was closed inside a box
covered by RF absorbers and with the antenna port closed by a 50
Ohm terminator.

variance, 
2, as a function of the centre frequency, ��. In
particular, 
2 has been estimated using the samples collected
using this setup, that is, in the absence of signal, and
accounting for the presence of interference. When the signal
is absent, 
2 can be estimated using (7) where the median has
been adopted to remove the impact of interference.

Note that the suitability of the Realtek RTL2832U device
for energy detection depends on the frequency band con-
sidered. For example, when the L band ([1100–1700]MHz)
is considered, the Realtek RTL2832U front-end has a signif-
icantly worse behaviour than in the UHF band. �is fact is
highlighted in Figure 10 where the noise energy measured
by the Realtek RTL2832U device is shown as a function of
the centre frequency. Also in this case, the antenna port of
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Figure 9: Energy measured in the UHF band when the antenna
port of the Realtek RTL2832U device is terminated using a 50 Ohm
resistance. Δ� = 1MHz, � = 8.

the device was terminated with a 50 Ohm resistance and
the TV tuner was covered by RF signal absorbers. Several
spikes are present and the noise �oor does not show a regular
trend. In this case, the frequency spikes are approximately
14.4MHz, half the frequency measured for the UHF bands.
�e median operator is able to e�ectively remove most of the
spikes present in the energy pro
le in Figure 10.

�e detection capabilities of the device have been tested
using real and simulated data. Simulations were performed
using a hardware-in-the-loop approach. In particular, a
Universal So	ware Radio Platform (USRP) 2 device was used
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Figure 10: Energy measured in the L band when the antenna port
of the Realtek RTL2832U device is terminated using a 50 Ohm
resistance. Δ� = 1MHz, � = 8.
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Figure 11: Energy measured in the UHF band when the antenna
port of the Realtek RTL282U device is connected to a USRP
simulating a single TV channel. Δ� = 1MHz, � = 8.

to generate a useful signal component with the same spectral
characteristics of a TV channel. An example of the curves
obtained with this approach is shown in Figure 11. Here, the
signal presence is clearly detected. �e channels adjacent to
the useful signal are only marginally a�ected by its presence
and the noise �oor is consistent with the values measured in
Figure 9.

8. Conclusions

In this paper, SS has been demonstrated using a low cost TV
tuner. In particular, a Realtek RTL2832U device was used

as an agile front-end for scanning the UHF bands. A two-
stage energy detection scheme was proposed to improve the
robustness of the system and to deal with the spurs and
imperfections caused by the front-end oscillator. �e use of
robust estimators, such as the median 
lter, allows a signif-
icant improvement, in terms of false alarm probability, with
respect to standard techniques. Real data and hardware-in-
loop simulations were used to test the system developed and
to characterize the performance of the algorithm proposed.
�e advantages of robust detection techniques were clearly
shown.

�e use of robust estimators can also be used in the
presence of narrowband wireless interference like CWs. �e
application of the algorithms used in this paper in the
presence of wireless interference will be addressed in future
work. Future work also includes a better characterization of
the front-end with speci
c focus on the impact of Automatic
Gain Control (AGC) and the study of additional robust
techniques such as the myriad 
lter [8].

Appendix

Mean and Variance of �(��)
In this Appendix, the mean and variance of �(��) are eval-
uated. For the analysis �(�
�, ��) is assumed to be a complex
CW:

� (�
�, ��) = exp {32-�
�
� + 34
} , (A.1)

where �
 is the interference centre frequency and 4
 is a
uniform random variable which spans the interval [−-, -].
�e properties derived in this section are the basis of (11).

�e mean of �(��) can be computed as

E [� (��)] = E[ 1�
�−1∑
�=0

����� (�
�, ��)����2] = 1�
⋅�−1∑
�=0

{
2� E [����� (�
�, ��)����2]
+�2 (��)E [����� (�
�, ��)����2] +E [����� (�
�, ��)����2]
+ 2
�� (��)E [R {� (�
�, ��) �∗ (�
�, ��)}]
+ 2
�E [R {� (�
�, ��) �∗ (�
�, ��)}]
+ 2� (��)E [R {� (�
�, ��) �∗ (�
�, ��)}]} .

(A.2)

�e three components in (3) are independent and zero mean.
�us the three cross-terms in (A.2) are zero mean and
E[�(��)] becomes

E [� (��)] = 2
2� + 2
2 +�2 (��) . (A.3)
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�e variance of �(��) is given by

Var [� (��)] = Var[ 1�
�−1∑
�=0

����� (�
�, ��)����2] = 1�2

⋅�−1∑
�=0

Var {
2

�
����� (�
�, ��)����2 +�2 (��) ����� (�
�, ��)����2

+ ����� (�
�, ��)����2
+ 2
�� (��)R {� (�
�, ��) �∗ (�
�, ��)}
+ 2
�R {� (�
�, ��) �∗ (�
�, ��)}
+ 2� (��)R {� (�
�, ��) �∗ (�
�, ��)}} .

(A.4)

In (A.4), the variance operator has been moved a	er the
sum used for computing the energy. �is operation is
possible since �(�
�, ��) and �(�
�, ��) are assumed to be
white sequences. Although �(�
�, ��) is a highly correlated
sequence, it appears in the variance computation multiplied
by �(�
�, ��) and by �(�
�, ��). In this case, the resulting
sequences are white. Moreover, term |�(�
�, ��)|2 is equal to
1 and thus has no impact on the variance computation.�ese
properties justify the commutation between the summation
and the variance operator. In addition to this, the six terms in
(A.4) are uncorrelated and thus the total variance is equal to
the sum of the variances of such components. In particular,

Var {
2� ����� (�
�, ��)����2}
= 
4� Var {�2
 (�
�, ��) + �2� (�
�, ��)}
= 2Var {�2
 (�
�, ��)}
= 2
4� {E [�4
 (�
�, ��)] −E2 [�2
 (�
�, ��)]}
= 2
4� [3 − 1] = 4
4� ,

(A.5)

where �
(�
�, ��) and ��(�
�, ��) are the real and imaginary
parts of the useful signal, �(�
�, ��). Similarly, it is possible to
prove

Var {����� (�
�, ��)����2} = 4
4. (A.6)

�e interference term has a constant modulus and thus its
variance is zero. �e variance of the cross-terms involving�(�
�, ��) can be computed as

Var {2
�� (��)R {� (�
�, ��) �∗ (�
�, ��)}}
= 4
2

��2 (��) ⋅ 12 Var {� (�
�, ��) �∗ (�
�, ��)}
= 4
2

��2 (��) .
(A.7)

�e rotation on �(�
�, ��) performed through the multiplica-
tion by �∗(�
�, ��) has no impact on the variance because of
the assumption of circular symmetry. Similarly,

Var {2� (��)R {� (�
�, ��) �∗ (�
�, ��)}}
= 4
2�2 (��) . (A.8)

Finally, the signal and noise cross-term has variance

Var {2
�R {� (�
�, ��) �∗ (�
�, ��)}} = 8
2

� 
2. (A.9)

Using these results, it is 
nally possible to compute the vari-
ance of �(��):

Var [� (��)]
= 1� (4
4

� + 4
4 + 4�2 (��) (
2

� +
2) + 8
2

� 
2)
= 4� (
2

� +
2) (
2

� +
2 +� (��)) .
(A.10)
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