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Abstract: The spectrum has increasingly become occupied by various wireless technologies. For this
reason, the spectrum has become a scarce resource. In prior work, the authors have addressed the
spectrum sensing problem by using multi-input and multi-output (MIMO) in cognitive radio systems.
We considered the detection and estimation framework for MIMO cognitive network where the noise
covariance matrix is unknown with perfect channel state information. In this study, we propose a
generalized likelihood ratio test (GLRT) for the spectrum sensing problem in cognitive radio where
the noise covariance matrix is unknown with non-perfect channel state information. Two scenarios
are examined in this study: (i) in the first scenario, the sub-optimal solution of the worst case of the
system’s performance is considered; (ii) in the second scenario, we present a robust detector for the
MIMO spectrum sensing problem. For both scenarios, the Bayesian approach with a generalized
likelihood ratio test based on the binary hypothesis problem is used. From the results, it can be seen
that our approach provides the best performance in the spectrum sensing problem under specified
assumptions. The simulation results also demonstrate that our approach significantly outperforms
other state-of-the-art spectrum sensing detectors when the channel uncertainty is addressed.

Keywords: cognitive radio; uncertainty channel state information; multi-input and multi-output;
convex optimization; Bayesian technique; generalized likelihood ratio detector

1. Introduction

High-speed data services with high quality of service (QoS) are responding to expand-
ing demand by end-users, leading to many challenges in establishing reliable services in
current 3G/4G wireless communication systems [1]. Since the spectrum has become a
valuable resource for communication applications, it has also become essential to use the
spectrum efficiently. However, McHenry et al. [1] report an extremely low efficiency for
spectrum use on the geographic and temporal RF spectrum, and for that reason, the de-
mand for good use of RF spectrum has increased and motivated researchers to find the best
solutions for this problem. A promising approach to address the inefficient spectrum use is
the cognitive radio (CR) [2–9], an attractive and novel communications technology that can
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be used to enhance the scarce natural resources by efficiently using the spectrum. In a net-
work, the spectrum is usually managed by the Federal Communication Commission (FCC)
and can be shared between licensed primary users and unlicensed secondary users [10–14].

Spectrum sensing [15–19] is considered the key to CR in which the secondary user
(SU) can identify whether or not the licensed primary user (PU) is using a wireless commu-
nication channel in CR networks. A reliable spectrum sensing step is an important stage
in detecting a spectrum of holes that can be consequently saturated with the SU. In this
case, many different techniques have been produced to sense the spectrum. Reusing the
unoccupied licensed spectrum by unlicensed users in CR requires an efficient technique to
detect the presence of free spectrum without causing interference between the users, as
explained with more detail in [20,21]. Achieving reliable communication also requires an
efficient technique for avoiding interference between the unlicensed user and the licensed
user. This can be established by improving the parameters for the transmission or reception
sides in the CR [8,22,23].

The spectrum sensing problem is an important challenge in CR. Thus, many researchers
have recently studied this problem. Many techniques were proposed to solve this problem,
the most widely used of which is the energy detector (ED), which represents a simple
signal detector in spectrum sensing [24]. However, ED’s performance is still inefficient
when there is an error in noise or in channel state information (CSI) compared with other
techniques. ED is also a method that depends on a hypothesis test (HT) [25,26].

In spectrum sensing, two or more phases have to be obtained to recognize the sig-
nal, so HT tests can be seen in this work [27] that the ED is an essential test in this
problem. HT can also be invoked in many applications such as multiple model order selec-
tions [28–30], nonlinear regression [31], and many others. The use of a suitable statistic test
is considered a significant step in HT, i.e., the main goal in achieving an efficient detector is
to increase detection probability such as [32,33] in wireless communication.

Using multiple transmit and receive antennas can raise the channel capacity with-
out needing to add additional power or bandwidth [34]. This was first studied in [35],
which clarifies the capacity issue for a single-user with a Gaussian channel; and then in [36]
multiple users have been proposed. MIMO has recently become the most important tech-
nique to achieve good accuracy between users in spectrum sensing wireless transmission
and has been widely exploited in wireless communication [37,38].

Transmitting a signal over multi-antenna wireless links is affected by an additive in-
terfering signal. Particularly when the interferer is found near the transmitter, interference
will remain an unknown source for the receiver even though these effects are known by the
transmitter. Moreover, if there is perfect CSI between the transmitter and receiver, then this
technique is known as Dirty Paper Coding (DPC), in which the interference can be signifi-
cantly decreased [39–42]. Several optimal detectors are proposed in [43] for non-antipodal
signaling spectrum sensing-based MIMO CR with uncertainty in the channel. The channel
coefficients are modeled ellipsoidal uncertainty sets while considering the nominal channel
estimates as the ellipsoidal center. Thus, PU’s spectrum detection problem is formulated as
a second-order cone program (SOCP). A closed-form solution is used to solve this problem
in this approach. This work also presents a multi-criterion robust detector (MRD) and
a relaxed robust detector (RRD) for PU’s spectrum sensing in CSI uncertainty scenarios.
Based on those assumptions, the proposed approach’s results show superior performance
for the proposed cooperative detectors compared with the common detectors.

Moreover, an eigenvalue perturbation theory is used as in [44] to obtain the signal
covariance matrix in this proposed approach. Subsequently, a novel scheme of spectrum
detection is derived by exploiting an uncertainty signal covariance matrix for non-coherent
spectrum sensing using CR networks. This problem is formulated using an optimization
framework in which the generalized likelihood ratio test (GLRT) [45] based robust test
used statistic detector (RTSD) and robust estimator-correlator detector (RECD) towards PU
detection is involved. This closed-form expression is performed for the RTSD and RECD to
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solve this problem, the optimization problem, with using the Karush-Kuhn-Tucker (KKT)
conditions as problem constraints.

In [32], the binary hypothesis problem of spectrum sensing in multiple antenna CR
is addressed using the prior information for unknown parameters. Bayesian technique
with proper prior distribution is exploited to derive the corresponding detector for three
varied scenarios with appropriate distribution for the unknown parameters. The channel
uncertainty information is assumed to be available; besides this, unknown noise variance
also exists. The iterative expectation-maximization method is used to estimate unknown
parameters. Under certain assumptions, this work shows that using Bayesian techniques
with GLRT approach gives acceptable results where an observed data samples is assumed
as a finite number.

In this paper, we propose a mathematical model for the GLRT detector for spectrum
sensing in CR. This model assumes imperfect CSI with unknown noise covariance. Two sep-
arate scenarios are addressed in this paper. The first scenario assumes non-perfect CSI is
available while the noise covariance matrix is unknown to the SU. In this case, we derive
the sub-optimal detector using a generalized likelihood ratio test with a Bayesian approach.
This solution replaces the channel uncertainty with a specific matrix based on its location
in the closed-form posterior probability expression for the observed covariance matrix.
Next, the channel uncertainty in CSI and noise covariance are still unknown, which need
to be estimated for the unauthorized user. In this scenario, we derive a robust detector that
is a more reliable solution for spectrum sensing when channel uncertainty is nonperfect.
This approach suggests a robust solution for the optimization problem to estimate the
unknown parameters for both the noise covariance matrix and the channel uncertainty.
Since the resulting optimization problem is challenging to solve, for reasons that will
be explained later in subsequent sections, an iterative optimization technique is used to
solve the problem and estimate the unknown parameters of the observed distribution.
The original problem is divided into two sub-optimization problems in which a maximum
a posteriori probability (MAP) method is used.

The main contributions of this paper are as follows:

(1) Observed data vectors in CR with multicell multiple groups at the secondary users are
generated while maintaining the SNR levels with range values at the primary users.
Then, the Bayesian method is used to assume priors for the unknown probabilistic
parameters to extract a posterior probability distribution vector for the observation
data samples of the CR system.

(2) We involve the MAP method to determine the posterior probability distribution
expression for the unknown probabilistic parameter of the observation data to extract
unknown matrices for the distribution parameters.

(3) We present two approaches to address the channel uncertainty and the noise co-
variance matrix that complicate the resultant optimization problem. The solution
for this problem is examined under different approaches; this problem is solved by
a sub-optimal solution in the first approach while a robust solution is used in the
second approach.

(4) We prove that our approaches in the spectrum sensing problem based on the assump-
tions are effective methods to address this the uncertainty.

The outline of the rest of the paper is as follows: Section 2 shows a brief review of the
B-GLRT approach for the independent and identically distributed (i.i.d.) random variables.
Section 3 provides the system descriptions. Section 4 demonstrates the methodology
under different assumptions. In Section 5, we show the proposed performance compared
with state-of-the-art detectors based on computational testing. The last section provides
concluding remarks.
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Notation 1. We use lightface letters for scalars, Boldface uppercase letters for matrices and boldface
lowercase letters for vectors. The operation ‖·‖ denotes the norm, (·)H is the conjugate transpose,
Γ(·) refers to the gamma function, (·)∗ denotes the conjugate, |·| is the determinant, diag (·) is the
diagonal matrix, E[·] is the expected value, denotes the trace and etr(·) = exp trace(·).

2. Spectrum Sensing Detector

The GLRT detector is considered to be an optimal solution in the hypothesis testing
problem where the data signal has large samples. When the signal has a small sample
size, the detection problem becomes a significant challenge to be solved. Based on [46],
a Bayesian approach has been used to solve the detection problem where the signal sample
is finite. The framework for the Bayesian approach and generalized likelihood ratio test
(B-GLRT) is considered an optimal solution to the finite sample problem, which is also
considered the combination for estimating the model parameters and detecting the signal.
Moreover, f (X|Θ0) and f (X|Θ1) represent the density functions under H0 and H1 null
and alternative hypothesis respectively [46,47]. Θ0 and Θ1 the unknown parameters.
Assume further that the unknown parameters have prior distributions f (Θ0) and f (Θ1),
respectively. The detection/estimation problem can be defined as mentioned in [46]:

ξ =
{

δ(H1|x), δ(H0|x), f (Θ̂1|x, H1), f (Θ̂0|x, H0)
}

, (1)

Thus, the conditional risk of each hypothesis can also be defined as

δ(ξ|Hi) =
∫ (

f (H0|x)
∫

f (Θ̂0|x)A0i(Θ̂0, x)dΘ̂0

)
dx +

∫ (
f (H0|x)

∫
f (Θ̂1|x)A1i(Θ̂1, x)dΘ̂1

)
dx. (2)

where
Aji(Θ̂j, x) =

∫
Cji(Θ̂j, Θi) f (x|Hi, Θi) f (Θi)dΘi. (3)

At the end, the optimization problem becomes:

inf
ξ

δ(ξ|H1), subject to δ(ξ|H1) 6 ρ
′
, (4)

Cji(Θ̂j, Θi) is the cost function and considered to be ’1’ as defined in [47], the level ρ
′

is
considered the maximum value of error type I under hypothesis H0. Maximum Likelihood
Estimation (MLE) is considered one of the most important methods to estimate the pa-
rameters in GLRT detector. Simultaneously, the MAP estimator can be used as an optimal
solution under a finite sample size for the model parameters estimation when the B-GLRT
is involved in solving the spectrum sensing problem. In particular, in [47], the GLRT is
given by.

LR =
f
(
x; H1, Θ̂1

)
f
(
x; H0, Θ̂0

){H0 <
H1 ≥ ζ (5)

While the linear ratio for B-GLRT can be described as:

LR =
f
(
x; H1, Θ̂1

)
f
(
Θ̂1
)

f
(
x; H0, Θ̂0

)
f
(
Θ̂0
){H0 <

H1 ≥ ζ (6)

where Θ̂0 and Θ̂1 denote the estimation parameters under H0 and H1, respectively, ζ is the
threshold of detector. These parameters are defined based on the prior distribution as:

Θ̂t = argmax
Θt

f (x; Ht, Θt) f (Θt). (7)

where t refers to the hypothesis case. t can be “0” which refers to the null hypothesis or
“1” referring to an alternative hypothesis, Θ̂t denotes the MAP approach to estimate the
unknown parameters under H0 and H1. The following posterior distributions show the
model’s parameter estimators:
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f
(
Θ̂MAPt |X, Ht

)
∝ fHt

(
X|Θ̂MAPt

)
f
(
Θ̂MAPt

)
. (8)

3. System Descriptions

In this section, an MIMO CR network with a single secondary user is associated with
Nr receiving antennas and Nt is transmitting antennas, as shown in Figure 1. In this work,
the noise and data samples are assumed to be independent of each other under the alterna-
tive hypothesis H1, and also since any scaling of the PU signal can directly affected on the
channel gain. These assumptions do not lead to a loss of generality. In many engineering
applications, it can be seen that the detection problem is addressed when an additive Gaus-
sian noise and the channel error are present, such as in [32,48]. H1 and H0 are considered
the hypotheses of the presence and absence of the signal, respectively. Thus, the basic
system model for the observed data at the secondary side can be described as:

X =

{
η H0

HS + η H1
(9)

where H ∈ CNr×Nt is the MIMO channel matrix between Nr transmitting antennas at
the primary side and Nr receiving antennas on the secondary side, S ∈ CNt×L is PU
signal samples at transmitter antennas, and η ∈ CNr×L is the matrix of complex additive
noise samples with covariance matrix Rη . X ∈ CNr×L is the observation signal which is
the Gaussian distribution with mean value and covariance matrix corresponding to each
hypothesis, and L represents the number of data samples. Based on these assumptions,
the mathematics and derivation of the problem will be simple. From the CR system
model as described in Equation (9), the instant signal for each receiving antenna can be
equivalently described as,

xi = Hs + ηi. (10)

where xi ∈ CNr×1 is a complex data samples that contains the observed values at the instant
i corresponding to sending signal that is corrupted by the noise vector ηi ∈ CNr×1 which
is additive white Gaussian . Moreover, xi = [xi(1), xi(2), . . . , xi(L)], ∀i ∈ [1, . . . , Nr].
The channel matrix is defined as H = [h1, h2, . . . , hNr ]. Due to several practical limitations,
the actual channel matrix cannot be accurately gathered at the transmitter. Thus, it is
subject to some error such that,

H = Ĥ + U. (11)

where Ĥ = [ĥ1, ĥ2, . . . , ĥNr ]
T ∈ CNr×Nt is the nominal channel matrix that is available at

the secondary user and Ûm = [û1, û2, . . . , ûNr ]
T ∈ CNr×Nt is the related uncertainty matrix.

The objective of the fusion center is to choose the correct model from the following two
possible hypotheses:

xi/H0 ∼ CN (µ0, Γ0)

xi/H1 ∼ CN (µ1, Γ1) (12)

The mean and the covariance matrix of the observation for each receiving antenna at
the alternative hypothesis can be derived as follows:

µ1(k) = E[xi/H1] = E[Hs + ηi]

= E[Hs] + E[ηi] = HE[s] = 0

Γ1(k) = E[xixH
i ] = E[(Hs + ηi)(Hs + η)H ]

= E[HssHHH ] + E[ηiη
H
i ] + E[HsηH

i ] + E[ηiHHsH ]

= HHH + Γ0.
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where Γ1 is equal to HHH + Rη ∈ CNr×Nr and Γ0 is equal to Rη ∈ CNr×Nr . The likelihood
of the observation xi corresponding to the alternative hypothesisH0 is given by:

p(xi,H0) =
exp(−xiΓ0xH

i )

πL+Nr Nt |Γ0|
(13)

while the likelihood of the observation xi corresponding to the alternative hypothesisH1 is
given by:

p(xi,H1) =
exp(−xiΓ1xH

i )

πL+Nr Nt |Γ1|
(14)

Figure 1. MIMO cognitive radio system model consisting of single PU with Nt transmitting antennas
and single secondary user with Nr receiving antennas.

The article’s flowchart is shown in Figure 2, where we first detect the MIMO cognitive
signal to find the hypothesizes of the received signal. In the sequel, we exploit the above
observation values to estimate the model parameters, in which simulated threshold can be
determined and closely followed by the unknown parameters estimation part. Then, we ap-
ply the B-GLRT method to observation data samples with the estimated parameters to
obtain the signal’s hypothesis.

Figure 2. Algorithm flowchart.

4. Methodology
4.1. B-GLRT Detector for Unknown Noise Covariance Matrix with Perfect CSI (B-GLRT1)

In this part, we assume the channel uncertainty is known while the noise covariance
matrix is unknown at the SU. Prior information for the noise distribution is assumed to be
unknown at the SU. Now, we assume that the noise variance has an Inverse-Gamma prior
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distribution with different values of shape ρ and scale parameter κ . Therefore, the ex-
pression of the prior distribution of the noise variance as shown in [32,33,49] is γ2 ∼
Inv-Gamma (ρ, κ). In other words, a diagonal matrix Γ0 = diag (γ2

0,1, . . . , γ2
0,Nr

) present
the noise covariance matrix, and each γ2

0,i is clearly modeled a priori probability using
an Inverse-Gamma distribution with the shape parameter ρi and the scale parameter κi.
Now, the Bayesian approach can be used in this case to determine the unknown model
parameters when the finite observation sample is available. Here the channel matrix is
supposed to be known while the noise variance is unknown for the SU. To obtain more
elastic calculation, we applied the joint prior for the noise variance parameters as given by,

f
(

γ2
0,i

)
= f (Γ0)

=
Nr

∏
i=1

κ
ρi
i

Γ(ρi)

(
γ2

0,i

)−ρi−1
exp

(
−κi

γ2
0,i

)
. (15)

where i = [1, . . . , Nr], In order to obtain the values of unknown parameters in the null
hypothesis, and since these parameters have prior knowledge based on the Bayesian
theorem, the maximum a posterior probability can be involved in this case. This can be
achieved by taking the log of Equation (8) followed by taking the maximum that is obtained
by deriving the expression for the unknown variables, as shown in Equation (16) to achieve
the MAP estimator. We explore the MAP method of the noise variance parameters under
H0 as follows:

Θ̂0|x, H0 = Max
{

log
(

fH0(x|Θ0) f (Θ0)
)}

(16)

Then the posterior distribution of noise variance can be shown as:

Γ̂0 = argmax
Γ0

[log( f (X; H0, Γ0)) + log( f (Γ0))]. (17)

In the null hypothesis, Γ0 = Rη . Thus, Equation (17) become Equation (18),

R̂η = argmax
Rη

[
log( f

(
X; H0, Rη)

)
+ log( f

(
Rη

)
)
]
. (18)

It can be seen from the system model that the observation data at each secondary
antenna follows a complex normal distribution with density:

fH0(X|Γ0) =
L

∏
j=1

fH0(xj|Rη)

= π−NrL

(
Nr

∏
i=1

γ2
0,i

)−L

exp

{
−

Nr

∑
i=1

L

∑
j=1

x∗ijxij

γ2
0,i

}
(19)

= π−NrL
Nr

∏
i=1

[
(γ2

0,i)
−L exp

{
−1
γ2

0,i

L

∑
j=1

x∗ijxij

}]
.

According to Equation (17), the log function can be taken after the multiplication
between Equation (19) and Equation (15) and one can then take the derivative with respect
to γ2

0,i > 0, i = [1, . . . , Nr], to estimate the model parameter. It can be easily seen as follows:

γ2
0,i =

1
L + ρi + 1

(
L

∑
j=1

x∗ijxij + κi

)
. (20)

for i = [1, . . . , Nr], (see Appendix 1 in our previous work [33] for more detail about the proof).
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Under the alternative hypothesis, we obtain the MAP estimation of the noise covari-
ance matrix in the hypothesis detection problem where the channel gain and its error are
known. Based on Equation (16) the MAP estimation equation will be:

Θ̂1 = argmax
Θ1

f (x; H1, Θ1) f (Θ1). (21)

In the alternative hypothesis, Γ1 = HHH + Γ0 represents the covariance matrix of the
observation where the channel has known uncertainty as shown in Equation (11). Γ0 is also
modeled as a priori using Equation (15). The density of x in the alternative hypothesis is
given by:

fH1(x; Γ0) = π−Nr |Γ1|−1 exp
{
−xHΓ−1

1 x
}

where Γ1 = (HHH + Γ0)
−1. Thus, the data distribution under H1 has density:

fH1(X|Rη) = π−Nr
∣∣∣HHH + Rη

∣∣∣−L

× exp

{
−

L

∑
j=1

xH
j (HHH + Rη)

−1xj

}
(22)

= π−Nr
∣∣∣HHH + Rη

∣∣∣−L
etr
{
−R(HHH + R)

−1
}

.

Let Rh = HHH be the channel covariance matrix which is known for the SU. We also
define R = ∑L

j=1 xjxH
j . Thus, the MAP method of the noise variance under H1 is provided

by determining the next optimization problem:

P1 : argmax
Γ1

[
log( fH1(X|Γ1)) + log( f (Γ0))

]
. (23)

By substituting Equations (15) and (22) into Equation (23), P1 becomes:

P2 : argmax
Γ0

[
log fH1(X|Γ1) + log f (Γ0)

]
= argmax

Γ0 :Diagonal
(L log

∣∣∣Γ−1
1

∣∣∣− tr[RΓ−1
1 ] (24)

+ (ρ + 1) log
∣∣∣Γ−1

0

∣∣∣− tr[KΓ−1
0 ]).

where (ρ1 = · · · = ρNr = ρ) are the hyperparameters of the conjugate priors and
K = diag(κ1, . . . , κNr) is the diagonal matrix which represents the conjugate priors’ hy-
perparameters. Since problem P2 is not convex it can be solved by successive con-
vex approximation using an interior point method. Here we manipulate the formula-
tion to obtain an equivalent convex optimization problem which can be easily solved
by using a numerical semidefinite programming (SDP) optimization package such as
in [50]. According to [51], the optimization problem is solved with a complexity of
O((Nt + 1)1/2(Nt + Nr + 1)(Nt + 1)2) [52] in terms of system parameters. For more detail
regarding the derivation, see Appendix A.1.

4.2. B-GLRT Detector for Unknown Noise Covariance Matrix with Non-Perfect CSI

We assume that the estimated channel is non-perfect with an unknown uncertainty
matrix, and the noise covariance matrix is also assumed to be an unknown matrix for the
SU. We use the same prior distribution for the noise variance as in Equation (15). According
to the system model as given in Equation (10), the estimated value of noise covariance
matrix in the null hypothesis still can be obtained by using Equation (20) while in the
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alternative hypothesis, both channel uncertainty and noise covariance matrix must be
estimated. Hence, the problem can be formulated as

P3 : argmax
Γ0 :Diagonal

Γ1≥0

[
log fH1(X|Γ1) + log f (Γ0)

]
= argmax

Γ0 :Diagonal
(L log

∣∣∣Γ−1
1

∣∣∣− tr[RΓ−1
1 ] (25)

+ (ρ + 1) log
∣∣∣Γ−1

0

∣∣∣− tr[KΓ−1
0 ]).

Then the objective is to maximize the likelihood-ratio (LR) subject to certain constraints,
so P3 becomes.

P4 : argmax
Γ0 :Diagonal

(L log
∣∣∣(R̂h + ∆Rh) + Γ0

∣∣∣−1

−tr[R
(
(R̂h + ∆Rh) + Γ0

)−1

1
] (26)

+(ρ + 1) log
∣∣∣Γ−1

0

∣∣∣− tr[KΓ−1
0 ]).

Here, we must maximize fH1(x|Γ0) because fH1(x|Γ0) is a function of ∆Rh which is
the channel error and has an effect on the maximization of LR. To find the value of ∆Rh
that maximizes fH1(x|Γ0), we can use the following approaches.

4.2.1. Sub-Optimal Solution, B-GLT2

In this solution, we substitute the value of ∆Rh that gives the minimum value for
fH1(x|Γ0) as shown in Equation (26), where ∆Rh equal to −εIM or +εIM depending on
the position of ∆Rh in fH1(x|Γ0) or in case the values of ∆Rh in fH1(x|Γ0) that lead to the
minimum value of fH1(x|Γ0) are both +εIM. Thus,

fH1(x|Γ0) = π−Nr
∣∣∣(R̂h + εIM) + Γ0

∣∣∣−L
(27)

etr
{
−R(R̂h + εIM) + Γ0)

−1
}

,

Therefore, the optimization problem can be seen in P5:

P5 : argmax
Γ0 :Diagonal

(L log
∣∣∣(R̂h + εIM) + Γ0

∣∣∣−1

−tr[R
(
(R̂h + εIM) + Γ0

)−1

1
] (28)

+(ρ + 1) log
∣∣∣Γ−1

0

∣∣∣− tr[KΓ−1
0 ]).

The positive exponent means that the bounded matrix must be positive semidefinite
(PSD). Due to the Hermitian operation of R̂h, this can be accomplished by setting the
negative Eigenvalues of the resultant R̂h + εIM to zero. Now, the problem can be solved
based on Appendix A.2.

4.2.2. Robust Solution, B-GLT3

Returning to Equation (26), we can see that this problem consists of two optimiza-
tion variables (∆Rh, Γ0) . This can be difficult to solve as a single optimization problem.
Thus, it can be solved using iterative optimization techniques following a similar procedure
as in our previous work [53] and as following in [54]. The optimization problem becomes:
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• Solving for Γ0: in this case, we assume that Γ0 is unknown and ∆Rh is known and
then solve for Γ0 as shown in P6.

P6 : argmax
Γ0

(L log | (R̂h + ∆Rh)︸ ︷︷ ︸
Rh

+Γ0|−1

−tr[R((R̂h + ∆Rh)︸ ︷︷ ︸
Rh

+Γ0)
−1] (29)

+(ρ + 1) log
∣∣∣Γ−1

0

∣∣∣− tr[KΓ−1
0 ]).

subject to

Γ0 ≥ 0,

For additional details see Appendix A.2.

• Solving for ∆Rh : now we can assume that Γ0 is known and solve for ∆Rh. We also
define that < = R̂h + Γ0, then the problem becomes:

P7 : argmax
∆Rh

(L log|(<+ ∆Rh)|−1

−tr[R(<+ ∆Rh)
−1] (30)

+(ρ + 1) log
∣∣∣Γ−1

0

∣∣∣− tr[KΓ−1
0 ]).

subject to

‖∆Rh‖F ≤ ε,

Appendix A.2 provides more detail on this derivation.

After estimating the model parameters Γ0 and Γ1 in both hypothesis, the detector
expression is easily derived; this step starts with taking the log of Equation (6) as follows:

LLR = log( fH1(x|Γ1) f (Γ1))

− log( fH0(x|Γ0) f (Γ0)). (31)

Then, the log of the posterior distribution can be:

log(.)|H0 = −(L + ρ + 1) log(
∣∣Γ̂0
∣∣)

+ tr(−RΓ̂−1
0 )− tr(KΓ̂−1

0 ). (32)
and

log(.)|H1 = −(L + ρ + 1) log(
∣∣Γ̂1
∣∣)

+ tr(−RΓ̂−1
1 )− tr(KΓ̂−1

1 ). (33)

By substituting Equations (32) and (33) in Equation (31). Therefore, the detector is
given by:

Tı(B−GLRT) = (L + ρ + 1) log(

∣∣Γ̂1
∣∣∣∣Γ̂0
∣∣ ) + tr(−RΓ̂−1

1 )− tr(−RΓ̂−1
0 )− tr(KΓ̂−1

1 ) + tr(KΓ̂−1
0 )

H1

R
H0

ζ (34)

In the next section, we test the performance of the proposed approach for two different
simulation scenarios. In the first scenario, we have incorporated perfect channel infor-
mation with an unknown noise covariance matrix, while in the second scenario, we have
incorporated unknown noise covariance with imperfect CSI.
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5. Numerical Evaluation

In this section, we explain our approach using synthetic data to clarify the performance
of our design of the GLRT spectrum sensing algorithm where the channel uncertainty exists.
In our simulation, the average received SNR at SU is modeled as shown in [33],

SNR = log(tr(HHH))− log(tr(Γ0)). (35)

First, we show the impact of the channel uncertainty U in spectrum sensing where
the noise parameters are also unknown and uncorrelated. As mentioned previously,
the channel uncertainty is assumed to have deterministic values, while prior knowledge is
assumed for the noise parameters. For these assumptions, we show the GLRT algorithm’s
performance based on the Bayesian approach that is defined by B-GLR1, and we show its
performance compared with other proposed methods. These approaches are also compared
with other state-of-the-art spectrum sensing detectors under the same assumptions, such as
the ED.

As mentioned, the MIMO technique is considered in this paper with the number of
receiving antennas Nr equal to 3 to receive several samples L equal to 20, the number of
transmitting antennas Nt= 2. We also set the hyperparameter values of prior distributions
parameter as the shape (ρ1 = . . . = ρNr ) equal to 2, and the scale K has different arbitrary
values as diag [2, 1.5, 3]. The number of realizations is 5× 104 in which the probability
of false alarm (pfa) can be generated, and then the threshold value can be numerically
obtained. In terms of SNR, Figure 3 illustrates the probability of missed detection (Pm) for
the proposed approach. This figure also shows the comparison with common different
detectors such as the maximum to minimum eigenvalue test (MME), energy with minimum
eigenvalue test (EME) [55,56] as shown in Equations (36) and (37) respectively.

Tζ(MME) =
λmax(Γ̂)

λmin(Γ̂)

H1

R
H0

ζ (36)

Tζ(EME) =
λav(Γ̂)

λmin(Γ̂)

H1

R
H0

ζ (37)

where λmax, λmin, and λav respectively denote the maximum, minimum, average eigenval-
ues of the covariance matrix ˆ(Γ).

In this figure, the detector’s performance can be shown within the SNR range between
[–20 to 10] while a probability density function (pdf) = 5× 10−1 and the finite sample
number L equal to 20. The observation data is generated according to Equation (12) after
estimating the noise covariance noise matrix for ( B-GLRT1) or both the noise covari-
ance matrix and the channel uncertainty (for the other proposed detectors). Using the
sub-optimal solution and robust solution, the channel uncertainty can be obtained. In ad-
dition, for channel estimation, the noise covariance matrix is calculated using the same
methods as for estimating the channel uncertainty. Following the estimation parameters,
the detector can be used as shown in Equation (34) to assign the signal to one hypothesis.
Clearly, four state-of-the-art detectors with three proposed detectors can be clarified in
terms of SNR. It can also be seen that B-GLRT 1 outperforms other proposed detectors
since it lies on the efficient frontier compared with other methods. Respective operating
characteristic curves (ROC) can be seen in Figure 4. In this figure, we show the probability
of detection (PD) versus the probability of false alarm using a range of values of pfa,
SNR value is −3 dB, and the number of samples L equal to 10. In this figure, we assume
that there is a range of false alarm probability values. For each value of this probability,
the threshold is simulated, allowing us to obtain the threshold vectors as a function of the
alarm probability values. We again observe that the proposed approach achieves efficient
performance compared with other state-of-the-art detectors such as the Hadamard ratio
test and the Sphericity test [57] shown in Equations (38) and (39) respectively. In addi-
tion, the results show that the optimal detector largely outperforms Hadamard ratio test
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and Sphericity test, and we show that the proposed B-GLRT1 detector has an excellent
performance compared with other proposed detectors:

Tζ(HR) =

(
Nr

∏
j=1

γjj

)
|Γ|−1

H1

R
H0

ζ (38)

Tζ(ST) =

∑Nr
j=1 γjj

Nr

|Γ|−(1/Nr)
H1

R
H0

ζ (39)

where Γ is the covariance matrix. We also show the performance of proposed detectors
in terms of the signal size. In Figure 5, the probability of missed detection (Pm) for each
detector can be observed versus the number of samples L. In Figure 5, it can be shown
that the proposed detectors have a significantly superior achievement relative to the other
detectors where pfa is equal 5× 10−1, Nr = 3, Nt = 2 and the average SNR of –3 dB. It can
be observed that the proposed detector performance has a significant improvement when
the input samples increase. In addition, the proposed B-GLRT1 detector performs better
than other detectors due to perfect CSI.

We next present another simulation to show the detectors’ performance for more
reliability when the signal sample size is large. In this section, Figure 6 clarifies the relation
between the probability of detection against the probability of false alarm (pfa). From this
figure, it can generally be observed that even though most detectors’ performance has a
significant improvement, the proposed detectors still maintain performance advantage
compared with other detectors. It also shows that proposed detectors ’B-GLRT2’, and ’B-
GLRT3’ have sufficient ability to be robust detectors against channel uncertainty. Moreover,
to study the impact of the observed data samples size on the detectors’ performance in
this approach, the performance is determined as shown in Figure 7; this figure shows that
spectrum sensing’s achievement is raised when the observed data samples is high.

Figure 3. Probability of missed detection versus the SNR for P f a = 5× 10−1, Nr = 3 and L = 20.
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Figure 4. The ROC performance of the proposed B-GLRT where a SNR = –3 dB, Nr = 3 and L = 10.

Figure 5. Probability of missed detection of the proposed approach versus L where a pfa = 5× 10−1,
an average SNR = –3 dB.
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Figure 6. Probability of detection versus probability of false alarm at SNR = −3 dB, Nr = 3, Nt = 2
and L = 20.

Figure 7. Probability of detection against probability of false alarm at SNR = – 3 dB, Nr = 5, Nt = 3
and L = 25.
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Finally, we show the probability of missed detection of the detectors in terms of SNR
where the number of samples is changed, as shown in Figure 8. From this figure, it can be
seen that the proposed detectors have a significant performance improvement in terms of
the probability of missed detection when the number of signal samples is increased.

Figure 8. Probability of missed detection for the detectors versus a SNR with P f a = 5× 10−1, Nr = 3,
Nt = 2.

6. Conclusions

This paper presents a novel method for developing spectrum sensing detectors in
multicell CR network with non-perfect CSI for the SU network. In this context, novel de-
tection schemes such as the B-GLRT1, B-GLRT2, and B-GLRT3 are proposed for different
cases when the noise distribution parameters are unknown in the non-perfect channel.
For the first case with unknown noise covariance and the perfect channel, we derived a
GLRT1-based binary hypothesis detector for spectrum sensing in MIMO CR networks.
In this case, our formulation for maximizing likelihood distribution determines the cor-
responding unknown parameters for each hypothesis within a specified amount of SNR
from the SU base stations. We further developed an expression of B-GLRT2 and B-GLRT3,
where the CSI uncertainty in MIMO cognitive radio is not perfect. This problem is for-
mulated as an optimization problem that is solved in different ways to obtain a robust
and sub-optimal solution for the spectrum sensing CR. Simulation results are presented to
demonstrate the proposed detectors’ performance where a CSI and noise uncertainty is
available with a finite number of observed data samples. The results also illustrate that
the proposed B-GLRT detectors achieve significant improvement compared with state-
of-the-art spectrum sensing schemes. We present simulation results showing that our
solution methods outperform state-of-the-art methods with existing and non-existing chan-
nel uncertainty. Furthermore, the theoretical analysis and simulation results indicate that
our approaches can offer outstanding spectrum sensing performance when small sample
size is available.This work focused on obtaining a robust signal detector at the secondary
user based on local decisions received from the cooperating signal PU considering CSI
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uncertainty in MIMO CR Networks. A promising extension to future work can use the
cooperative spectrum sensing at the fusion center side in the presence of the noise and
channel uncertainty.
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Appendix A

Appendix A.1

1. Equation (24) can be written equivalently as

Rη = argmax
Γ0 :Diagonal

M:Diagonal
Ψ≥0

(L|Ψ| − tr{RΨ}

+(α + 1) log|M| − etr[BM])

subject to

Γ−1
1 ≤ Ψ

Γ−1
0 ≤ M
M ≥ Ψ.

This problem can be solved by using Schur complement as shown in our previous
work in [32]: Ψ I

I Rη + (R̂h + ∆Rh)︸ ︷︷ ︸
Rh

 ≥ 0

Similarly, [
M I
I Rη

]
≥ 0

2. In sub-optimal method (B-GLRT2), ∆Rh is equal to +εINr then problem reduces to

Rη = argmax
Γ0 :Diagonal

M:Diagonal
Ψ≥0

(L|Ψ| − tr{RΨ}

+(α + 1) log|M| − etr[BM])

subject to Ψ I
I Rη + (R̂h + εINr)︸ ︷︷ ︸

Rh

 ≥ 0

[
M I
I Rη

]
≥ 0

M ≥ Ψ
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Appendix A.2

1. Solving for Γ0, the problem in Equation (30) reduced to P8:

P8 : argmax
Γ0 :Diagonal

(L log|Rh + Γ0|−1

−tr[R(Rh + Γ0)
−1
1 ]

+(ρ + 1) log
∣∣∣Γ−1

0

∣∣∣− tr[BΓ−1
0 ])

subject to

(Rh + Γ0)
−1 ≤ Ψ

Γ−1
0 ≤ M
M ≥ Ψ.

This problem can be solved according to the solution that is mentioned in Appendix A.1.
2. Back to Equation (30) to solve for ∆Rh, the problem reduce to:

P9 : argmax
∆Rh

(L log|(<+ ∆Rh)|−1

−tr[R(<+ ∆Rh)
−1]

+(ρ + 1) log
∣∣∣Γ−1

0

∣∣∣− tr[KΓ−1
0 ])

subject to

(<+ ∆Rh)
−1 ≤ Ψ ‖∆Rh‖F ≤ ε.

This equation can also be solved using Schur complement; the problem will becomes:[
Ψ I
I (<+ ∆Rh)

]
≥ 0
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