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ABSTRACT

This paper presents a blind dereverberation method designed
to recover the subband envelope of an original speech signal
from its reverberant version. The problem is formulated as
a blind deconvolution problem with non-negative constraints,
regularized by the sparse nature of speech spectrograms. We
derive an iterative algorithm for its optimization, which can
be seen as a special case of the non-negative matrix factor
deconvolution. We confirmed through experiments that the
algorithm is fast and robust to speaker movement.
Index Terms— Speech dereverberation, temporal enve-

lope filtering, non-negative blind deconvolution, sparseness

1. INTRODUCTION

Reverberation in a room severely degrades the characteristics
and quality of speech captured by distant microphones, thus
posing a severe problem for many speech applications. The
aim of speech dereverberation techniques is to recover a clean
speech signal from its reverberant version. When only a re-
verberant speech signal is accessible, dereverberation systems
must work ‘blind’.
A number of blind dereverberation systems have already

been developed. While there are several viable solutions
in situations where multiple channels are available, single
channel systems still pose a formidable challenge. For single
channel systems two main approaches have been adopted.
One approach involves applying inverse filtering techniques.
This approach requires assumptions about clean speech (e.g.
harmonicity, sparseness, non-stationarity, non-Gaussianity)
and/or the use of a speech model (e.g. dual excitation model,
autoregressive model, codebook) to assess ‘speech natural-
ness’. Systems are then able to estimate the optimal inverse
filter such that the speech naturalness of the inverse-filtered
signal is maximized [1]–[9]. While inverse filtering meth-
ods are usually performed in the time domain, the short-time
Fourier transform (STFT)-domain approach is more com-
putationally efficient [8, 9]. Within this framework, since
room impulse responses can vary rapidly according to such
factors as the speaker’s position, the problem of how robustly
and adaptively a system can estimate an inverse filter from a
short-term observation has attracted particular attention.
With a different approach, an attempt is made to recover

the subband envelope (power envelope of a subband signal) of
the original speech by applying an inverse filter of the mod-
ulation transfer function (MTF) [10]–[17]. As it is based on

a model that implicitly assumes the additivity of power spec-
tra, which holds only approximately, the performance may
be limited to some extent. However, we hypothesize that it
is advantageous in one sense. That is, the phase characteris-
tic of a room impulse response is a characteristic that is es-
pecially sensitive to speaker movements. Therefore, the use
of a convolution model of the subband envelopes, in which
only the time-invariance of the amplitude characteristic is as-
sumed, may allow the system to be robust against the changes
in room characteristics.
On the basis of this hypothesis, we choose the latter ap-

proach in this paper. While most of the temporal envelope
filtering techniques require strong assumptions about MTF
(some require MTF to be measured prior to the dereverber-
ation stage, while others employ a theoretically derived MTF
model with only a few parameters such as the reverberation
time RT60), the motivation for this work has been to develop
a blind temporal envelope filtering method that only assumes
the non-negativity of the subband envelopes of speech and a
room impulse response, and the sparseness of speech. The
problem is thus formulated as a blind deconvolution problem
with non-negativity constraints, regularized by a sparsity cost.
For its optimization we derive an iterative algorithm that en-
sures a monotonic decrease in the objective function and the
non-negativity of the parameters.

2. PRINCIPLE

2.1. Subband envelope model of reverberant speech

Let sk[t], hk[t] be the subband signals of speech and a room
impulse response at the kth subband where t is the time index.
The reverberant subband signal is then approximated by

xk[t] =
∑

τ

sk[τ ]hk[t − τ ], (1)

particularly where each subband signal is obtained by STFT[8].
Then, the subband envelope can be written as∣∣xk[t]

∣∣2 =
∑

τ

∑
τ ′

s∗k[t − τ ]h∗
k[τ ]sk[t − τ ′]hk[τ ′] (2)

=
∑
τ,τ ′

s∗k[t − τ ]sk[t − τ ′]
∣∣hk[τ ]

∣∣∣∣hk[τ ′]
∣∣e−jφk[τ ]ejφk[τ ′],

where hk[τ ] = |hk[τ ]|ejφk[τ ]. As hypohesized in 1, the phase
φk[τ ] can vary sensitively with respect to the reverberant con-
ditions. We shall thus find it convenient to treat the phase as a

45978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



random variable and integrate it out of the model. Hence, by
assuming that φk[t] is an independent random variable uni-
formly distributed on the interval D = [−π, π), the expecta-
tion of |xk[t]|2 leads to

E
[|xk[t]|2] =

∑
τ

∣∣sk[t − τ ]
∣∣2∣∣hk[τ ]

∣∣2, (3)

which suggests that the subband envelope of reverberant
speech can be represented, in an expectation sense, as the
convolution of subband envelopes of clean speech and the
room impulse response.

2.2. Problem setting
For simplicity of notation, let Sk[t] ≡ |sk[t]|2, Hk[t] ≡
|hk[t]|2. According to the discussion in 2.1, we model the kth
subband envelope of reverberant speech as

Xk[t] ≡
∑

τ

Sk[τ ]Hk[t − τ ], (4)

and assume
∑

t Hk[t] = 1 in order to avoid an indeterminacy
in the scaling. Given an observed subband envelope, Yk[t],
the goal is to find an approximation such that Yk[t] � Xk[t]
in which Sk[t] is sparse, based on the sparse nature of the
speech spectrogram. It should be noted that the ‘sparseness of
speech’ is the only assumption we make about clean speech.
We now assume the following generative model

Yk[t] = Xk[t] + εk[t]. (5)

The reconstruction error εk[t] is assumed to include any er-
rors resulting from the approximations in 2.1. Assuming εk[t]
is Gaussian white noise that follows N (0, σ2), the likeli-
hood of S ≡ {Sk[1], · · · , Sk[T ]}K

k=1 and H ≡ {Hk[1], · · · ,
Hk[T ]}K

k=1, given Y ≡{Yk[1], · · · , Yk[T ]}K
k=1, is written as

P (Y |S, H) =
∏
k,t

1√
2πσ

exp
(
− (Yk[t] − Xk[t])2

2σ2

)
. (6)

We use a generalized Gaussian prior for P (S)

P (S) =
∏
k,t

1
2Γ

(
1 + 1

p

)
b

exp
(
−|Sk[t]|p

bp

)
, (7)

and assume for convenience that P (Hk[1], · · · ,Hk[T ]) is in-
dependent over k and follows a uniform distribution (or more
accurately, a Dirichlet distribution whose parameters are all
set at 1, as H is constrained to

∑
t Hk[t] = 1). When 0 <

p < 2, P (S) becomes super-Gaussian and promotes sparsity
if the norm of S is bounded. The likely values of S and H
can thus be inferred from the posterior density

P (S,H|Y ) ∝ P (Y |S, H)P (S). (8)

Regarding p, σ2 and b as constant parameters, we arrive at the
following objective function:

f(S,H) ≡
∑
k,t

(
Yk[t] − Xk[t]

)2 + 2λ
∑
k,t

|Sk[t]|p. (9)

λ, determined by p, σ2 and b, weighs the importance of the
sparsity cost relative to the accurate reconstruction. We notice
that, as S and H are non-negative in nature, we must seek to
minimize f(S, H) subject to Sk[t] ≥ 0 and Hk[t] ≥ 0. We
are therefore led to solve the following optimization problem:

minimize f(S, H) with respect to S and H

subject to
∑

t

Hk[t] = 1, Hk[t] ≥ 0, Sk[t] ≥ 0. (10)

2.3. Multiplicative update algorithm

Guided by the idea of NMF[18], we derive an efficient iter-
ative algorithm that ensures a monotonic decrease (conver-
gence to a stationary point) in the objective function and, si-
multaneously, the non-negativity of the parameters.
First we derive the update formula for S. Let S′ and H ′

be the parameters at the previous iteration such that S′
k[t] ≥ 0

and H ′
k[t] ≥ 0. We then have an inequality

f(S, H ′) ≤
∑
k,t,τ

S′
k[τ ]H ′

k[t − τ ]
X ′

k[t]

(
Yk,t − Sk[τ ]

S′
k[τ ]

X ′
k[t]

)2

+
∑
k,t

(
pS′

k[t]p−2
Sk[t]2 + 2|S′

k[t]|p − p|S′
k[t]|p

)
, (11)

where the equality holds when Sk[t] = S′
k[t]. Its proof is

omitted owing space limitations. We write the right-hand side
of the inequality as f̄(S). It can be proved that the mini-
mization of f̄(S) w.r.t. Sk[t] leads to a certain decrease of
f(S, H ′). Thus, differentiating f̄(S) partially w.r.t. Sk[t] and
setting it at 0, we obtain the update formula, which is often
referred to as the ‘multiplicative update rule’, for Sk[t]

Sk[τ ] = S′
k[τ ]

∑
t

H ′
k[t − τ ]Yk[t]

∑
t

H ′
k[t − τ ]X ′

k[t] + λp|S′
k[τ ]|p−1

, (12)

where

X ′
k[t] =

∑
τ

S′
k[τ ]H ′

k[t − τ ]. (13)

We note that Eq. (12) comprises the product and sum of non-
negative entities, and so the non-negativity of the parameter
update is thus guaranteed. Next, we derive the update formula
for H . Similarly, we have an inequality

f(S′,H) ≤
∑
k,t,τ

S′
k[t − τ ]H ′

k[τ ]
X ′

k[t]

(
Yk[t] − Hk[τ ]

H ′
k[τ ]

X ′
k[t]

)2

+ 2λ
∑
k,t

|S′
k[t]|p. (14)

In the same way, differentiating the right-hand side of this
inequality partially w.r.t. Hk[t] and setting it at 0, we obtain
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the update formula for Hk[t]

Hk[τ ] = H ′
k[τ ]

∑
t

S′
k[t − τ ]Yk[t]

∑
t

S′
k[t − τ ]X ′

k[t]
. (15)

Note, however, that as we did not take into account the con-
straint

∑
t Hk[t] = 1 in the above, a convenient update pro-

cedure for Hk[t] shall consist of computing Eq. (15) and
then projecting it onto the constraint space, that is, Hk[t] ←
Hk[t]/

∑
t′ Hk[t′].

2.4. Modulation frequency domain processing
As can be seen from an inspection of Eqs. (12), (15) there
is a need to compute the convolution of S′ and H ′, and the
cross-correlations ofH ′ and Y ,H ′ andX ′, S′ and Y , and S′
and X ′. Fortunately, they can be computed very efficiently
using the Fast Fourier Transform (FFT) as described below.
Let F be the Fourier transform operator such that S ′

k[u] =
F{S′

k[t]}u, H′
k[u] = F{H ′

k[t]}u and Yk[u] = F{Yk[t]}u,
where u corresponds to the modulation frequency index and
H′

k[u] is therefore nothing else than the modulation transfer
function (MTF). Then, the update formulae for H and S can
be rewritten as

Hk[t] = H ′
k[t]

F−1{F{S′
k[t]}∗uF{Yk[t]}u}t

F−1{F{S′
k[t]}∗uF{X ′

k[t]}u}t

= H ′
k[t]

F−1{F{S′
k[t]}∗uF{Yk[t]}u}t

F−1{F{S′
k[t]}∗uF{S′

k[t]}uF{H ′
k[t]}u}t

= H ′
k[t]

F−1{S ′
k
∗[u]Yk[u]}t

F−1{|S ′
k[u]|2H′

k[u]}t
, (16)

Sk[t] = S′
k[t]

F−1{H′
k
∗[u]Yk[u]}t

F−1{S ′
k[u]|H′

k[u]|2}t + λp|S′
k[t]|p−1

, (17)

from which we see that the computation of the multiplica-
tive factors can be performed in the modulation frequency
domain, which is fast and also easy to implement.

2.5. Interpretation as ‘Diagonal’ Sparse NMFD
The algorithm presented here turns out to be a special case
of the non-negative matrix factor deconvolution (NMFD)[19]
when λ = 0. While NMF uses a model of the form Y �
WU , NMFD employs an extended model

Y �
J∑

j=1

W j

j→
U , (18)

where Y is the matrix to be decomposed, andW t andH are
the bases and weight matrices. The j→ operator shifts the
columns of its argument by j−1 positions to the right, i.e.,

A =
(

1 2 3 4
5 6 7 8

)
,

1→
A =

(
1 2 3 4
5 6 7 8

)
(19)

2→
A =

(
0 1 2 3
0 5 6 7

)
,

3→
A =

(
0 0 1 2
0 0 5 6

)
. (20)

We will write Eq. (4) using the notation defined above. Let
Ht be the diagonal matrix whose entries of the main diagonal
are H1[t],H2[t], · · · ,HK [t] such that

Ht ≡
⎛
⎝

H1[t] 0
. . .

0 HK [t]

⎞
⎠ , (21)

and S be the ‘spectrogram’ matrix of clean speech such that

S ≡
⎛
⎝

S1[1] · · · S1[T ]
...

...
SK [1] · · · SK [T ]

⎞
⎠ . (22)

Eq. (4) can then be written in a matrix notation

X =
T∑

t=1

Ht

t→
S , (23)

which has the same form as the NMFD model. This method
can thus be explained as a particular case of NMFD where the
bases matricesHt are constrained to diagonal matrices.
By analogy with NMFD, the temporal envelope of the

spectrogram blurring effect caused by reverberation corre-
sponds to the temporal evolution of the basis component and
interestingly, the clean speech spectrogram corresponds to
the activation matrix. The reverberant spectrogram is thus
considered to comprise blurring envelopes ‘activated’ by the
components of a clean speech spectrogram.

3. EXPERIMENTS

In this section we report some results for speech data recorded
under several different reverberant conditions. All the speech
data were monaural and sampled at 16kHz. The STFT was
computed using a Hanning window that was 64ms long with
a 32ms overlap. p and λ were set at p = 1.2 and λ = E2−p

where E =
∑

k,t Yk[t] × 10−8. The algorithm was run for
20 iterations. Sk[t] was initially set equal to Yk[t]. Hk[t]
were initially set at a decaying exponential envelope. The
final reconstruction of the speech waveform was performed
using the original phase function of the observation.
For the first experiment we tested our method on a synthe-

sized reverberant speech signal. The test data were created by
convolving a clean speech signal from a female speaker, ex-
cerpted from the ATR speech database, with a room impulse
response, measured in a room with an RT60 of 0.5s. Fig.
1 (a), (b) show the spectrograms of the clean speech signal
and the test data, respectively. The spectrograms of the dere-
verberated signal obtained with the conventional and present
methods can be seen in Fig. 1 (c), (d). Here and subsequently,
when we refer to the conventional method, we are referring to
the single channel version of [8]. We used signal-to-noise
ratio (SNR) as a quantitative measure of the dereverberation
performance. As a result, the present method improved the
SNR from 2.30 to 2.94dB, while the conventional method was
only able to improve it to 2.53dB.
For the second exeperiment we used a speech signal

recorded in a reverberant room. The clean speech signal was
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(a) Clean speech (female speaker)
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(b) Synthesized reverberant speech (RT60 =0.5s)
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(c) Dereverberated signal obtained with the 1ch version of [8]
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(d) Dereverberated signal obtained with the present method

Fig. 1. Test on synthesized reverberant speech data

played by a loudspeaker and recorded by a distant micro-
phone. The loudspeaker was carried by a participant, who
was asked to move around the room. Fig. 2 (a), (b) show
the spectrograms of the clean speech signal and the test data,
respectively. The spectrograms of the dereverberated signal
obtained with the conventional and present methods can be
seen in Fig. 1 (c), (d). The present method improved the SNR
from 1.29 to 1.68dB, while the conventional method was
only able to improve it to 1.52dB. The workstation used to
perform the experiments had a Core 2 Duo processor with a
2.66GHz clock speed and a 1.99GB memory. The algorithm
was implemented in Matlab on a Windows platform. The
algorithm usually converged within fewer than 20 iteration
cycles at a real time factor of around 1/3.

4. CONCLUDING REMARKS

In this paper we developed a new dereverberation method de-
signed to recover the subband envelope of an original speech
signal from its reverberant version. The discussions in this
paper mainly focused on the validity of the subband enve-
lope model of reverberant speech, problem setting based on
the non-negativity and the sparse nature of speech spectro-
grams leading to a regularized optimization problem with
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(a) Clean speech data (female speaker)
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(b) Speech data recorded by a distant microphone in a reverberant room
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(c) Dereverberated signal obtained with the 1ch version of [8]
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(d) Dereverberated signal obtained with the present method

Fig. 2. Test on synthesized reverberant speech data

non-negativity constraints, and an iterative algorithm for its
optimization, which can be seen as a special case of NMFD.
The algorithm presented in this paper is fast, easy to imple-
ment, and robust to speaker movement.
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