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Abstract

In this paper, we propose a direct method for speech rate estimation from acoustic features without

requiring any automatic speech transcription. We compare various spectral and temporal signal

analysis and smoothing strategies to better characterize the underlying syllable structure to derive

speech rate. The proposed algorithm extends the methods of spectral subband correlation by including

temporal correlation and the use of prominent spectral subbands for improving the signal correlation

essential for syllable detection. Furthermore, to address some of the practical robustness issues in

previously proposed methods, we introduce some novel components into the algorithm such as the

use of pitch confidence for filtering spurious syllable envelope peaks, magnifying window for

tackling neighboring syllable smearing, and relative peak measure thresholds for pseudo peak

rejection. We also describe an automated approach for learning algorithm parameters from data, and

find the optimal settings through Monte Carlo simulations and parameter sensitivity analysis. Final

experimental evaluations are conducted based on a portion of the Switchboard corpus for which

manual phonetic segmentation information, and published results for direct comparison are available.

The results show a correlation coefficient of 0.745 with respect to the ground truth based on manual

segmentation. This result is about a 17% improvement compared to the current best single estimator

and a 11% improvement over the multiestimator evaluated on the same Switchboard database.
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I. Introduction

SPEECH has been considered an attractive input modality for human–computer interactions

for a long time. More recently, there has also been increasing interest in automatically mining

vast amounts of speech data to determine not just what was spoken but how and by whom as

well. Much of the research focus over the past three decades has been on automatic speech

recognition, with tremendous progress being made, especially with the adoption of hidden

Markov model (HMM)-based architectures. However, speech technology is still far from

achieving the goal of robust speech understanding. One reason, which is also reflected in the

current research trends in human language technologies, is the inability to adequately capture

and represent the rich information contained in speech that is beyond mere speech-to-text

transcription, as provided by conventional automatic speech recognizers. Humans use a wide
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variety of cues for recognizing and understanding speech, including intonation, prominence,

and speaking rate. Machine processing of natural speech may also benefit from using these

cues. Hence, one key goal of present day spoken language processing research is to

automatically and robustly characterize these suprasegmental aspects of speech. This paper

focuses on the topic of automatic speech rate estimation.

A. Significance

Speech rate is primarily dependent on two factors: speaking style and the nature/scenario of

speech production (e.g., scripted/spontaneous). Research in this domain has two distinct

application-driven threads as to how speech rate variability is addressed. On the one hand,

variation in speech rate tends to adversely impact automatic speech recognition (ASR) and

needs to be mitigated. On the other hand, variation in speech rate carries information critical

for speech understanding and needs to be quantified to determine contextual variables such as

speaking context, audience, knowledge of the subjects, etc. Much of the early focus on speech

rate estimation was targeted toward improving ASR robustness. Even though HMMs have the

ability to accommodate some of the spectral–temporal variations in speech, recognition

accuracy is still severely influenced by mismatches between training and testing conditions.

Speech rate variability is one such contributing factor [1]. A first step toward addressing this

issue, i.e., to help improve the match between the models used and the speech being processed

for recognition, is to quantify the inherent speech rate variability. Then, once an estimation of

the underlying speech rate is done, one could select appropriately pretrained acoustic models

[25], [54] or adaptively set transition probabilities of the HMMs [4], [5] that appropriately

reflect the rate of the speech being measured.

Speech rate information can also be used in other speech processing scenarios besides robust

automatic speech recognition. Speech rate variance could be interpreted as a function of the

cognitive load associated with processing the text transcription [27], [42]. Cognitive load could

be defined as the level of effort for the speaker/user to select the words to speak (for the main

task or concurrent subtask [42]). In spontaneous speech scenarios, the speaker typically has to

address various tasks on the fly, as they unfold, with unknown cognitive loads. So, not

surprisingly, the speech rate variability for spontaneous speech can be quite large [44].

With increasing interest in spontaneous speech recognition and interpretation in recent years,

and challenges posed by the acoustic and linguistic characteristics of spontaneous speech that

are highly variable and more unstructured than prepared speech, the role of speech rate

estimates has become ever more important. Notably, instead of just relying on the text from

ASR to arrive at speech rate estimates, which may be quite noisy, there is a need to use

suprasegmental acoustic features to directly facilitate speech interpretation. Below, we

highlight some specific applications.

Prior research has shown that local speech rate correlates with discourse structure. For example,

global analysis of the discourse structure in paragraphs and clauses has revealed that for each

of the speakers considered, the average syllable duration of the first run of a paragraph is longer

than the overall mean value per speaker in more than 60% of the cases (50% is the chance

value)[3]. Local speech rate variations may carry other crucial information as well. For

example, speech rate plays an important role in the context of sentence boundary detection and

disfluency detection. It has been suggested that people tend to have longer syllable duration,

or equivalently slower local speaking rate, at these events [6], [7]. Speech rate also correlates

with prosodic prominence. Detection and normalization of rate of speech has been found to be

necessary in measuring such attributes [8], [21]. Global speech rate also works as a

normalization factor for many prosody-based classifiers. For example, it was selected as a key

prosodic feature in the machine learning process of dialog act detection [19], [23]. In summary,

speech rate estimation can be useful in a number of spoken language processing contexts.
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B. General Measurement Methods

There have been two major trends in measuring speech rate. Each has its advantages and

limitations. The first represents the use of discrete categorization—frequently, “fast,” “normal”

and “slow”—to describe speech rate [24]. Such perceptually chosen classes have been used in

applications such as acoustic model selection [9], [25] and HMM normalization [15] in ASR.

Even though it matches human intuition, the boundaries between these three categories are

fuzzy. Most of the time, human knowledge is required to set the boundaries, and hence it is

difficult to devise a completely automated engineering solution.

In the second approach, speech rate is measured in a quantitative way by counting the number

of phonetic elements per second. Words, syllables [9], stressed syllables, and phonemes [10]

are all possible candidates, and syllables are a popular choice [6], [9], [11]. Studies on speech

rhythm, i.e., organization of prominent and less prominent speech units in time, offer some

motivation in this regards. Evidence from reiterative speech studies [16] supports the idea that

syllable evolution is a good estimate of speech rhythm. Specifically, while the classic isochrony

(or rhythm class) hypothesis regarding stress-timed, syllable-timed, or mora-timed languages

has been largely unsupported by acoustic–phonetic evidence, a form of the isochrony

hypothesis for rhythm has been shown to be supported by speech measures based on syllable

structure and vowel reduction [50], [51]. Definitions for the syllable have been offered from a

variety of perspectives; phonetically, Roach [37] describes a syllable as “consisting of a center

which has little or no obstruction to airflow and which sounds comparatively loud; before and

after that center (…) there will be greater obstruction to airflow and/or less loud sound.” This

definition allows for a plausible way for detecting syllables in speech. Intuitively, syllables,

by these accounts, should have an even distribution under normal speech production, and their

rate could be changed as a result of speech rate change. Given such characteristics of syllables,

the syllable-based rate estimate appears to be a widely used choice among speech rate

researchers [6], [9], [11]. In this paper, we use number of syllables per second as a measure of

speech rate. We will further explore the syllable’s acoustic property in Section II.

C. Role of ASR in Speech Rate Estimation

We first need to detect syllable boundaries for speech rate estimation. A straightforward, and

convenient, approach would be through the use of automatic speech recognition where syllable

boundaries can be retrieved as a side product of phonetic segmentation such as through Viterbi

decoding [10]. Furthermore, ASR errors could be minimized with a supervised alignment

process if the correct transcription were known [6], [7]. However, such an approach has

limitations, while alternative approaches can offer other advantages.

First, assuming that the reference transcription is not available in real applications, recognition

errors—especially for spontaneous speech—are unavoidable. Recognition errors (particularly

insertions and deletions) would have the effect of degrading the performance of ASR-reliant

speech rate estimation methods [25]. Second, speech rate could work as an acoustic feature to

help ASR instead of being dependent on it. Hence, it is better to detect it in parallel or even be

used as a part of an ASR front end. In this way, we can combine the complementary information

produced by speech rate estimation and ASR. Finally, we believe that direct speech rate

estimation can be easily extended to languages with vowel-centric syllable structures similar

to English. This would be especially useful when only sparse data is available and where

building a high-performance ASR system is especially challenging.

In this paper, we investigate using acoustic-only features to derive speech rate. The rest of the

paper is organized as follows: Section II reviews the previous work and identifies the

challenges. Section III introduces the data for evaluation. Section IV introduces our algorithm.
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Section V describes the system and evaluation. The final section provides conclusion and

discussion.

II. Previous Work

As stated in the previous section, we use number of syllables per second as the speech rate

measure in this work. We therefore focus on identifying the correct number of syllables in an

utterance.

A. Background

This task to identify the syllable structure in an utterance dates back to the very early stages of

speech recognition research in the mid 1970s, where syllable detection was a popular first step

in automatic speech recognition [41]. The HMM-based statistical framework for ASR had not

been popularized then, and most of the research relied on knowledge (rule)-based acoustic

signal processing. A variety of features had been proposed to capture the syllable nucleus.

These included, for example, the use of linear predictive coding spectra [27], [28] or critical

filter banks [32] to extract the low-to-high frequency energy ratios that characterize the acoustic

properties of a syllable. Also, power spectra were used to derive a low-frequency profile in the

region of first few formants of vowels [29], [30]. Due to restrictions of processing hardware

and data availability at that time, these efforts were limited to read speech in quiet laboratory

environments, usually produced as isolated words or slow, carefully read sentences. [41].

With the wide adoption of hidden Markov model-based speech recognition in the 1980s, there

was a decreased focus on acoustic–phonetic studies for ASR. However, recently with the

increased scope of spoken language processing (Section I) the need for processing meta-

linguistic features has increased considerably, resulting in many interesting approaches,

including for speech rate estimation [8], [12]. A significant advantage of present-day research

is the ability to use large, spontaneous speech corpora to obtain statistically significant results.

An influential recent effort on speech rate estimation is by Morgan and Fosler-Lussier [9]. Our

paper was inspired, and builds upon on their work, which we will review further in Section II-

C.

All of the previously proposed techniques share the basic knowledge-based feature extraction

ideas. The strategy relies on converting the speech waveform to a lower (frequently, one)-

dimensional representation. Following that step, the syllable nucleus is located by picking peak

patterns in such a representation. There are alternatives to simple peak picking. For example,

Mermelstein [29] used a “convex hull” algorithm to recursively detect peaks which are

prominent relative to their surroundings. Rabiner used a static threshold on the total energy

profile [31].

In addition to these rule-based approaches, there have been attempts to use statistical learning

methods to derive syllable nuclei. Normally, a large number of features are extracted such as

log energy spectra organized in critical bands [33], bark scale filter bank [34], and even auditory

models (RASTA [35]). The learning methods are mostly based on hidden Markov models

[34] or artificial neural networks [33] and are usually trained with appropriately annotated

corpora.

B. Acoustic Characteristics of Syllables

The task of automatically detecting the syllable nucleus has a close relationship with vowel

landmark detection [41] based on the assumption that a syllable is typically vowel centric and

neighboring vowels are always separated by consonants. The use of the term “vowels” in this

context can be in fact generalized to “sonorant segments,” in light of the discussion in Section

I-B about the definition of syllable. Generally speaking, vowels form the nucleus of syllables,
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whereas consonants form the boundaries in between [40]. However, it should be noted that a

more precise characterization of the syllable structure can be made in terms of sonority (a

sound’s “loudness relative to that of other sounds with the same length, stress, and

pitch.” [40]) which posits that syllables contain peaks of sonority that constitute their nuclei

and may be surrounded by less sonorous sounds [52], [53]. According to the Sonority

Sequencing Principle [52], vowels and consonant sounds span a sonority continuum with

vowels being the most sonorous and obstruents being the least, with glides, liquids, and nasals

in the middle. In this paper, we will use the term vowels to mean sonorant sounds in the nucleus

of a syllable. We use this convention for simplicity and because vowels constitute the most

sonorous and frequent members of syllable nuclei.

A vowel is characterized by an open configuration of the vocal tract so that, unlike consonants,

there is no significant build-up of air pressure above the glottis [40]. Due to resonances in the

vocal tract, a vowel exhibits clear formant structure in its spectrum. This contrasts with

consonants, which are characterized by a constriction or closure at one or more locations along

the vocal tract. We will use this general description to motivate our design of the algorithm for

syllable nucleus detection.

C. Subband-Based Correlation Approach

As a preface to the description of our algorithm, we review the correlation based approach

proposed by Morgan and Fosler-Lussier [9] and other related work. One classic way to get

syllable counts is through performing full-band spectrum/energy analysis and measuring the

dominant peak of the long-term envelope [13]. However, such an approach results in significant

noise in the final envelope, making it difficult to obtain syllable counts robustly.

Many further improvements for the energy/spectrum idea have been proposed. For example,

Pfitzinger [20] extracted a band-pass signal and applied rectifying and smoothing window to

it before performing peak counting. In that work, a 21.8% error rate (a measure that uses syllable

nucleus matching between test and transcription location) was reported. As an alternate

approach to the same problem, the first spectral moment of the broadband energy envelope

was used as a speech rate measure [12]. While this method provided improved performance

with conversational speech, it was shown that using a one-hour subset of manually transcribed

Switchboard data, the correlation between transcribed syllable rate and the experimental rate

was only about 0.4 (when both were measured over between-pause spurts) [12].

All the aforementioned syllable detection approaches assume the rate of peaks on wide band

energy envelope (see, e.g., Fig. 1) is a valid representation for speech rate measure. However,

this assumption has its limitations. For instance, formant structure, which is crucial for syllable

identification in fast speech, is lost when the wide band energy envelope representation is used.

For example, the same magnitude on wide band energy envelope might correspond to different

formant structure, thus different vowels. For fast speech, the transition between different

vowels is difficult to identify by energy envelope. Since such a wide band energy envelope is

only one of many possible representations of speech, researchers have proposed alternative

measures. One of the major improvements was given in [9], where Morgan and Fosler-Lussier

developed a subband-based module that computes a trajectory that is the average product over

all pairs of compressed subband energy trajectories. That is, if xi(n) is the compressed energy

envelope of the ith spectral band, a new trajectory y(n) is defined as

(1)
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where N is the number of bands, and M = N(N − 1)/2 is the number of unique pairs. The

algorithm and the system of [9] is summarized in Fig. 2. By this method alone, correlation

coefficients greater than 0.6 were achieved between the referenced and measured speech rate

values. Furthermore, it was shown in [9] that the performance would boost to 0.673 if multiple

estimators were combined (with wideband energy peak count and spectral moment count; see

Fig. 2). This method addresses the formant structure issues we discussed earlier by introducing

band-wise correlation in the spectral domain, which accentuates the syllable peak in the

correlation profile.

We build upon this method, and address two key challenges. The first one relates to choosing

the robust feature set to identify the syllable nucleus. Solutions have been proposed from both

signal processing [27], [29] and speech production [35] points of view. We consider both

spectral and temporal features in characterizing the syllable envelope as described in Section

IV. The second problem concerns optimal parameter selection. Heuristic methods have been

popular, but they do not guarantee optimality or generalizability across domains [31]. Statistical

learning schemes are attractive in the sense of objectively trying to seek optimal parameters.

The challenges, however, include the availability of an appropriate training scheme, and

effectively dealing with multiscale, multidimensional features such as those needed for the

speech rate problem [34]. We adopt a Monte Carlo simulation-based method, followed by a

systematic sensitivity analysis to facilitate parameter estimation. We evaluate our method on

a database of spontaneous speech, which we describe in Section III.

III. Database

Our primary goal is to robustly detect speech rate on spontaneous speech. We use the

phonetically transcribed ICSI Switchboard corpus subset (provided kindly by Fosler-Lussier

[9]). Switchboard is a corpus of several hundred informal speech dialogs recorded over the

telephone [11], [39]. The corpus is extensively used for development and testing of speech

recognition algorithms and is considered to be fairly representative of spontaneous discourse.

In contrast to carefully enunciated, read speech (such as TIMIT [43]), the speech contained in

Switchboard tends to vary significantly in terms of rate, prominence, etc. A total of 5682 spurts

were hand transcribed phonetically by linguists in the Switchboard Transcription Project at

ICSI [2]. The transcription includes syllable boundary information (not manually segmented

but hand-corrected machine derived segmentations). The cutoff marks (h#, sil) are taken care

of to get the accurate reference syllable numbers. This corpus is the same as used in [9].

IV. Algorthm Design

Our proposed algorithm works by abstracting the speech waveform to a 1-D envelope and

detecting syllables by peak picking. It consists of four stages: spectral processing, temporal

processing, smoothing, and thresholding. This section is organized in the following way: First,

we will summarize a number of practical issues that the algorithm needs to tackle. Second (in

Sections IV-B–E), we will describe the four stages of our algorithm, clarifying which particular

challenge each part is addressing. Finally, we will describe our strategy for choosing the optimal

parameters for each algorithm setting.

A. Practical Challenges

Our algorithm is based on the speech subband correlation approach [9]. Peak picking on the

resulting correlation envelope gives the syllable number estimation. A major challenge is due

to noise in this envelope, that can result from a variety of sources as discussed below, and can

interfere with the peak picking and degrade the accuracy of syllable number estimation.
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1) Background Noise—Background noise is a significant contributing factor toward

spurious peaks in the correlation envelope. For example, in Fig. 1, there are instances of

background noise in the regions between 0.78 and 0.85 and 1.05 and 1.15 s. Such noises tend

to introduce extra peaks in the final correlation envelope. One traditional way is do noise

cancellation or suppression. However, often, noise can be of disparate types, and difficult to

characterize. Such noises also include soft breath and cross-channel voices that are not a part

of the foreground speech. We apply pitch verification and relative thresholding techniques to

address these problems.

2) Consonant “Noise”—Consonants are key components of speech. The particular

correlation approach we consider here, however, relies on vowels to be the major contributor

of the syllables and thus the peaks. As explained in Section II-B, additionally this includes

sonorant consonants, such as /l/, /r/, which can also carry syllabic weights. However, other

(obstruent) consonants, especially fricatives, also sometimes contribute extra peaks not related

to the “syllable peak.” This is why they are categorized as “noise” here. The characteristic of

such noise is that they do not have as much energy as a vowel. Furthermore, they may not have

pitch associated with them when they are unvoiced. Lastly, they normally have short durations.

We will show how these cues can be advantageously exploited to mitigate the effects of

consonant “noise.”

3) Smearing—In our experiments, and also those in [9], there are a number of individual

cases where a high speaking rate sometimes results in smearing neighboring energy peaks.

This makes it particularly difficult to derive the correct number of syllables for that segment.

Fig. 3 shows an example of smearing of syllables “in” and “tro” (from the word “introduction”)

showing only one peak. The possible reasons include effects of windowing used in the analysis

and any smoothing of the envelope in a post processing step.

4) Overestimation Issues—It is also observed that for some slow segments, people tend

to shift the vowel formant to express some prosodic content. Such phenomena will bring extra

peak estimates in the direct application of the subband correlation method as proposed in [9].

In the example shown in Fig. 4, “so” has only one syllable. With a fixed subband, when a

formant shifts from one band to another, it will generate an additional peak.

5) Windowing Effect—In all these methods, a correlation envelope is generated and utilized.

Like all short-time windowing methods, a larger window makes the envelope smoother but

loses fine details. A smaller window provides more detail but makes the envelope noisy and

in turn renders peak counting difficult. In the syllable scale we are considering, such windowing

effects are unavoidable. We will address this problem by Gaussian filtering.

The aforementioned challenges are addressed in the four steps of the proposed method, as

described below: spectral processing, temporal processing, overall smoothing, and

thresholding.

The overall system flow chart is shown in Fig. 9.

B. Spectral Processing

1) Selected Subband Correlation—We believe formant structure is the major key to

identifying vowels and thus locating the syllable nucleus. Our algorithm aims to abstract the

speech waveform to a 1-D envelope, with a general strategy to let the center of the vowel to

be maximized while not significantly increasing the contribution to the envelope from the

consonants. As a consequence, the neighboring syllables (vowel centric) should have a deeper
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gap in between. The subband correlation addresses this issue. We wish to further improve its

performance by doing a selected subband correlation.

In all previous approaches, spectral correlation is performed on the full bands. However, we

find that if we concentrate on the prominent subbands where the formant structure lies, the

vowel segments could be further boosted while the consonant contribution will be diminished

comparatively. Such discrimination increase will be useful for later threshold setting. So we

propose to do spectral correlation only on a selected subset of the subbands. First, instead of

choosing only four subbands, we apply a 19 subband analysis (by a facility provided in the

speech filing system tool [14]). We then keep the top M bands by subband energy for further

temporal and spectral processing. M is a parameter we need to set appropriately and will be

discussed in a later section.

In the example shown in Fig. 4, slow speech incurs an overestimation of syllable number, and

we noticed that the formant structure has shifted within the vowel segment. In this case, if we

select the top M most prominent subbands to do correlation, the shifting effects could be

automatically tracked and resolved.

2) Pitch Verification—In the previous section (Section IV-A), we outlined the

characteristics of background noise and consonant noise. Typically, such regions do not have

any voicing. The availability of pitch information could serve to identify this effect. Pitch

estimation is a fairly mature signal processing technique and can be easily implemented using

a variety of approaches. The use of pitch in conjunction with the correlation envelope could

help eliminate the pseudopeaks where there is no pitch. In this paper, we apply the pitch

estimation algorithm that is based on normalized cross correlation function and dynamic

programming. It is similar to that as presented in [46]. Such an approach was found to be very

effective as shown in the later evaluation section.

C. Temporal Processing

Few previous approaches incorporate temporal processing. However, we note that each

landmark lasts over some period of time. For example, vowels and sonorant consonants which

constitute the major body of a syllable extend over several tens of milliseconds. Silence and

nonsonorant consonant sounds can also cause signal discontinuity in the temporal realm

(consonant discontinuities are typically shorter). Temporal processing, aimed at achieving

desirable smoothing effects, is carried out as described below.

1) Temporal Correlation—Inspired by spectral cross correlation, and also by the fact that

each syllable (i.e., similar spectral pattern) typically lasts over several tens of milliseconds, we

also perform a cross correlation in time domain.

Let xt, xt+1, … ,xt+K−1 represent an increasing time order of subband energy vectors with length

K. We then compute correlation yt as

(2)

Through this correlation, each syllable has a peak at its center, because it spans most of the

part of this syllable.

It also could be viewed as a type of filtering. However, compared to linear weighting of

neighboring frames, the above approach uses products which will boost within-syllable frame
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similarities. This approach was found to effectively address the windowing effect of the

envelope. The parameter we need to set here is K, the size of the window to do the correlation.

2) Weighting Window—Fig. 3 illustrates the case where fast speech has a smearing effect

on neighboring syllables. Even though the major purpose of our algorithm is to smooth the

correlation envelope, we do not want to lose important details in the process. In order to

emphasize intersyllable discontinuities, we apply a Gaussian weighting window centered at

the middle of the analysis frame before the process of self temporal correlation (as described

in Section IV-CI). So the center part, in the case there is a small discontinuity, is amplified,

and this frame has more weight in the correlation process. Such an approach could be

mathematically described as follows.

Let w0, w1, … ,wK−1 represent a series of window coefficients. We first perform a weighting

operation on the subband energy temporal vector series x0, x1, … ,xk−1

(3)

Here, we choose w to be a Gaussian window centered in the middle of the analysis segment.

After this process, we plug in the updated vector series x0, x1, … ,xk−1 to the temporal

correlation process as described in Section IV-C1. We need to set the variance of the Gaussian

window appropriately to control the shape of the window.

In order to illustrate the effects of such weighting window, we study the discontinuities of the

step function in the 1-D case, and show the results in Fig. 5. (The temporal correlation in Section

IV-C1 is for M-dimensional vectors where M is the number of selected subbands.)

The original step signal has the sharpest edge. The effect of the weighted windowing, as can

be seen in Fig. 5, is to help reach an acceptable tradeoff between amplifying the discontinuity

while achieving the desirable smoothing effect suitable for rate detection. These parameters

used in correlation and weighting the window are selected as optimal settings for the

experiments in Section V where we will further discuss the implications of this algorithm.

It also needs to be mentioned that there are many possible filter selections to achieve similar

smoothing effects. Gaussian windows offer desirable kernel characteristics and easy parametric

control of their shape, and are widely popular in image processing for smoothing [47]. Also,

both the Fourier transform and the derivative of a Gaussian window are Gaussian functions.

We hence adopt the 1-D Gaussian window for our case.

D. Smoothing

After the spectral and temporal correlation, we obtain a 1-D correlation envelope. There still

may be local peaks in the correlation envelope which result in spurious peak counts. As a result,

some type of further smoothing becomes necessary. We apply the standard Gaussian filtering

method. The parameter setting strategy for the filter is described in Section IV-F.

It needs to be clarified that our algorithm has two different Gaussian windows involved with

different intended use. While the purpose of the one described in Section IV-C is to alleviate

the smoothing effects of the temporal correlation by making the slope sharper, the purpose of

the one in Section IV-D is purely to provide a low-pass smoothing filter.

E. Threshold Mechanism

In addition to smoothing, for handling spurious peaks in the correlation envelope, we could

design further thresholding mechanisms to improve the overall robustness of the peak counting.
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Based on empirical analysis on several speech correlation envelopes, we categorized the

observed spurious peaks into 2 two classes: First are those that occur when there is no voicing

activity. We proposed in Section IV-BII to use pitch verification as a hard threshold where all

peaks with no corresponding pitch activity are removed. However, there are limitations to pitch

verification such as when there are voiced consonants, cross-channel voice, or pitch

computation error. The major characteristic of such noisy peaks is that they are of relatively

low amplitude. Such peaks could be removed by appropriate thresholding. The second class

of noisy peaks appears in the voiced part. In this case, neither pitch verification nor absolute

thresholds would be effective since those regions always have nonzero pitch, and the noisy

peaks are of quite high amplitude. Most algorithms in Sections IV-A–D try to address this issue

to some extent. As an additional step, we design a threshold mechanism which could deal with

pseudovoiced peaks specifically.

1) Temporal and Magnitude Thresholds—To counter pseudopeaks that occur close in

time, first, we set a threshold for the minimum distance in time between two neighboring peaks.

The simple idea here is that two syllables could not be very close in the final correlation

envelope with respect to the frame advance of 10 ms. Second, we still need to set thresholds

on magnitude.

Fig. 6 illustrates a case where a single syllable displays two peaks (marked peak A and peak

B) in the final correlation envelope. We propose to measure the minimum difference between

a local peak and its larger neighboring minima instead of the ground zero, for setting temporal

thresholds. For example, in Fig. 6, the threshold magnitude of peak A is measured by the

relative magnitude between A and C; similarly, for peak B it is measured between B and C.

This method however could fail to report any peaks in specific cases such as in Fig. 6 (Since

the relative magnitudes of peak A and peak B are all very small). Instead, we found that a

modification that considers the magnitude of a peak with respect to its immediate preceding

minimum to be more robust. This was based on observations about typical syllable-level

acoustic characteristics that demonstrate larger ranges between neighboring syllables, i.e., high

absolute magnitude (such as A or B) at the syllable and rather low absolute magnitude between

the neighboring syllables (such as D, E). On the other hand, spurious peaks tend to have smaller

ranges. Hence, in the new scheme, for example in Fig. 6, peak A’s threshold magnitude is

measured by the relative magnitude difference between A and D. Peak B’s threshold magnitude

is measured by the relative magnitude difference between B and C. Peak A could thus pass the

threshold since it is rather high in such magnitude. So, it returns the correct peak number.

This scheme could also handle many other cases very well. In the case that A–D and B–C are

very close and high, this most probably implies that they are two distinct syllables and the

algorithm will keep both. If A–D and B–C are both of small magnitudes, considering D has

low absolute magnitude, they are both removed as background noise. The other advantage is

that this left-compare-only threshold is compatible with absolute thresholding: When we apply

it on silence regions, this method works the same as absolute threshold.

It should be noted that there is potential failure possibility of this threshold mechanism in the

case of very close syllables with no discernable boundaries such as in the words “reenter,” and

“reenergize” which may appear as pseudovoiced peaks in fast speech. Nevertheless, overall,

we expect that these cases to be relatively infrequent, and that the proposed threshold

mechanism would be in general effective.

F. Parameter Selection

The previous sections described many approaches for improving the syllable detection

performance robustness. One critical question that still needs to be answered is how to choose

the different algorithm parameters to enable the various processing blocks to work well

Wang and Narayanan Page 10

IEEE Trans Audio Speech Lang Processing. Author manuscript; available in PMC 2010 April 27.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



together. The manual heuristic method has its own merits in that it utilizes expert human

knowledge for rapid parameter setting. This is especially useful when a single running cycle

(even on development test set) is computationally intensive. However, the approach suffers

from limitations of scalability. For instance, many iterations of tuning may be needed, and it

may be difficult to tell when the algorithm reaches a local maximum or if we could find the

global maximum. Furthermore, such an approach would be difficult to easily port to other data

types and domains. Hence, we propose to use a principled way for parameter estimation relying

on Monte Carlo-based initialization followed by a sensitivity analysis to set the parameters

using a development set.

1) Monte Carlo Method—The algorithm we have proposed for speech rate estimation poses

a multidimensional parameter setting problem. We adopt the Monte Carlo method to bootstrap

the parameter value initialization. The first step is generating the possible ranges for the

parameter values. We specify these initial ranges rather large (greedily) and then generate the

parameter set by Monte Carlo sampling. Fig. 7 illustrates the sample histogram after 4446 runs

on the development set. The algorithm’s performance with the selected parameters is then

noted. The large initial parameter set requires that a large number of random parameter samples

be generated in order to reach the optimal region, a computationally intensive process. We

made this possible by optimizing the batch operation and offline front-end processing. Since

Monte Carlo simulation draws parameters randomly within a large range, it is an important

step towards detecting the global maxima. Though with a given number of simulations, we

cannot guarantee to find the global maxima, we believe it at least provides an acceptable

approximation to it.

2) Sensitivity Analysis—The chosen parameter values were then subjected to a sensitivity

analysis. This was done through systematic perturbations to the parameter values (obtained

from the Monte Carlo simulation) until a local maximum is reached. We first define an “atomic

increment,” which specifies the smallest amount by which each parameter could change. We

then perturb each parameter one by one with the atomic increment in each direction. Every

time there is an improvement, we will update the relative parameter. This step is repeated until

no further improvement is obtained for perturbations on all parameters.

In Fig. 8, the X -axis shows the number of the perturbation trials. This number starts from 0

and increases by the aforementioned procedure. The Y -axis shows the correlation coefficient

between speech rate estimates obtained from the test and reference data in the development

set. The correlation coefficient is an indicator of speech rate estimation accuracy. Fig. 7 then

illustrates how such perturbations could monotonically improve the performance. We found

for fast convergence, the Monte Carlo method is essential to obtain a good rough estimate of

the starting point. The sensitivity analysis is designed in such a way to efficiently but

exhaustively search the parameter space to scan all possible local maxima in the given range.

V. System Description and Experimental Results

Given the description of the various components of our algorithm in Section IV, we will now

describe the full system and report the evaluation results.

The overall speech rate estimation system is summarized in Fig. 9. Each block therein was

described in Section IV. The algorithm parameters are set systematically and automatically

using the Monte Carlo simulation and sensitivity analysis described in the previous section.

The technical specification of each functional component is described below in order.

• The speech is passed through a 19-channel filter bank analyzer to get the energy vector

series. We apply the utility “voc19” as provided by [14]. It is a straightforward
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implementation of a 19-channel filterbank analyzer using two second-order section

Butterworth bandpass filters spaced as in [22]. Energy smoothing is done at 50 Hz to

give a default 100-Hz frame rate. Here we do not apply any energy compression

procedures as in [9].

• With such a 19-channel filter bank, we get a 19 stream subband energy series. Only

the top bands are selected and kept.

• Then we choose K temporal frames. These K frames are weighted by a Gaussian

Window as described in Section IV-C2. Temporal correlation is then applied as

detailed in Section IV-C1. The overlap across successive Gaussian windows is K−1

frames.

• For the next step, the resulting subband energy vector is cross-correlated in a way

identical to [9].

• Finally, peak counting is performed on the final smoothed envelope with pitch

validation and various thresholding schemes as in Section IV.

In order to set the parameters, we randomly selected 568 speech spurts from the full ICSI

Switchboard data set as the development set which represents about 10% of the data. Applying

the Monte Carlo simulation and sensitivity analysis, we obtained the parameter values as listed

in Table I.

While this is a multiparameter tuning problem, it is also desirable to understand the effect of

the individual parameters. To experimentally obtain insights in this regards, we evaluated the

performance by removing each of the proposed component and measured the resulting

performance on the development test set. Following methods in [9], a transcribed syllable rate

was computed by dividing the number of syllables occurring in the spurts by the length of the

spurt. In this paper, we treat this rate as the reference rate. We use the detected rate to correlate

with the reference rate to get the final agreement measure on the data set. We also computed

the simple mean squared error (MSE) between the estimated and reference rates as follows:

The results are reported in Table II.

All the components appear to provide improvements in the performance, but to varying

degrees: Results show pitch validation to be the most effective, with thresholding strategies

also contributing significantly on this data set. The use of reduced, instead of full, number of

bands improves the error variance without degrading (in fact, slightly improving) the

correlation rate and MSE, but with obvious reduced computation.

While interpreting the results of Table II, we should note that the algorithm was designed to

have several mutually dependent components working together to locate the syllable nucleus

correctly. As motivated in Section IV, each component attempts to address specific issues in

rate estimation, and the Monte Carlo approach enabled us determine a compromise optimum

of these parameters. Hence, the method of evaluating relative performances by turning off

components with respect to a jointly tuned parameter set may not necessarily assure optimal

settings for the remaining components. The only exception to this might be the pitch validation

component. Since the computation of pitch is independent of all other components, its

contribution is most likely also largely independent of the other modules. Table II shows that

the performance degradation by turning this option off is the most significant. This implies
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that it could remove the effects of background and consonant noise (Section IV-B2) which are

difficult to be mitigated by other components. The results also suggest that the pseudopeaks

removed by pitch validation constitute a significant portion of the impediment to accurate rate

estimation.

The results of Table II also indicate that the thresholding schemes contribute noticeably to the

system performance. However, the contributions do not come just from the “threshold”

selection but from the effects of other signal processing components that help isolate the “noise”

that is then easily removable by thresholding. For example, subband correlation helps to boost

the contribution of vowel and other sonorants while suppressing the intersyllable valleys. This

makes the margins between true peaks and pseudopeaks accentuated, which in turn facilitates

the thresholding schemes to work robustly.

Temporal correlation and Gaussian filtering both try to achieve the same goal of smoothing

the syllable envelope. Table II shows that they contribute similarly to the overall system. We

believe that the joint parameter setting with Monte Carlo approach would set these two

subsystems to work optimally with the thresholding scheme. In sum, the experiment of studying

the effects of the various components shows their relative importance, although it is understood

their settings in this process may not be entirely optimal.

In the next step, we proceeded with the evaluation of the full system with all the available

Switchboard data and the parameter settings obtained from the Monte Carlo simulation and

sensitivity analysis, again following the methods as reported in [9]. We use the detected rate

to correlate with the reference rate to get the final agreement measure on the full 5682 spurts

set. Also, the mean error and standard deviation error were calculated. The results are reported

in Table III. This result represents about 17% improvement compared to a single estimator and

11% improvement with respect to a multiestimator evaluated on the same database in [9].

Also, instead of using all of the switchboard data and removing just the development part, the

correlation coefficient is 0.734, which is slightly lower than the results in Table III.

In addition, we analyzed the influence of certain factors on the estimation of speech rate. In

Section II-B, we noted that besides vowels, sonorant segments of syllable nuclei might include

glides, liquids, and nasals. In Table IV, we report results for the two cases separately: speech

spurts which have at least one syllable with glides/liquids/nasals as the sonorant elements,

while the other class consists of spurts with only vowels as syllable nucleus. Results show that

the inclusion of sonorant consonants is handled well by the algorithm.

We also investigated the effect of the actual value of the speech rate itself. For that purpose,

we heuristically categorized the speech data into three classes based on transcribed speech rate:

fast (> 5 syllables/s, 711 spurts), normal (between 3 and 5 syllables/s, 3405 spurts), and slow

(< 3 syllables/s, 1566 spurts). The estimated and reference values are shown in Fig. 10 for each

of these data conditions. In general, the estimated values tend to be underestimates, with greater

disagreements in the case of slow and fast speech (second and fourth panels in Fig. 10). We

calculated the mean squared error between the reference and estimated values for each of these

cases: the overall MSE rate was 5%, while the rates for slow, normal, and fast cases were

10.3%, 3.5%, and 6.8%, respectively. The major cause of this effect is due to two factors:

overestimation and smearing, which occur often in slow and fast speech, respectively. (Refer

to Sections IV-A3 and A4).

It needs to be clarified that the number of syllables per utterance might be an ill-defined

quantity. Even though we use the normalized syllables per second as the rate measure, this

quantity might not keep constant as the spurts length is varied. This should be taken into

consideration for the justification in Fig. 10.
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Lastly, we wish to explore yet another property of our algorithm. Throughout this work, we

have been assuming that the peak number is a valid indication of the syllable number. It assumes

that the peak location on the correlation envelope should be consistent with the syllable

location. Even though this is not part of the work of Fosler-Lussier and Morgan [9], and it

might not be a necessary condition to make our algorithm work, we include these statistics for

closer analysis. For this purpose, we treat the original syllable transcription in the ICSI

Switchboard corpus subset as a “gold standard.” Then, we compare the peak location on the

correlation envelope to this standard. If within a syllable, there is a one-to-one mapping, we

treat this as “correct.” Otherwise, it is deemed as a “deletion” or “insertion.” The statistics are

provided in Table V.

For a spontaneous speech corpus like Switchboard, more than 80% of the time the syllable

gives a one-to-one mapping. As stated in Section IV-A, our algorithm has deletion and insertion

errors under specific circumstances. Even though slow speech rate is slightly more difficult to

estimate (as illustrated in Fig. 10), due to the preponderance of the number of fast-spoken

syllables relative to the slow-spoken ones in the data, deletion errors dominate insertion errors.

It should be noted our algorithm is optimized towards improving the speech rate correlation

between a reference and the measured, and it might not necessarily produce the optimal syllable

location information. One reason, as discussed in Fig. 10, is the ill-defined nature of syllables

per utterance as a rate indicator.

VI. Summary and Conclusion

Our experiments show that the speech rate estimation methods proposed in this paper offer

further improvements over previous methods. Such advantages are demonstrated by improved

correlation coefficients and reduced mean error and standard deviation in the estimates with

respect to the reference values. We have also systematized the heuristic parameter setting

methodology originally used in [18]. The Monte Carlo method and dynamic parameter

perturbation schemes provide ways for parameter tuning that guarantee finding the local

maximum and approximating the global maximum. For the Monte Carlo method, the coverage

is large, but the precision is low. Local convergence is achieved in postprocessing through

sensitivity analysis implemented through systematic parameter perturbations. Such a dynamic

perturbation scheme could help find the neighboring local maxima but cannot guarantee to

enumerate all the local maxima.

The key part of the algorithm is in obtaining the correlation envelope. Such a signal envelope

measure could disclose other useful information like syllable duration and spectrum intensity.

For example, in [45], this envelope was used to derive a measure for word prominence.

There are further avenues that can be considered for improving the methods presented in this

paper. For instance, it is well known that there are a number of factors that could affect the

phonetic characteristics of a syllable (duration, f0), notably the underlying linguistic prosodic

structure, which can impact the syllable detection accuracy, a critical aspect of the speech rate

measure proposed in this paper. Specifically, lengthening at the edges of prosodic domains

(boundaries) has been well documented both in read speech [49] as well as in spontaneous

speech [48]. This includes the effect of utterance position: initial words are longer than

noninitial words; utterance final words are longer than utterance medial words. These in turn

can influence the quality of automatic syllable detection that relies on the acoustic

characteristics of the syllable. Explicitly incorporating contextual information, such as the

temporal structure, can further improve the proposed algorithm.

A possible alternative would be designing an adaptive algorithm for dynamic parameter

adjustment such as through multipass rate estimation. For example, the first pass can give a
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rough estimate of the rate, while the second pass can use the results of the first pass to set

relative parameters. Such an approach could be implemented iteratively. However, in

applications of rate estimation that require real time processing, such multiple-pass methods

may drastically limit the usefulness of rate estimation.

We described different types of noises which could render the syllable correlation envelope

peak counting in the prone to error. Due to different characteristics of these noises, there is no

one universal method to deal with all of them well. The approach we described in this paper

was to design several different components, each addressing a specific subset of noise types.

Finally, we tune the parameters and thresholds jointly to make these components work

optimally through systematic multiparameter tuning. While removing a particular component

from the system provided some insights into its relative effect on performance, such an

approach does not ensure that the values of the other parameters are necessarily optimal. Further

detailed experiments can help shed further light onto such details.

Evaluating the role of the estimates of speech rate derived in this work within specific

application frameworks is outside the scope of the present work. Rate sensitive modeling in

automatic speech recognition has been shown to provide performance improvements [54], and

we expect that improved rate estimation to contribute toward improvement such models.

Similarly, the results of the present work can contribute to other spoken language processing

domains. In related work [45], acoustic measures of word prominence were shown to benefit

from the algorithms presented in this paper. Further detailed application-specific evaluations

of the proposed rate estimation remain as topics of future work.
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Fig. 1.

Sample speech utterance “SOME FORM” from the Switchboard corpus: (a) Speech waveform.

(b) Wideband spectrum. (c) Correlation envelope (approach in this paper). (d) Wideband

energy envelope.
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Fig. 2.

Major steps in computing “mrate” (adapted from [9]).
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Fig. 3.

Illustration of peak smearing shown for the word “in-tro” (from the Switchboard corpus).
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Fig. 4.

Overestimation for “So” (from Switchboard).
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Fig. 5.

Weighting window effects for step functions. Correlation window length is set to 11, and the

variance of Gaussian is 1.2.
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Fig. 6.

Syllable “BAD” in Switchboard 3994B.
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Fig. 7.

Monte Carlo simulation histogram.
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Fig. 8.

Perturbation yields monotonic improvement on correlation coefficient between test and

reference data.
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Fig. 9.

System flowchart for speech rate estimation.
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Fig. 10.

Estimated and reference rates for various data conditions (reference, blue; estimated, red). The

top panel correspond to the results for the entire data, while the second, third, and last panels

in the figure correspond to slow, normal, and fast speech, respectively. The horizontal axis is

the ID of the spurts; the vertical axis is the MSE.
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TABLE I

Optimal Parameter Settings

Value Parameter

Temporal correlation window length (K) 11

Weighting Gaussian window variance 1.2

Number of selected sub-bands (M) 12

Smoothing window length 15

Smoothing Gaussian window variance 1.3

Neighboring peak distance threshold 13

Left-compare-only threshold 29
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TABLE III

Experimental Results Note: Enrate, Sub-Mrate, and Mrate are the Results From [9]

Measure
Correla-

tion
mean
error

stddev
error

enrate .415 .747 1.405

sub-mrate .637 .530 1.219

mrate .671 .464 1.121

Proposed
Approach

.745 .339 0.796
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TABLE IV

Effects of Syllable Nucleus Type on Speech Rate Estimation

Spurts type # spurts
Correla-

tion
Mean
error

With vowels
only

4346 0.737 0.322

With
sonorants

1336 0.774 0.395

Combined
data set

5682 0.745 0.339
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TABLE V

Comparison to the Transcribed Syllable Location

Type
Correct

%
Insertion

%
Deletion

%

Percent of total
syllable number

80.6 3.8 15.6
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