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ABSTRACT 

This paper proposes an environmental noise 
classification method using kernel principal component 
analysis (KPCA) for robust speech recognition. Once the 
type of noise is identified, speech recognition 
performance can be enhanced by selecting the identified 
noise specific acoustic model. The proposed model 
applies KPCA to a set of noise features such as 
normalized logarithmic spectrums (NLS), and results 
from KPCA are used by a support vector machines 
(SVM) classifier for noise classification. The proposed 
model is evaluated with 2 groups of environments. The 
first group contains a clean environment and 9 types of 
noisy environments that have been trained in the system. 
Another group contains other 6 types of noises not trained 
in the system. Noisy speech is prepared by adding noise 
signals from JEIDA and NOISEX-92 to the clean speech 
taken from NECTEC-ATR Thai speech corpus. The 
proposed model shows a promising result when 
evaluating on the task of phoneme based 640 Thai 
isolated-word recognition. 
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1. INTRODUCTION 
It is commonly known that a speech recognition 

system trained by speech in a clean or nearly clean 
environment cannot achieve good performance when 
working in noisy environment. Research on robust speech 
recognition is then necessary. This paper focuses on the 
construction of robust model approach which has 
achieved good recognition results [1]. Generally, this 
model-based approach aims to create an environment-
specific acoustic model or to adapt the existing model to 
the specific environment. Several techniques of model 
adaptation have been proposed e.g. linear regression 
adaptation and parallel model combination [2]. However, 
an acoustic model trained directly for specific noise is 
certainly superior to the adapted model, although multiple 
acoustic models are needed for various kinds of noise and 
an accurate automatic noise classification is required. 

Many noise classification techniques have been 
studied previously. Classical technique is based on hidden 
markov models (HMM), linear prediction coefficients 

(LPC) [3] and mel-frequency cepstral coefficients 
(MFCC) [4], which have been proven to give better 
results than human listeners [4]. Another successful 
technique is a neural network based system with 
combined features of line spectral frequencies (LSF) [5], 
a zero-crossing (ZC) rate and energy [6]. However, 
implementing LSF in a real-time system is problematic. 
Therefore, we aim to explore a simpler feature extraction 
method for noise classification. 

In recent years, many kernel-based classification 
techniques, e.g. support vector machine (SVM) [7], 
kernel principal component analysis (KPCA) [8-12], 
kernel discriminate analysis (KDA) [13], kernel fisher 
discriminate analysis (FDA) [14], have been proposed. 
These techniques have been successfully applied, not 
only for classification, but also for regression and feature 
extraction e.g. in speech recognition [8] and image 
recognition system [12]. 

This paper proposes another application of KPCA, 
which is noise classification. In this work, KPCA is 
applied to extract speech features, which are used by a 
pattern classifier for noise classification. An advantage of 
KPCA is that useful noise information can be extracted 
from the original feature. The computational requirement 
of KPCA applied to normalized logarithmic spectrums 
(NLS) implemented in this paper is similar to that of the 
MFCC or other effective features such as LSF, but with 
higher classification accuracy. 

Our noise classification model is evaluated on 2 
groups of environments. The first group contains 10 
classes of environments that have been trained in the 
system. The second group is another set of 6 
environments not trained in the system. Evaluating by the 
later group shows the speech recognition performance in 
unknown-noise environments.  All noises are taken from 
Japan JEIDA [15] and NOISEX-92 [16]. Our Thai 640 
isolated-word recognition with noise-specific acoustic 
models is used in the evaluation. It is noted that although 
the task is isolated-word recognition, phonemes are used 
as basic recognition units. This facilitates new word 
addition. 

The rest of paper is organized as follows: the next 
section describes an overall structure of our robust speech 
recognition system. In Sect. 3, the KPCA algorithm is 
described. Sect. 4 describes our experiments, results and 



discussion. The last section concludes the paper and 
notices our future works. 

2. ROBUST SPEECH RECOGNITON USING 
NOISE CLASSIFICATION 

As described in the previous section, our robust 
speech recognition system uses the model-based 
technique, in which acoustic models are trained by speech 
in specific environment. An overall structure is illustrated 
in Fig. 1. Given a speech signal, a set of features for noise 
classification is extracted from a short period of silence at 
the beginning of signal. It is noted that this short period is 
assumed to be a silence where the speaker has not yet 
uttered. This assumption holds for our push-to-talk 
interface. To apply our system with other user interfaces, 
we need an additional module of speech/non-speech 
classification or other strategies to capture a non-speech 
portion from the input signal. Features extracted from the 
silence portion are then used to identify the type of 
environment. Once knowing the environment type, the 
recognizer selects a corresponding acoustic model for 
recognizing the rest of signal. 

 

 
Fig. 1: Overall structure of robust speech recognition. 

With this model, there are 3 particular difficulties: 
• How to construct a robust acoustic model for a 

variation of signal-to-noise ratios (SNR)? In our 
system, a particular acoustic model is trained on 
noisy speech with various levels of SNR. Clean 
speech, whose SNR exceeds 30 dB is also 
combined in the training set of each noisy 
acoustic model. 

• How to construct the environment or noise 
classification module? Time consuming by the 
noise classification module should be as low as 
possible, so that the overall system can achieve 
an acceptable processing time. The construction 
of such module is the main objective of this 
paper. 

• How can the robust speech recognition model 
deal with unknown noises, i.e. noises not 
trained in the model? Normally, several major 

noises are trained in the system and each of 
other noises is expected to be classified as one 
of the major noises. This paper also reports the 
effect of our model for unknown-noise 
classification. 

In this paper, speech features evaluated for noise 
classification include NLS, LSF, LPCC and MFCC. PCA 
and KPCA are applied to these basic features in order to 
extract meaningful features and enhance noise 
classification performance. For the noise classification 
algorithm, a fast and efficient technique is needed. In our 
experiment, a well-known SVM algorithm is evaluated. 
Speech recognition utilizes a state-of-the-art algorithm of 
HMM with MFCC as speech features. 

3. KERNEL PRINCIPAL COMPONENT ANALYSIS 

3.1 Kernel functions 
The use of nonlinear kernel functions is a strategy to 

raise the capability of simple algorithms such as PCA in 
dealing with more complicated data. Indeed, extending 
these algorithms for a non-linear case may be done by 
replacing the involved variables by their values on a new 
feature space. Transformation from the original space to a 
new space may be done by some mapping function Ф. 
However, by choosing an appropriate mapping function, 
the dot product in the new feature space can be performed 
by a nonlinear function in the input space, the so-called 
kernel function. Hence, by replacing the dot product 
involving in a classical algorithm by some kernel 
function, we can extend this algorithm to the non-linear 
case. This is usually referred to as the kernel trick [10]. 
The commonly used kernels are shown in Table 1. 
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3.2 KPCA 
The idea of KPCA [8-9] is to extend the classical 

PCA for non-linear projection using the kernel trick. 
Given a set of M samples xi, i =1,2,.....,M with xi∈Rn. The 
classical PCA is done by computing eigenvectors and 
eigenvalues of the covariance matrix of these examples. 
Let X = [x1; x2; …; xM] be the matrix of these M 
examples, the covariance matrix is defined by C = M-1X 
XT. The normalized eigenvectors of C form the principal 
subspace on which the data will be linearly projected. To 
extend this approach using the kernel trick, we first notice 
that if we dispose an eigen-couple (λ,v) of the dot product 
matrix XTX then we can also derive an eigen-couple 
(λ’,v’) of the covariance matrix C. Indeed, we have λ.v = 
XTX v, so by pre-multiplying both sides of the equation by 
M-1X we get (λ M-1)(X v) = (M-1X XT)(X v) = C (X v). This 
means that λ'=λ M-1 and v'= X v forms an eigen-couple of 
the covariance matrix C. The kernel trick is then applied 



by replacing the dot product in XTX by a kernel function. 
It should be noted that the eigenvector v' produced by this 
procedure may not be properly normalized. Therefore an 
additional normalization step is needed. The overall 
KPCA algorithm is as follow: 

• Compute the kernel matrix K with Kij = k(xi, xj) 
where k is a kernel function. 

• Compute the eigen-couples of K. Let (λk, vk), k = 
1, ..., M be these eigen-couples. 

• Normalize the kth principal axis by computing vki 
= vki λk

-1/2.  (λ k> 0) 
• The projection of a vector y ∈ Rn onto the kth 

principal axis is done by 

computing ∑ =
M
i iki yxkv1 ),( . For simplification, 

we will call the feature vector projected on the 
principal subspace, the “weight vector” 
hereafter. 

For simplification, we will call the feature vector 
projected on the principal subspace, the “weight vector” 
hereafter. While a basic speech feature such as NLS is 
effective, an optimal order of the NLS is considerably 
large. With limited training set, computing the eigen 
decomposition from a dot matrix, or kernel matrix, can be 
done more accurately [11]. 

4. EXPERIMENTS 

4.1 Data preparation 
Noises used in our experiments are from the JEIDA 

and NOISEX-92. They are clustered to 2 groups. The first 
group contains 8 kinds of noise from JEIDA, including 
crowded street, machinery factory, railway station, large 
air-condition, trunk road, elevator, exhibition in a booth, 
and ordinary train, 1 large-size car noise from NOISEX-
92, and an additional clean environment. The second 
group contains other 6 kinds of noise from JEIDA, 
including exhibition in a passage, road crossing, medium-
size car, computer room, telephone booth, and press 
factory. The former group of environments is reserved for 
training the noise classification and speech recognition 
models, and for testing the system for “known” noises 
(noises recognizable by the system). The later group is 
used for evaluating the system for “unknown” noises 
(noises not trained in the system). 

Noisy speech was prepared by adding the noise from 
JEIDA or NOISEX-92 to the clean speech of NECTEC-
ATR [17] at various SNRs (0, 5, 10 and 15 dB). The pre-
processed data were then clustered into several sets for 
noise classification and speech recognition experiments 
as summarized in Table 2. 

4.1.1. Data set for noise classification 
Three sets were prepared: a PCA and KPCA training 

set, a classifier training set and classifier test sets. The 
first set was used for computing PCA and KPCA weight 

vectors. The second set was used for training the noise 
classifier and the rest were used for evaluating the 
classifier. 

A small frame of 1,024 samples at the beginning of 
the speech signal, which was expected to be silence, was 
used for PCA, KPCA and noise classification. As 
described in the Sect. 3, our speech recognizer is 
designed for a push-to-talk interface. With this interface, 
we can control the recorder to start record a silence signal 
before the beginning of speech. NLS and LSF used for 
noise classification were computed from this silence 
frame. 

4.1.2 Data set for speech recognition 
The speech recognition task in our experiment was 

phoneme-based 640 isolated-word recognition. 32000 
speech utterances from 32 speakers were allocated for a 
training set. Another set of 6400 utterances from other 10 
speakers are used for testing in both known and 
unknown-noise modes. The HMMs representing 35 Thai 
phones [18]. Each triphone HMM consisted of 5 states 
and 8 Gaussian mixtures per state. MFCC 39 dimensional 
vectors (12 MFCC, 1 log-energy, and their first and 
second derivatives) were used as recognition features. 

Table 2: Number of utterances in experimental data sets. 
TASK DATA SET AMOUNT 

PCA/KPCA training 3,900 

Classifier training 24,000 Noise 
classification 

Known-noise test 256,000 

Recognizer training 32,000*

Known-noise test 6,400*Speech 
recognition 

Unknown-noise test 6,400*

*Number of samples per noise per SNR 

4.2 Noise classification results 
Our proposed classification model using KPCA and 

SVM described in the Sect. 3 was compared to the 
classical technique using a HMM classifier [3-4], which 
served as a baseline system in our experiment. The noise-
classification data sets are used in this section. The 
followings are details of noise classification experiments. 

4.2.1 Classification using a HMM system 
For the HMM [19] based noise classification system, 

we have varied the number of states as well as the 
number of Gaussian mixtures per state. The same set of 
MFCC and LPC features are used as classification 
features. This baseline system will be referred to as 
“HMM_MFCC” and “HMM_LPC”. Fig. 2 and Fig. 3 
present results of the evaluation of this system on the 
known-noise test set. 
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4.2.2 Classification using SVM systems 
A multi-class SVM [20] classifier based on one-

against-one algorithm. Two kinds of kernel functions, 
RBF and Polynomial, are evaluated. PCA and KPCA are 
applied to three types of speech features including NLS 
(511 orders), LSF (10 orders) and MFCC (10, 12, 16 and 
20 orders without energy and derivative features). The 
order of PCA and KPCA weight vectors is empirically 
tuned for each comparison. The known-noise test set is 
also used for evaluation in this section. Results and 

discussions are as follows. 
A preliminary experiment consists in comparing the 

three speech features namely NLS, LSF and MFCC as 
well as the kernel used in the SVM classifier. The Fig 4 
and 5 show the results obtained from MLS and LSF 
features using polynomial and RBF kernel respectively. 
The results obtained from MFCC with various orders are 
shown in Fig 6 and 7 for polynomial and RBF kernel 
respectively.  

From these 4 figures, we can see that the best result 
is obtained by the RBF-kernel SVM using NLS. 

Fig. 2: Error rate results (%) of known-noise 
classification based on HMM_MFCC 
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Fig. 3: Error rate results (%) of known-noise 
classification based on HMM_LPC. 
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Fig. 4: Error rate results (%) of known-noise 
classification based on SVM (10-order LSF and 511-
order NLS, kernel functions of SVM: Polynomial). 
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Fig. 5: Error rate results (%) of known-noise 
classification based on SVM (10-order LSF and 511-
order NLS, kernel functions of SVM: RBF).  
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Fig. 6: Error rate results (%) of known-noise 
classification based on SVM (MFCC with various 
orders, kernel functions of SVM: Polynomial). 
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Fig. 7: Error rate results (%) of known-noise 
classification based on SVM (MFCC with various 
orders, kernel functions of SVM: RBF). 
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However, a large order of NLS is needed to achieve such 
performance (511 orders in our case). The large number 
of features requires a longer time and larger storage to 
process. Reducing the order of NLS without a drawback 
of performance degradation is thus interesting. 

Next, we investigate the effect of dimension 
reduction via PCA on the accuracy of our classifier. 
Applications of PCA on the 10-order LSF (denoted as 
LSF+PCA) and 511-order NLS (denoted as NLS+PCA) 
are then performed and results are shown in Fig. 8-11. 
The Fig 8 and 9 show the results obtained from 
LSF+PCA feature when using polynomial and RBF 
kernel respectively. The Fig. 10 and 11 show the error 
rate obtained with NLS+PCA. From our preliminary 
experiments, the classification accuracy trends to be 
saturated when the order of PCA exceeds 24. Hence these 
2 figures (10 and 11) show only the results obtained from 
NLS+PCA up to the order of 24.  

From these 4 figures, it is clear that using the PCA-
based feature of NLS and LSF does degrade the 
classification accuracy, with the advantage of faster 
processing time. For LSF+PCA, changing from 10 orders 
to 6 orders, we increase about 2% error rate while the 

gain in processing time is not significant. For NLS+PCA, 
reducing from full 511 orders to 24 orders allows us 
gaining a significant processing time, while increasing 
only a slight error rate. It should be noted that, even if the 
order of NLS+PCA is higher than that of the LSF, 
computing the LSF is much more complex than the 
NLS+PCA. From these results, the 24 first principal 
components of NLS with RBF kernel is a suitable choice 
for the noise classification module.  

 Fig. 8: Error rate results (%) of known-noise 
classification based on SVM (LSF+PCA with various 
orders, kernel functions of SVM: Polynomial). 
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Fig. 9: Error rate results (%) of known-noise 
classification based on SVM (LSF+PCA with various 
orders, kernel functions of SVM: RBF). 
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Fig. 10: Error rate results (%) of known-noise 
classification based on SVM (NLS+PCA with various 
orders, kernel functions of SVM: Polynomial). 
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Fig. 11: Error rate results (%) of known-noise 
classification based on SVM (NLS+PCA with various 
orders, kernel functions of SVM: RBF). 

The objective of the next experiment is to see 
whether moving from the classical linear PCA to the non-
linear analysis of KPCA allows further improvement 
KPCA has proved to be efficient for speech recognition 
[4]. In this experiment, RBF kernel is used for the KPCA 
(RBF at g = 0.1). Results of applying KPCA to the NLS 
(NLS+KPCA) are shown in Fig. 12 and Fig. 13 for 
polynomial and RBF kernel of the SVM classifier 
respectively. The lowest error rate achieved is 2.35% 
obtained from 24-order KPCA and RBF-kernel SVM, 
which is also the best case comparing to all previous 
experiments of PCA and KPCA. This also underlines the 
advantage of using non-linear analysis in extracting 
significant features by KPCA. 



4.2.4 Comparison to other noise classification 
techniques 
In this section, we evaluate the SVM classifier 

working on features extracted from 511 order NLS using 
PCA and KPCA against other approaches. The two 
systems are denoted as “SVM_PCA” and “SVM_KPCA” 
respectively. We use the order of 24 for the extracted 
feature from both PCA and KPCA. This order is selected 
empirically in previous experiments.  

Fig. 14 shows the results obtained from different 
noise classification models using various kinds of 
features including our proposed KPCA-based feature.  
Other noise environment classifiers include the HMM 
with LPC and with MFCC features, the SVM with full 
511-order NLS, 10-order LSF and 20-order MFCC 
(without energy and derivative features).  

From these results, the SVM classifiers outperform 
the HMM classifier in all case. Moreover, the SVM with 
LSF and MFCC give the error rate of 3.63% and 5.29% 
respectively. It should be noted that, the same error rate 
of 3.63% were obtained when applying PCA to the 10-

order LSF. According to the results, the KPCA 
outperforms the other, except the NLS. The NLS, 
however, requires the largest order (511) to achieve the 
underlying result. Trading off between the accuracy and 
running time, we found the use of SVM_KPCA optimal 
our noise classification module.   

4.3 Speech recognition results 
In this section, several robust speech recognition 

techniques including our proposed model are 
experimentally compared. The first system (S1) was a 
conventional system without any implementation for 
robust speech recognition. The second system (S2) used 
zero-mean static coefficients [19], a well-known 
technique for noise-robust speech features. The third 
system (S3) was our proposed model, where input speech 
environment was identified and the corresponding 
acoustic model was chosen for recognition. In the S3 
system, an acoustic model for each environment was 
trained by multi-SNR (5, 10, and 15 dB) data including 
each noise. The SVM_KPCA system (RBF at g = 0.1), 
which achieved the best result, was used in the S3 system. 
The fourth system (S4) was as similar as the S3 system 
except that the noise classifier was replaced by the 
HMM_MFCC model. The next system (S5) was an ideal 
system, where noise is perfectly classified, i.e. 0% noise 
classification error. In order to underline the importance 
of the classification module, we also considered the last 
system (S6) which is equipped with random noise 
classification module. These two systems, S5 and S6, 
indicate the upper and the lower bounds of the 
recognition system using noise specific HMM. In the 
following experiments, the speech recognition data sets 
are used. 

4.3.1 Speech recognition in known-noise 
Evaluated by the known-noise test set, comparative 

results are shown in Table 3. It is obvious that our 
proposed model (S3) achieved the best recognition 
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Fig. 12: Error rate results (%) of known-noise 
classification based on SVM (NLS+KPCA (RBF at g = 
0.1) with various orders, kernel functions of SVM: 
Polynomial). 
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Fig. 13: Error rate results (%) of known-noise 
classification based on SVM (NLS+KPCA (RBF at g = 
0.1) with various orders, kernel functions of SVM: RBF). 
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Fig. 14: Comparative results of known-noise 
classification error rates using various kinds of 
classification system. 



results in every case and the results are almost equal to 
the ideal case (S5). 

Table 3: Comparative results of robust speech recognition 
in known-noise environment. 

Table 4: Comparative results of robust speech 
recognition in unknown-noise environments  

Word accuracy (%) Environments 
Word accuracy (%) S1 S2 S3 S4 S5 S6 Environments 

S1 S2 S3 S4 Clean 93.02 92.45 93.02 92.91 93.02 86.22 
Street 65.57 67.92 83.28 83.15 83.39 75.65 Exhibition 63.17 71.69 85.25 86.35 

Factory 41.65 47.33 75.69 75.61 75.68 53.03 Road 45.61 60.54 77.09 76.83 
Station 45.12 52.79 77.62 77.44 77.67 63.69 Car 78.42 82.02 86.07 86.39 

Air condition 42.46 53.51 81.15 81.12 81.17 63.83 Computer 
room 40.20 56.71 77.69 78.13 Road 53.90 56.99 77.30 76.35 77.39 64.68 

Elevator 52.88 59.01 81.49 81.36 81.47 70.25 
Telephone 

booth 

4.3.2 Speech recognition in unknown-noise 
Evaluated by the unknown-noise test set, 

comparative results are shown in Table 4. Although it is 
not significant, the S4 system outperforms the S3 system. 
One possible reason is that the SVM classifier might over 
fit to the trained classes and hence underperformed the 
HMM classification in handling unknown classes.  

The results in Table 3 and 4 also underline the 
advantage of using noise classification module (S3 and 
S4) compared to conventional system (S2), even in 
unknown noise environments. 

4.4 Hybrid noise classification system 
Although the SVM_KPCA classifier outperformed 

other classifiers, an intensive analysis showed that its 
errors can be recovered by selecting the noise model 
proposed by other classifier. Hence, we have also 
evaluated a hybrid architecture in which the SVM_KPCA 
is used in conjunction with the HMM_MFCC or the 
SVM_MFCC. Indeed, in this hybrid system, if both 
classifiers agree in noise classification, the corresponding 
noise model is used for recognition. Otherwise, we 
choose among the acoustic models proposed by both 
classifiers, the one which maximizes the acoustic 
probabilities. This combined system of SMV_KPCA and 
HMM_MFCC gives 82.20% accuracy on known-noise 
test set and 78.90% on unknown-noise test set. This 
combined system of HMM_MFCC and SVM_MFCC 
gives 82.21% on known-noise test set and 78.78% on 
unknown-noise test set. The overall running time is 
increased but still being faster than the NLS. 

5. CONCLUSION AND FUTURE WORKS 
This paper proposed a novel technique of robust 

speech recognition based on model selection. The 
recognizer selected a specific acoustic model from a pool 
of acoustic models that were trained by speech data in 
each type of noisy environment. A noise classification 
module was used to identify the type of environment. 
KPCA applied to the NLS was proposed for the noise 

classification features, and SVM was used as the noise 
classifier Experiments showed that the proposed model 
gave a promising result. When combining the model to 
the speech recognizer, the proposed system produced 
almost equal recognition accuracy to the ideal system, 
where the type of noisy environment was given. The 
proposed system working with known-noise 
environments achieved 20.05% higher recognition 
accuracy over the robust system using zero-mean static 
coefficients, and 0.14% higher accuracy over the baseline 
system using the HMM and MFCC for noise 
classification. A hybrid system that combined our 
proposed model and the baseline model was also 
investigated. Experimental results showed a small 
improvement over each individual model on both known 
and unknown noises. 

For future works, a better way to treat unknown-
noises will be intensively explored. Optimization of SVM 
training will be performed to avoid over-training if this is 
the case. Other successful classifiers such as an optimal 
Bayes as well as applications of PCA and KPCA to other 
effective speech features such as MFCC will be 
investigated. Another interesting topic is to reduce the 
number of specific acoustic models by automatic 
clustering of noises and constructing one acoustic model 
for each noise cluster. 
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