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Abstract: The spiking neural network (SNN) is regarded as a promising candidate to deal with
the great challenges presented by current machine learning techniques, including the high energy
consumption induced by deep neural networks. However, there is still a great gap between SNNs and
the online meta-learning performance of artificial neural networks. Importantly, existing spike-based
online meta-learning models do not target the robust learning based on spatio-temporal dynamics and
superior machine learning theory. In this invited article, we propose a novel spike-based framework
with minimum error entropy, called MeMEE, using the entropy theory to establish the gradient-based
online meta-learning scheme in a recurrent SNN architecture. We examine the performance based
on various types of tasks, including autonomous navigation and the working memory test. The
experimental results show that the proposed MeMEE model can effectively improve the accuracy
and the robustness of the spike-based meta-learning performance. More importantly, the proposed
MeMEE model emphasizes the application of the modern information theoretic learning approach on
the state-of-the-art spike-based learning algorithms. Therefore, in this invited paper, we provide new
perspectives for further integration of advanced information theory in machine learning to improve
the learning performance of SNNs, which could be of great merit to applied developments with
spike-based neuromorphic systems.

Keywords: spiking neural network; meta-learning; information theoretic learning; minimum error
entropy; artificial general intelligence

1. Introduction

In recent years, deep learning has shown a superior performance that exceeds the
human-level performance in various types of individual narrow tasks [1]. However, in
comparison with human intelligence that can learn to learn continually in order to execute
unlimited tasks, the current successful deep learning methods still have a lot of drawbacks
and limitations. In fact, humans can learn to learn by accumulating knowledge across
their life time, which is a great challenge for artificial neural networks (ANNs) [2]. From
this point of view, continual meta-learning aims at realizing machine intelligence at a
higher level by providing machines with the meta-learning capability of learning to learn
continually [3].

The human brain can realize meta-learning continually and avoid the catastrophic
forgetting problem based on a combination of neural mechanisms [4]. The catastrophic
forgetting problem is the critical challenge for developing the capability of continual meta-
learning [5]. The human brain has implemented an efficient and scalable mechanism
for continual learning based on neuronal activity patterns that represent previous expe-
riences [6]. Neurons communicate with each other and process the neural information
by using neural spikes, which is one of the most critical fundamental mechanism in the
brain. Based on this mechanism, the human brain can realize superior performance in
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different aspects, such as low power consumption and high spatio-temporal processing
capability [7]. Therefore, implementing a brain-inspired continual meta-learning algorithm
based on spike patterns and the brain’s mechanisms is a promising technique.

The spiking neural network (SNN) uses the biologically plausible neuron model based
on spiking dynamics, while the conventional ANN only uses the neurons based on a
static rate [8]. SNNs are applied to reproduce the brain’s mechanisms and to deal with the
cognitive tasks [9]. In addition, the neuromorphic hardware based on SNNs can realize high
performance in artificial intelligence tasks, including low power consumption, high noise
tolerance, and low computation latency [10]. Previous neuromorphic hardware researches
have proven these advantages by using various types of tasks, such as Tianjic, Loihi,
BiCoSS, CerebelluMorphic, and LaCSNN [11–15]. Researchers have proposed SNN models
to realize the short-term memory capability in a spike-based framework [16]. However,
the current SNN models still suffer from the continual meta-learning problem under the
non-Gaussian noise, and no previous study has solved this problem. Therefore, this is the
focus of this study.

Information theoretic learning (ITL) has attracted increasing attention in the field
of machine learning in recent years to improve the learning robustness and enhance the
explainable capability [17–19]. Previously, Chen et al. proposed researches focusing on max-
imum correntropy theory and minimum error entropy criteria to improve the robustness of
machine learning theory [20–22]. In addition, a series of entropy-based learning algorithms
have been presented to deal with the robustness improvement of machine learning models,
including guided complement entropy and fuzzy entropy [23–25]. Nevertheless, there is
no application of the ITL-based approach in the spike-based continual meta-learning to
improve its learning robustness. Therefore, in this invited article, we aim to propose a
novel approach to deal with this challenging problem. A novel model is presented, which
is called meta-learning with minimum error entropy (MeMEE). We test the meta-learning
capability of the proposed SNN model. Then, we investigate the robust working memory
capability in non-Gaussian noise. Finally, the robust transfer learning performance is ex-
plored under a non-Gaussian noisy condition. Experimental results strongly suggest the
robust meta-learning capability of the SNN model with a working memory feature in a
non-Gaussian noisy environment.

2. Materials and Methods
2.1. SNN Model

Previous studies have shown that the firing timing and activity space of dendrites
can significantly affect neural function. Excitability of dendrites can excite the membrane
to fire, whereas inhibitory dendrites can have the opposite effect [26–29]. Inspired by this
morphological structure and function of the neuron model, we propose a spiking neuron
model, which has three compartments, including a somatic compartment and two dendritic
compartments. The model utilizes distinct dendritic compartments to receive excitatory
and inhibitory inputs, while using dendrites and somatic cells to receive and send spiking
activities, respectively. The formulation for calculating the membrane potential of dendrites
and soma are as follows

τm
dUm(t)

dt = −Um(t) + Rm Im(t) + gi(Ui(t)− θi) + ge(Ue(t)− θe)− Γj(t)zj(t)

τi
dUi(t)

dt = −Ui(t) + Ri Ii(t)

τe
dUe(t)

dt = −Ue(t) + Re Ie(t)

(1)

where τv represents the time constant of membrane. The variables U(t), Ui(t), and Ue(t)
represent the somatic membrane potentials, inhibitory dendritic membrane potentials,
and excitatory dendritic membrane potentials, respectively. The parameters θe and θi
represent the reversal membrane potential of excitatory dendrite and inhibitory dendrite,
respectively. Rm, Re, and Ri represent the membrane resistance of the soma, excitatory
dendrite, and inhibitory dendrite, respectively. The parameters ge and gi represent the
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synaptic conductance of excitatory dendrites and inhibitory dendrites, respectively. Neuron
emits a spike at time t when it is currently not in a refractory period. The soma of neurons
uses the spike adaptation mechanism. The threshold size can be changed by analyzing the
firing pattern of neurons. Variable zj(t) represents the spike train of neuron j and assumes
value in {0, 1/∆t}. The dynamics of Γj(t) is changed with each spike, representing the firing
rate of neuron j, which is defined as

Γj(t) = τ0
j + α · τj(t) (2)

where α represents a constant that scales the deviation τj(t) from the baseline τj
0. The

variable τj(t) can be defined as

τj(t + ∆t) = β jτj(t) + (1− β j)zj(t) (3)

where β j = exp(−∆t/τa,j). The constant τa,j represents the adaptation time constant.
Variable zj(t) represents the spike train of neuron j and assumes value in {0, 1/∆t}. The
parameter values of the spiking neuron model that we proposed are listed in Table 1. The
input current Ij(t) of a neuron is defined as the weighted sum of the pulses, which come
from external neurons or other neurons. Its mathematical formula is as follows

I j
m(t) =

n
∑

j=1
Wijχi(t− κij) +

n
∑

j=1
Wrec

ij εi(t− κrec
ij )

I j
i (t) =

n
∑

j=1
Wi

ijχi(t− κi
ij) +

n
∑

j=1
Wirec

ij εi(t− κirec
ij )

I j
e(t) =

n
∑

j=1
We

ijχi(t− κe
ij) +

n
∑

j=1
Werec

ij εi(t− κerec
ij )

(4)

where Wrec
ij , Werec

ij , and Wirec
ij represent the recurrent synaptic weights of soma, excitatory

dendrites, and inhibitory dendrites, respectively. In addition,Wij, We
ij, and Wi

ij represent the
synaptic weights of soma, excitatory dendrite, and inhibitory dendrite, respectively. The
constants κij, κe

ij, and κi
ij represent the delays of input synapses for soma, excitatory dendrite,

and inhibitory dendrite, respectively. The constants κrec
ij , κerec

ij , and κirec
ij represent the delays

of recurrent synapses for soma, excitatory dendrite, and inhibitory dendrite, respectively.
The spike trains χi(t) and εi(t) are modeled as sums of Dirac pulses, representing the spike
trains from input neurons and recurrent neurons with recurrent connections, respectively.
The dynamics of the proposed spiking neuron model are shown in Figure 1 accordingly.

Table 1. Parameter settings of the spiking neuron model.

Parameter Value Parameter Value

Rm 1 Ω Ri, Re 1 Ω
τm 20 ms θi, θe 0 mV
κ, κi, κe 5 ms κrec, κirec, κerec 5 ms
α 1.8 τ0 0.01
τa 700 ms gi, ge 1 nS

We integrate the spiking neuron model into an SNN framework and test the accuracy
of this new model on different types of learning tasks. The structure of the SNN model
is shown in Figure 2. The model is divided into three layers: input layer, hidden layer,
and output layer. According to different tasks, we choose different encoding methods
of the input layer and decoding methods of the output layer. In Figure 2, the solid blue
lines represent feed-forward inhibitory synaptic connections, while the red dashed lines
represent lateral inhibitory synaptic connections. The dendrites and soma of different
neurons in the hidden layer are connected by lateral inhibitory synapses that are random
and sparse at the same time. Information is transmitted from the input layer to the dendrites,
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and the soma transmits impulse signals to the output layer. The initial network weights
in the proposed SNN model are set via a Gaussian distribution Wij ~ w0√

nin
N(0, 1), where

nin represents the number of input neurons in the spiking neural network in the weight
matrix. N(0, 1) represents the Gaussian distribution with zero mean and unit variance,
while w0 = ∆t/Rm represents a weight-scaling factor depending on the time step ∆t and
membrane resistance Rm. This scaling factor is significant as it is used to initialize the
spiking neural network with a practical firing rate needed for efficient training.
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proposed neuron model. (b) The adaptive dynamics of the threshold along with the firing events.

We use a deep rewiring algorithm because it is able to maintain the sign of each
synapse during the learning process [30]. Hence, this sign is inherited from the initial
weights of the network. In consideration of this, the model needs efficient and reasonable
initialization weights for both excitatory and inhibitory neurons. To achieve this, we sample
neurons from a Bernoulli distribution, generating the symbol sign ki ∈ {−1, 1} randomly.
At the same time, to avoid the problem of exploding gradients, we scale the weights so that
the largest eigenvalue is less than 1. A large square matrix is generated with the number of
rows selected, ultimately with uniform probability. This square matrix is then multiplied
by a binary mask, resulting in a sparse matrix, as a part of the depth rewiring algorithm
that we mentioned before. This algorithm achieves the goal of maintaining the level of
sparse connectivity in the network by dynamically disconnecting some synapses while
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reconnecting others. In this algorithm, we set the temperature parameter to 0 and the
L1-norm regularization parameter to 0.01.
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Figure 2. Network architecture for learning and memory integrated with the proposed SAM model.
This network architecture is comparable to a 2-layer network of point neurons. The soma and
dendrites of different neurons in the hidden layer are connected to lateral inhibitory synapses
randomly. The gray circles in the input layer and output layer are not SAM neurons, representing the
input spiking neuron and output spiking neuron, respectively. The input and output encodings are
determined for different tasks, which will be described in the section of experimental results.

2.2. BPTT Training Algorithm

In common ANN models, the gradients of the loss function are obtained with respect
to the weights in the network using back propagation. Nevertheless, the training method
of back propagation cannot be directly applied to SNNs due to the non-differentiability of
spikes from SNNs. Providing that time is discretized, the gradient needs to be propagated
through continuous time or multiple time steps. To enable the SNN model to learn in the
training process, we use a pseudo-derivative technique as shown below

dzj(t)
dvj(t)

= kmax
{

0, 1−
∣∣vj(t)

∣∣} (5)

where k = 0.3 (typically less than 1) is a constant value that can dampen the increase in back
propagated errors through spikes by using a pseudo-derivative of amplitude to achieve
the goal of stable performance. The variable zj(t) represents the spike train of neuron j that
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assumes values in {0, 1}. The variable vj(t) represents the normalized membrane potential,
which is defined as follows

vj(t) =
Vj(t)− Γj(t)

Γj(t)
(6)

where Γj represents the firing rate of neuron j. With the purpose of providing the self-
learning capability required for reinforcement learning for the proposed SAM model, we
utilize a proximal policy optimization algorithm [31]. This algorithm is easy to implement
and allows the model to have self-learning capabilities. The clipped surrogate objective of
this algorithm is defined as OPPO(ϑold, ϑ, t, k). Therefore, the loss function with respect to ϑ
is formulated as

LP(θ) = −
∑

k<K
∑

t<T
OPPO(ϑold, ϑ, t, k)

KT
+ µf

1
n∑

j

∥∥∥∥∥
∑
k,t

zj(t, k)− f 0

KT

∥∥∥∥∥
2

(7)

where f 0 represents a target firing rate of 10 Hz and µf represents a regularization hyper-
parameter. Variables t and k represent the simulation time step and the total number of
epochs. The variable ϑ represents the current policy parameter, which is defined in the
previous research [31]. In each iteration of training, K = 10 episodes of T = 2000 time steps
are generated with a fixed parameter ϑold, which is the vector of policy parameters before
the update as expressed in [31]. At the same time, the loss function L(ϑ) is minimized by
the ADAM optimizer [32].

2.3. Minimum Error Entropy Criterion (MEEC)

The minimum error entropy (MEE) can minimize the entropy of the estimation error,
so that decreases the uncertainty in the learning process. The α-order Renyi’s entropy is
used assuming a random variable e with probability density function fα(e), which is defined
as

H(e) ,
1

1− α
log

∫
f α(e)de (8)

where α is set to 2 for 2-order Renyi’s entropy in this study. The kernel density estimation
(KDE) is used to estimate the PDF of the error samples, which has three advantages. First,
it is a non-parameter approach, which does not require the prior knowledge of the error
distribution. Second, it does not require the integration calculation. Third, it can be smooth
and differentiable, which is vital for the gradient computation. Considering a set of i.i.d
data {ei}N

i=1 drawn from the distribution, the KDE of the PDF can be formulated as

ˆ
f E(e) =

1
N

N

∑
i=1

G∑(e− ei) (9)

where GΣ(e − ei) represents the Gaussian function with the following expression as

G∑(e− ei) =
1√

2π(det ∑)
· exp

(
−1

2
(e− ei)

T
−1

∑(e− ei)

)
(10)

where N and Σ represent the number of the data points and the kernel parameter, respec-
tively. In this research, Σ represents a diagonal matrix with the s-th diagonal element with
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the variance δ2
s for es in e, where s = 1, 2, . . . , S. The kernel parameter represents a free

parameter. Thus, the Renyi’s quadratic entropy can be expressed as

H2(e) = − log
∫ ( 1

N

N
∑

i=1
G∑(e− ei)

)2

de

= − log 1
N2

∫ ( N
∑

i=1

N
∑

j=1
G∑(e− ei)G∑

(
e− ej

))
de

= − log 1
N2

∫ ( N
∑

i=1

N
∑

j=1
G∑(e− ei)G∑

(
e− ej

))
de

= − log 1
N2

(
N
∑

i=1

N
∑

j=1
G√2 ∑

(
ei − ej

))

= − log 1
N2

(
N
∑

i=1

N
∑

j=1
G∑2

(
ei − ej

))

(11)

Based on the Formula (11), we define a function V(e) to represent the information potential
of variable e, which is formulated as

V(e) =
1

N2

(
N

∑
i=1

N

∑
j=1

G∑2

(
ei − ej

))
(12)

Therefore, the minimization of the Renyi’s entropy H2(e) means the maximization of the
information potential V(e) because of the monotonic increasing feature of the log function.
The Parzen window is used to decrease the computational complexity and the instantaneous
information potential at time t, which can be formulated as

J1(e) =
1

W

k

∑
i=k−W+1

G∑2(ek − ei) (13)

where W represents the length of the Parzen window. It should be noted that MEE is a
kind of local optimization criterion but suffers from the shift-invariant problem. It can
only determine the location of error PDF but cannot know the distribution location. The
function GΣ2(.) can be defined as the Gaussian kernel function with bandwidth σ

G∑ 2(x) =
1√
2πσ

exp
(
− x2

2σ2

)
(14)

In order to reduce the computational complexity, quantization technique is used to realize
the quantized MEE (QMEE). Thus, the information potential is expressed as

VQ(e) =
1

N2

(
N

∑
i=1

N

∑
j=1

G∑2

(
ei −Q

∣∣ej
∣∣)) =

1
N2

N

∑
i=1

M

∑
j=1

ϕjG∑ 2
(
ei − cj

)
(15)

where Q[.] represents a quantization operator mapping each {ei}N
i=1 to one of

{
cj
}M

j=1,
resulting in a codebook C = (c1, c2, c3, . . . , cM). Φ = (ϕ1, ϕ2, . . . , ϕM) represents the
number of the samples quantized to the corresponding set

{
cj
}M

j=1. It should be noted that

∑M
j=1 ϕj = N. Theoretical proof of the robustness has been presented in [22].
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2.4. Restricted MEEC

In this study, the fundamental inner product to measure the similarity is used, which
is generalized from its vectors’ application [33]. The inner product similarity between
continuous pdfs fX(x) and gX(x) can be expressed as

〈 fX(x), gX(x)〉 =
∫

X
fX(x)gX(x)dx (16)

The desired distribution ρE(e), which is expressed in [33] in detail, can be defined as follows

ρE(e) =


ζ0, e = 0
ζ−1, e = −1
ζ1, e = 1
0, otherwise

(17)

where ζi (i = 0, −1, 1) denotes the corresponding density for each peak, which is simplified
into a Dirac-δ function.

The maximization of the similarity measure between the error pdf fE(e) and the desired
distribution ρE(e) can be formulated as

max〈 fE(e), ρE(e)〉
⇔ max

∫
X fE(e)ρE(e)dx

⇔ maxζ0 fE(0) + ζ−1 fE(−1) + ζ1 fE(1)
(18)

Furthermore, the model parameter can be expressed as

w∗ = argmaxζ0
ˆ
f E(0) + ζ−1

ˆ
f E(−1)ζ1 f̂E(1)

= argmax


ζ0

1
N

N
∑

i=1
G∑ 2(0− ei)

+ζ−1
1
N

N
∑

i=1
G∑ 2(−1− ei)

ζ1
1
N

N
∑

i=1
G∑ 2(1− ei)


= argmax 1

N2

N
∑

i=1

 Nζ0G∑ 2(ei)
+Nζ−1G∑ 2(ei + 1)
+Nζ1G∑ 2(ei − 1)


(19)

In fact, QMEE converges the prediction errors
{

cj
}M

j=1 to obtain a compact error distribu-
tion. Based on the method in [33], a predetermined codebook C = (0, −1, 1) implements
QMEE to restrict errors to three positions and avoid the undesirable double-peak learning
consequence. Therefore, the restricted MEE (RMEE) algorithm can be formulated as

VR(e) =
1

N2

N

∑
i=1

 ϕ0G∑ 2(ei)
+ϕ−1G∑ 2(ei + 1)
+ϕ1G∑ 2(ei − 1)

 (20)

where Φ = (ϕ0, ϕ−1, ϕ1) = (Nζ0, Nζ−1, Nζ1) that represents the corresponding number
for each quantization word C = (0, −1, 1). The proposed RMEE algorithm maximizes the
inner product similarity between error pdf fE(e) and the optimal three-peak distribution
ρE(e). RMEE is a specific formation of QMEE where the codebook is predetermined
as C = (0, −1, 1) and converges learning errors on these three locations.
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In order to optimize Equation (19), the half-quadratic technique is used to solve
optimization issues. A convex function g(x) =−xlog(−x) + x is defined, and the information
potential can be expressed as

VR(e) =
N

∑
i=1


ϕ0

{
ui

e2
i

2σ2 − g(ui)

}
+ϕ−1

{
vi

(ei+1)2

2σ2 − g(vi)

}
+ϕ1

{
si

(ei−1)2

2σ2 − g(si)

}

 , JR1(w, ui, vi, si) (21)

In half-quadratic technique, it has the following relationship

uk
i = − exp

(
− e2

i
2σ2

)
< 0

vk
i = − exp

(
− (ei+1)2

2σ2

)
< 0

sk
i = − exp

(
− (ei−1)2

2σ2

)
< 0

(i = 1, 2, . . . , N).

(22)

By attaining the optimal (uk
i , vk

i , sk
i ) in the kth iteration, the information potential can be

formulated as

VR(e) =
N

∑
i=1

 ϕ0ui(ti − yi)
2

+ϕ−1vi(ti + 1− yi)
2

+ϕ1si(ti − 1− yi)
2

 , JR2(w) (23)

The JR2(w) can be optimized based on gradient-based methods because the objective
function is differentiable and continuous. For example, the gradient of JR2(w) can be
expressed as

∂

∂w
JR2(w) =

N

∑
i=1

 ϕ0ui
∂(ti−yi)

2

∂w

+ϕ−1vi
∂(ti+1−yi)

2

∂w

+ϕ1si
∂(ti−1−yi)

2

∂w

 = −2
N

∑
i=1

 ϕ0uiei
+ϕ−1vi(ei + 1)
+ϕ−1si(ei − 1)

xiyi(1− yi) (24)

The detailed algorithm of the HQ-based optimization and its convergence analysis for
RMEE are presented in [33].

3. Results
3.1. Proposed Network with RMEE Criterion

Since MEE has the shift-invariant feature, and estimation results based on MEEC will
not always converge to the true value. A consideration is to combine the RMEE criterion
with CEE for a global optimal solution. The cross-entropy loss function, also regarded as
log loss, is the most commonly used loss function for back propagation. The cross-entropy
loss function increases as the predicted probability deviates from the actual label, and can
be described as follows

Lce

(
ˆ
yi, yi

)
= −∑

i
yi log

(
ˆ
yi

)
(25)

In this paper, the label ln of each image is used, which is only assumed to be 1 for
images belonging to the same class of images during testing, and 0 otherwise. The cross-
entropy formula can be expressed as

J2 =
5

∑
n=1
−ln log σ

(
y20+20·n

)
− (1− ln) log

(
1− σ20+20·n

)
(26)
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where the output of the SNN model is only counted after all images are fully rendered.
Therefore, for the novel criterion, the performance index can be formulated as

Jk(e) = µ

 N

∑
i=1

 ϕ0ui(ti − yi)
2

+ϕ−1vi(ti + 1− yi)
2

+ϕ1si(ti − 1− yi)
2


+ (1− µ)

[
5

∑
n=1

(
−ln log σ

(
y20+20·n)

−(1− ln) log
(
1− σ20+20·n)

)]
(27)

where µ represents a weighting constant. In the supervised learning tasks, there only exist
cross-entropy and RMEE, which is described in Equation (27).

3.2. Autonomous Navigation

We first apply the proposed SNN model in the agent navigation task, which requires
the network to have reinforcement learning capabilities. The agent needs to learn to find
objects in a 2D area and eventually be able to navigate to find objects at random locations
in the area. This task is interrelated with the neuroscience paradigm of the well-known
Morris water maze task, which is designed to study learning in the brain [34]. In this task,
a virtual agent is simulated as a point in the 2D simulation arena and is controlled by the
proposed SNN model. The position of the agent is configured randomly with a uniform
probability in the overall arena at the beginning of an episode. The agent produces a small
velocity vector of the Euclidean norm and selects an action at each time step. It receives a
reward value ‘1’ after reaching the destination.

In the navigation task, the information s(t) of the current environment state and the
reward score r(t) are received as input data by neurons in the input layer at each time step.
The coordinate information of the position is encoded by the input neurons through the
Gaussian population rate encoding method. Furthermore, each neuron in the input layer is
assigned a coordinate value with a firing rate, which is defined as: rmax = exp(−100(ξi-ξ)2),
where ξi and ξ represent the actual coordinate value and the preferred coordinate value,
respectively. rmax is supposed to be set as 500 Hz. Moreover, the instantaneous reward
r(t) is encoded by two sets of input neurons. In the first group, the neurons generate
spikes in sync when a positive reward is received, while in the second group, the neurons
generate spikes as long as the proposed SNN model receives a negative reward. The
output of the network is represented by five readout neurons in the output layer with
membrane potential λi(t). The action vector ζ(t) = (ζx(t), ζy(t))T is used to determine the
movement of the agent in the navigation task that we mentioned before. It is calculated
from a Gaussian distribution with mean µx = tanh(λ1(t)) and µy = tanh(λ2(t)) as well as
variances Φx = σ(λ3(t)) and Φy = σ(λ4(t)). In the end, the output of the last readout neuron
λ5 is calculated to predict the value function µθ(t). This predicts the expected discounted
sum of future rewards Ω(t) = Σt’ > tγt’ − tω(t’), where ω(t’) represents the reward at time t’
and γ represents the discount factor, whose value is usually 0.99.

The agent based on the proposed SNN model learns to learn in the navigation task
towards the correct destination location after the meta-learning process. The overall training
process in the reward learning process is described by Algorithm 1. We add other loss
functions to support the reinforcement learning framework, maintaining the loss function
consistent with Equation (26). Figure 3 shows the successful destination reached number
(DRN) per learning iteration. Each iteration contains a batch of ten episodes, and network
weights are updated during the navigation task. For each episode, the model is expected to
explore until reaching and storing the destination location, and uses the prior knowledge
to find the shortest path to the destination. This reveals that the proposed SNN model has
meta-learning capability in the autonomous navigation task.
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Algorithm 1 Training process in the reward learning process

Input: number of full episodes K, timesteps T, fixed parameters θold, target firing rate f0,
regularization hyper-parameters µv, µe, µ f iring, bandwidth σ, predicted value function Vθ(t, k)
and sum of future rewards R(t, k)
Output: total loss Lθ.

1. Parameters setting: f0, µv, µe, µ f iring and σ.
2. for n in batch size N:
3. Set en = R(t, k)−Vθ(t, k)
4. if number of literation is 0:
5. (ϕ0, ϕ−1, ϕ1) = (N, 0, 0)
6. else:

(ϕ0, ϕ−1, ϕ1) = (#{en ∈ (−0.5, 0.5)},
#{en ∈ (−1,−0.5)},

#{en ∈ (0.5, 1)})
where #{·} indicates counting the samples that satisfy the condition

7. (un, vn, sn) = (−exp(− en
2

2σ2 ),−exp(− (en+1)2

2σ2 ),−exp(− (en−1)2

2σ2 ))

8. LRMEE
n =ϕ0unen

2 +ϕ−1vn(en + 1)2 +ϕ1sn(en − 1)2

9. end for
10. for k in K:
11. for t in T:

LPPO
(t,k) = OPPO(θold, θ, t, k)

12. end for
13. end for
14. Calculate the total loss:

L(e) = Lp(e) + Jk(e)
15. return L(e)

3.3. Working Memory Performance on Store–Recall Task with Non-Gaussian Noise

To further demonstrate the robust working memory capability of the proposed SNN
model, we apply the model in a store–recall task with non-Gaussian noise. The detailed
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settings of the store–recall task have been previously presented in [35]. The SNN model
receives a sequence of frames that are represented by ten spike trains in a period of time.
The inputs #1 and #2 are represented by the spiking activities of input neurons from #1 to
#10 and from #11 to #20, respectively. As shown in Figure 4, the neurons from #21 to #30
and from #31 to #40 receive the random store and recall commands, respectively. The store
command means direct attention is paid to the specific frame of input data flow. Then, this
frame will be reproduced when receiving the recall command. Figure 4 shows one test
example with the spiking activities after working memory training. The dynamic threshold
changes along with the learning procedure, which is shown in Figure 4. This reveals that
the proposed SNN model can exhibit the working memory performance and realize the
store–recall task successfully. Since working memory is a vital feature and the foundation
for meta-learning, this also suggests that the MeMEE model can exhibit the meta-learning
tasks based on its working memory mechanisms with a robust performance.
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3.4. Meta-Learning Performance on Sequential MNIST Data Set with Non-Gaussian Noise

We further demonstrate the meta-learning capability of the proposed SNN model in a
transfer learning task based on the sequential MNIST (sMNIST) data set. We divide the
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sMNIST data set into two parts. The first part includes 30,000 images for digits ‘0’, ‘1’,
’2’, ‘3’, and ‘4’, and the second part includes 30,000 patterns for digits ‘5’, ’6’, ‘7’, ‘8’, and
‘9’. In the first phase, the first part is employed to train the SNN model, and the second
part is then used for training. In the second phase, 10% salt and pepper noise is added to
the testing data set as the non-Gaussian noise for the performance evaluation. Figure 5
shows the performance of the MeMEE model and compares it with other counterpart
models, including recurrent SNN (RSNN) and the conventional LIF-based SNN model
without the RMEE criterion. This shows that the proposed model outperforms the other
solutions, and the reasoning behind this includes three points. Firstly, the proposed model
has the meta-learning capability, so it can illustrate the transfer learning capability, and
its transfer learning performance is superior to the RSNN model accordingly, considering
accuracy and convergence speed. Secondly, due to the RMEE criterion being the loss
function, its robustness to the non-Gaussian noise is superior to the model without the
RMEE criterion in terms of the learning accuracy. The result suggests that the MeMEE
model with RMEE criterion has a more powerful robust meta-learning capability in learning
sequential spatio-temporal patterns.
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3.5. Effects of Loss Parameters on Learning Performance

In this study, we further investigate how each loss function affects the learning per-
formance of the proposed MeMEE model. We use the sMNIST data set to evaluate and
quantify the learning accuracy along with the changing loss parameter. In order to demon-
strate the learning robustness based on the proposed MeMEE model, salt and pepper noise
is added to the sMNIST data set. Different levels are considered, which are selected from
3.19% to 19.13%. Different values of parameter µ are investigated, which are set from 0.3
to 1.0. As shown in Figure 6, the value of µ with 0.7, 0.8, and 0.9 can induce the higher
learning accuracy on sequential visual recognition. This reveals that the RMEE criterion
can further enhance the robustness of the proposed MeMEE model without the RMEE
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criterion, i.e., µ = 1. Since the model without RMEE criterion with 3.19% non-Gaussian
noise only reaches 83.6% accuracy, the RMEE criterion can improve the learning accuracy
of the proposed MeMEE model with non-Gaussian salt and pepper noise.
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4. Discussion

This paper presents an information theoretic learning framework for robust spike-
driven continual meta-learning. Different from the previous SNN learning research, we
first introduce the RMEE criterion to develop and improve the spike-based learning frame-
work, which is significantly general and can also provide a series of theoretic insights.
Moreover, the information theoretic framework allows us to obtain a direct understanding
and better interpretation of the robust learning solutions of SNN models, compared with
some previous studies focusing on improving the learning robustness of SNNs [36].

As a first step in establishing a rigorous framework for SNN continual meta-learning
with RMEE, the presented research can be extended in both theoretical and practical aspects.
From the theoretical point of view, one extension is to use the information potential to train
the presented SNN model. For example, as shown in [37], Chen et al. presented a survival
information potential algorithm for adaptive system training. This does not require com-
puting of the kernel function and has good robustness performance accordingly. The other
extension is to apply the proposed framework in other spike-based learning paradigms,
including few-shot learning, multitask learning, and unsupervised learning [38].

From a practical point of view, the model is expected to be implemented on neuro-
morphic platforms to realize low-power and real-time systems for various types of appli-
cations. The state-of-the-art digital neuromorphic systems include Loihi [12], Tianjic [11],
BiCoSS [13], CerebelluMorphic [14], LaCSNN [15], TrueNorth [39], and SpiNNaker [40].
By implementing embedded neuromorphic systems, it can be applied in different fields
such as edge computing devices, brain–machine integration systems, and intelligent sys-
tems [41–43].
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5. Conclusions

In this invited paper, we first presented an ITL-based scheme for robust spike-based
continual meta-learning, which is improved by the RMEE criterion. A gradient descent
learning principle is presented in a recurrent SNN architecture. Several tasks are real-
ized to demonstrate the learning performance of the proposed MeMEE model, including
autonomous navigation, robust working memory in the store–recall task and robust meta-
learning capability for the sMNIST data set. In the first autonomous navigation task, the
SNN model learns to find the correct destination by continual meta-learning from the task
reward and punishment. This demonstrates that the MeMEE model based on the proposed
RMEE criterion realizes the meta-learning capability for navigation and outperforms the
conventional RSNN model. In the second task, the proposed MeMEE model improves
the working memory performance by recalling the stored noisy patterns. In the third
task, the proposed MeMEE model with RMEE criterion can enhance the robustness in
the meta-learning task for noisy sMNIST images. This invited paper provides a novel
insight into the improvement of the spike-based machine learning performance based on
information theoretic learning strategy, which is critical for the further research of artificial
general intelligence. In addition, it can be implemented by the low-power neuromorphic
system, which can be applied in edge computing of internet of things (IoT) and unmanned
systems.
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