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Sufficient conditions for  robust closed-loop stability of a class of dynamic matrix 
control (DMC)  systems arepresented. The I,-norm is used in the objective function 
of the on-line optimization, thus resulting in a linear programming problem. The 
ideas of this work, however, are expandable to other DMC-type controllers. The 
keys to the stability conditions are: to use an end-condition in the moving horizon 
on-line optimization; to have coefficients of the move suppression term in the 
objective function of the on-line optimization satisfy certain inequalities; and to 
express the uncertainty as deviations in the unit pulse response coefficients of the 
nominal plant. These deviations and disturbances must also satisfy certain ine- 
qualities. 

A n  off-line tuning procedure for  robust stability and performance of a class of 
DMC controllers is also included, which determines an optimal moving horizon length 
and optimal values for coefficients of the move suppression term. The applicability 
of our approach is elucidated through numerical simulations. 

Introduction 
In recent years, several multivariable control techniques fall- 

ing in the general category of model predictive control (MPC) 
have been studied and successfully implemented to industrial 
processes. MPC variations include model predictive heuristic 
control (MPHC) (Richalet et al., 1978), model algorithmic 
control (MAC) (Mehra et al., 1979), dynamic matrix control 
(DMC) (Cutler and Ramaker, 1980; Prett and Gillete, 1979), 
linear dynamic matrix control (LDMC) (Morshedi et al., 1985) 
and quadratic dynamic matrix control (QDMC) (Garcia and 
Morshedi, 1986). 

The MPHC, MAC, DMC, LDMC and QDMC algorithms 
share a common characteristic in using a pulse or a step re- 
sponse model, unlike other MPC algorithms that use a par- 
ametric model based on physical laws. 

Several investigators have tried to develop a theory for ana- 
lyzing the stability properties of unconstrained and constrained 
MPC closed-loop systems. Garcia and Morari (1982) were first 
to study the effects of the tuning parameters (prediction and 
control horizons, penalty on process input changes) on the 
closed-loop stability of unconstrained DMC systems in the 
internal model control (IMC) framework. Their later work 
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concentrated on utilizing robust linear control theory to de- 
termine the robust stability of unconstrained DMC systems 
(Prett and Garcia, 1988; Morari and Zafiriou, 1989). 

Zafiriou and coworkers used the contraction mapping prin- 
ciple proposed by Economou (1985) to develop sufficient con- 
ditions for the stability of QDMC closed-loop systems with 
process input/output constraints (Zafiriou, 1988, 1989, 1990; 
Zafiriou and Marshal, 1991; Zafiriou and Chiou, 1989). They 
showed that the tuning rules developed for the unconstrained 
case may not work well for a constrained system, and in fact 
may cause instability in the presence of output constraints. 

Rawlings and Muske (1993) used a state-space framework 
to develop sufficient conditions in the absence of modeling 
error and disturbances for the stability of closed-loop con- 
strained MPC systems with infinite prediction horizons and a 
finite number of on-line decision variables (process inputs). 

No stability results have been derived for the LDMC con- 
troller introduced by Morshedi et al. (1985). The lack of sta- 
bility results may be attributed to the fact that a closed-form 
expression for an equivalent linear controller does not exist, 
even in the absence of input/output constraints (Garcia et al., 
1989). 

In this work, we are deriving sufficient conditions for robust 
stability of a class of LDMC systems with process input and 
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output constraints. In particular, we try to answer the following 
questions: 

How, exactly, does the prediction-horizon length affect 
the stability characteristics of LDMC with process input and 
output constraints? What modifications are needed to maintain 
closed-loop stability with zero offset, if short prediction and 
constraint horizons are used? How do the control and pre- 
diction horizon lengths affect the overall performance of the 
LDMC closed-loop system? 

How should the weights of the input-change terms (move 
suppression terms) be selected so that robust closed-loop sta- 
bility is guaranteed? 

The key to answering the above questions is the use of an 
end condition in the formulation of the moving-horizon op- 
timization problem. From this point on, we will use the letter 
E in all acronyms where an end-condition is included in the 
configuration of an MPC algorithm (for example, ELDMC 
and EQDMC). 

Conditions that the coefficients of the move suppression 
terms must satisfy to guarantee robust closed-loop stability are 
provided in the sequel. 

The rest of the article is structured as follows. We first state 
precisely how our LDMC formulation (ELDMC) differs from 
the original LDMC introduced by Morshedi et al. (1985). We 
then derive sufficient conditions for the robust stability prop- 
erties of ELDMC in the presence of process input/output con- 
straints, bounded and converging disturbances, and plant/ 
model mismatch. We subsequently present an ELDMC con- 
troller tuning methodology for robust performance. Finally, 
simulations are used to illustrate the practicality of our ap- 
proach. The proof of our main theorem is given in Appendices 
A and B. Sample calculations referring to the simulations are 
given in Appendix C. 

Linear Dynamic Matrix Control with End Condition 
(EL D M C) 

The basic idea behind ELDMC is that the unit pulse response 
(or step response) coefficients of the plant, assumed to be open- 
loop stable, are used at the sampling time k to predict future 
outputs, and then the manipulated variables are calculated by 
minimizing a cost: 

min J ( k )  (1) 
( I . .  . . .cnw,Au(k).Au(k+ I ) .  . , . ,Au(k+p)  

with 

nw nh 

; = I  i = O  

subject to 

A u , , , r A u ( k + i ) r  -Aumaxr i = O ,  1, 2, . . . , p  

u , , , ~ u ( k + i ) z u m i n ,  i = O ,  1, 2, . . . , p  

- 
f p - d ( k ) ,  i r 0  (end condition) u ( k + p + i )  = 

G 

~ ~ 2 0 ,  j = 1 ,  2, ..., nw 

where 7 is predicted output; y is measured output; u is manip- 
ulated input; 3 is an estimate of unmeasured disturbance; f p  

is set point; g,’s are unit pulse response model coefficients; G 
is the model gain; Au,,, is the limit for move size; el is the 
constraint relaxation factor; w is the constraint tuning param- 
eter; urnax, urnin, y,,,, y,, are upper and lower limits for ma- 
nipulated inputs and predicted outputs respectively; p + 1 and 
nh are control and prediction horizon lengths; nw is the output 
constraint window length; N is the number of terms in the unit 
pulse response model; and rizO is the move suppression pa- 
rameter. 

The above formulation (Eq. 1) can be transformed into a 
linear program, after a simple substitution of variables as fol- 
lows: 

with 

nu’ nh 

j =  I I =  I i = O  

subject to 

N 

Au,, ,rAu(k+i)L -Au,,,, i = O ,  1, 2, . . ., p 

u r n , , z u ( k + i ) ~ u r n i , ,  i = O ,  1, 2, . . ., p 

ymaX+e ,zy (k+ j )  zymin-e j ,  j= 1, 2, . . ., nw 

- ~ , i ~ ( k + j ) - f p ~ v j ,  j = l , 2 ,  ..., nh 

- p i s r i A u ( k + i ) s p i ,  i = O ,  1, 2, .. . , p  
- 

f p - d ( k ) ,  i r O  (end condition) u ( k + p + i )  = 
G 

v j r O ,  j = 1 ,  2, .. ., nh 

c i rO,  i = O ,  1, 2, ..., p 

eJ?O, j = 1 ,  2, . . ., nw 
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Our formulation (ELDMC) differs from the original LDMC 
introduced by Morshedi et al. (1985) in the following aspects: 

We include an end condition. 
We do not introduce the transpose of the dynamic matrix 

(Eqs. 14 to 16) in Morshedi et a]. (1985) to incorporate the 
move suppression terms. Hence, the objective function of the 
new formulation is different than that of the original for- 
mulation. 

Remarks: feasibility of on-line ELDMC problem 
The end condition combined with the constraint on the proc- 

ess input may cause an infeasible solution, as a result of an 
unexpectedly large disturbance occurring for a short time pe- 
riod. In order not to interrupt the process in such situations, 
the following end condition adaptation is necessary when im- 
plementing ELDMC control. 

u ( k + p + i ) = u , ,  i r O  if u m i n ~ u , ~ u , , ,  

u ( k + p + i )  =urnin, i r O  if u,<umin 

u ( k + p + i ) = u , , , ,  i r O  if u,>u,,, 

where 

f P - a ( k )  
C u, = 

It is clear that p must be large enough to allow u ( k + p )  to 
reach any feasible value in (urnin, urn,,). In the worst case where 
u ( k -  1) = umin and u ( k + p )  must reach u,,,, the inequality 

guarantees that u can reach u,,, in p +  1 steps. 
Even if LDMC and ELDMC have no input/output con- 

straints, the conversion of formulation 1 to 2 introduces some 
constraints. Hence, it is not possible to utilize linear control 
techniques to show the stability of LDMC or ELDMC, even 
in the absence of original input/output constraints. 

Stability analysis of unconstrained QDMC in terms of linear 
control techniques (Prett and Garcia, 1988) may have been 
one additional reason why QDMC (constrained or uncon- 
strained) has been the preferred DMC version to most indus- 
trial applications. However, we are going to show in the sequel 
that our improved formulation for input/output constrained 
ELDMC can be used to ensure robust stability with zero offset. 

Robust stability of closed-loop ELDMC 
Let 

N 

y ( k )  = d ( k )  + hju ( k -  j )  (3) 
j =  I 

describe the real plant behavior, where only the estimates of 
5 ’ s  (g,’s) are known: 

h j = g j + e j ,  I s j s N  

where eJ is a bounded additive error. 
Assume that for all k and for a certain M>O 

I Ad( k )  I I Ad,,, ( 5 )  

where 

Theorem: robust stability 
For a plant that is described by Eq. 3 and disturbances 

satisfying inequalities 4 and 5 ,  the ELDMC closed-loop system 
with controller described by the set of relations 1 is asymp- 
totically stable with zero offset if: 

(i) process modeling and disturbance uncertainties satisfy 
the conditions 

/ N \  

\ r = l  1 

N 

min { Gu,,,, Gum,, ) syYp - d,,, - U E, (8) 
, = I  

where U = max { I u,,, I ,  I umin I ) and G = E?= ,g,; 

and nh) satisfy the inequalities 
(ii) the prediction and optimization horizon lengths ( p +  1 

nh - 1 r p  + 1 L max (Uy;y, I) (9) 

and the output constraint window length satisfies the ine- 
qualities 

(iii) the move suppression terms { r, ) y=o  are selected according 
to 

r, = 

(12) rJ - l=rJ -a j -w i j - t i j ,  I s j s p  

where S J r  0, and 
N +  I 

aj= I g j l ,  - N + 2 + n h s j s p  (13) 
i = 2 + n h -  j 
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uj=O, j <  - N + 2 + n h  

N+ I 

iJ- 1 C g,l ,  - N + Z + n w i j l q  
r = l + n w - J  

ci,=O, j < - N + 2 + n w ,  and j > q  

and q s p  is selected such that the inequality 

is satisfied, or else q = p .  For proof, see Appendix A and 
Appendix B .  

Remarks 
Condition ii of the above theorem implies that a prediction 

horizon of a minimum length n h = p + 2  can be used, with 
guaranteed closed-loop stability. In particular, if Aumax 
2 urnax - urnin, then a short prediction horizon of length 
nh = 2( = n w )  with one calculated move (p = 0) guarantees 
closed-loop stability. Certainly, such a choice may not be op- 
timal, and longer horizons may have to be used for better 
performance. We address the performance issue in the Cor- 
ollary of the next section. 

For long horizons, that is, such that nw = nh r p  + N -  1, 
Eqs. 13 and 16 yield uj=O, i j=0.  In that case, the move 
suppression parameters, {rj):=o, may be selected to have the 
same value, that is, rp = rp- , = . . . = ro> 0 ,  where rp is given by 
Eq. 11, for guaranteed closed-loop stability. In addition, if 
Ej = 0 (no modeling error) then no move suppression terms are 
necessary to stabilize the system, that is, rp = rp- I = . . . = ro = 0. 
It should be stressed that the end condition must be included 
in the on-line optimization for the above remarks to be valid. 

The importance of the end condition in constrained 
ELDMC can also be realized as follows. In the presence of 
constraints and in the absence of end condition, it can be shown 
by a procedure similar to that discussed in Appendix A, that 
with the proper selection of move suppression parameters 
[ * ( k ) ) 7 = becomes a nonincreasing and converging sequence, 
as follows: 

P 

* ( k ) r * ( k + l ) +  C hj lAf i (k+j )I  
j =  - N +  I 

where 6, > 0 (the main difference between the above inequality 
and Eq. A-41 is the missing term ( l y ( k )  - -PI ) .  

Hence, limk-mfi (k)  = us. If the input fi (k )  has reached a 
steady-state value, there are two possibilities: 

(i) The controller does not need to drive the system away 
from the reached steady state, because there is no offset. 

(ii) The controller has not driven the system to the desired 
steady state, but cannot change the attained steady state, be- 
cause it is saturated (due to operating constraints). Thus, an 
offset remains. 

However, in the case of unconstrained ELDMC, the second 
possibility is ruled out. Hence, the offset will be zero, thus 
making the end condition dispensable. 

Robust performance of closed-loop ELDMC 
Once the stability of a control loop with zero offset is guar- 

anteed, then the second most important step is to find the best 
performing controller out of a set of stabilizing controllers. 
Hence, a definition of a measure for the performance of an 
ELDMC closed-loop system is necessary. 

Definition 

measured by the following quantity 
The performance ( P )  of an ELDMC closed-loop system is 

where y is the measured process output. 
The following corollary is a direct consequence of the main 

theorem. It is useful in the selection of proper control and 
prediction horizons. 

Corollary: Robust performance 
The ELDMC controller defined by the set of relations ( 1 )  

achieves a closed-loop performance, P, no worse than the 
initial on-line calculated optimal objective function value *(O): 

where 

subject to operating constraints, end condition, and Eqs. B27 
to B30. 

Pro0 f 

becomes 
Let us choose h j = O  for - N i j S p .  Hence, relation B22 

Q ( k ) ? % ( k +  1)+ ly(k)-ySPI 
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Successive substitution of + ( k )  in the above equation, starting 
from initial time k = 0, yields 

m 

k=O 

Remark 
In the absence of modeling error and in the presence of 

constant disturbances, the performance of the closed-loop, as 
p increases, approaches the best possible off-line calculated 
performance: 

P =  lim @(O) 
P - m  

suggesting to choose p as large as possible and nw=nh 

Realistically, however, we have to consider modeling error. 
In this case, the value of @(O) increases for large p ,  since rp 
containsp as a multiplier (see Eqs. 11, 12, 15, and 18). Hence, 
p ,  nw, and nh should be selected as a result of the following 
minimization problem: 

= p + N -  1. 

min @(O) 
p.nh,nw 

for the possible set points and disturbances satisfying relations 
7 and 8. 

Example 
We consider a plant described by the equation 

y (  k)=hlU(  k -  1) + h z U  ( k -  2) + h3U ( k -  3) + h4U ( k -  4) 4- d ( k )  

with 

hl=gl+el=O.O+el, where l e l I r 0 . 1 2  
h2=g2+e2= - 1.0+e2, where le21 50.10 
h3 =g3 + e3 = 2.0 + e3, where I e3 I 5 0.08 
h4=g4+e4=0.0+e4, where le41 50.05 

005 

-0.05 

e n -0.1 

-015 -0.2 2 20 
10 1s 

Sampling points 

Figure 1. Case 1: no end condition is enforced. 
No modeling error, (el, e2. e3. e,) = (0, 0, 0,O); constant disturbance 
and set point, [d( k), ySq = ( -  0.05,0.05); move suppression coef- 
ficients. r ,  = rQ<0.5; resulting performance, P= m (offset). 

0.2 1 
0.15 I 

g -0.05 o;I ..................................................................... 

b - 0 1  

-0.15 1 
-0 2 

0 5 10 15 20 
sampling points 

Figure 2. Case 2: no end condition is enforced. 
No modeling error, (el, e,, el, e,) = (0, 0.0.0); constant disturbance 
and set point, [d(k), ySp] = ( -  0.05, 0.05); move suppression coef- 
ficients: rl = rnz0.5; resulting performance: P= m (offset). 

and the ELDMC controller 1, withp = 1 (two calculated moves), 
nh = 3, N= 4, Au,,, = 0.2, u,,, = - u,,, = 0.2, with no con- 
straint on the output y .  The move suppression parameters are 
found as r l  =r ,= 2.7. The details of the selection of the above 
move suppression values are given in the Appendix C. Five 
simulation cases are given in Figures 1,2,3,4 and 5 to elucidate 
our approach. In all figures, u is represented by a continuous 
line, y”” by a long-dashed line, and y by a short-dashed line. 

Simulation cases 1 and 2 clearly show poor closed-loop per- 
formance even in the absence of any modeling error when the 
end condition is not enforced. When the end condition is en- 
forced however, simulations 3,4 and 5 show robust asymptotic 
stability of the closed-loop system with no offset. 

Discussion and Conclusions 
In this article, we have tried to answer the questions raised 

in the Introduction section. While the results of this article 
can be implemented to directly design ELDMC controllers, 
the ideas developed here will also give more insight into un- 
derstanding robust stability characteristics of general DMC 
types of controllers. 
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Figure 3. Case 3: end condition is enforced. 
No modeling error, (el, e:, e,, e4) = (0.0.0.0); constant disturbance 
and set point, [ d ( k ) ,  ysp] = (-0.05.0.05); move suppression coef- 
ficients: r ,  = rn= 2.1; resulting performance: P= 0.4<9(0)= 0.67 
(no offset). 
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Figure 4. Case 4: end condition is enforced. 
Modeling error, (e,, el. e,, e,)=(-O.12, -0.1, -0.08, -0.05); 
constant disturbance and set point, [d(k), y] =(-0.05, 0.05); 
move suppression coefficients, r,  = r,, = 2.7; resulting performance, 
P =  0.6154 < +(O) = 0.67 (no offset). 
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Notation 
d = output additive disturbance 
e = model error 
E = maximum absolute model error 

g = unit pulse response model coefficient 
G = model gain 
h = unit pulse response coefficient of real plant 
H = real plant gain 

J (  ) = cost functional 

f ( . ) = dummy function bounding the disturbance 

1 = coordinate of process output constraint window 
M = sampling time which disturbance reach steady state after 
nh = ending of prediction-horizon 
nw = ending of output constraint window 
N = number of coefficients in the unit pulse response model 
p = ending of control-horizon 
P = performance measure of an LDMC closed-loop system 
r = move-suppression parameter 
u = process manipulated input 
U = maximum absolute input limit 
w = soft output constraint tuning parameter 
y = process output 

Greek letters 
6 = positive small number 
A = difference operator: & ( k )  = x ( k )  - x ( k -  1) 
e = soft constraint relaxation factor 

( . ) = optimal value of a specific cost function 

AIChE Journal December 1993 

Subscripts 
max = maximum limit 
min = minimum limit 

ss = steady state 

Superscripts 
sp = set point 

= prediction 
= known variable at time k 

- . =  known variable at time k for time k + I 

Acronyms 
DMC = dynamic matrix control 

IMC = internal model control 

MAC = model algorithmic control 
MPC = model predictive control 

ELDMC = linear dynamic matrix control with end condition 

LDMC = linear dynamic matrix control 

MPHC = model predictive heuristic control 
QDMC = quadratic dynamic matrix control 

SISO = single-input-single-output 
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where Appendix A: Robust Stability Condition for Closed- 
Loop SlSO ELDMC 

We will derive here sufficient conditions for robust stability 
of closed-loop SISO ELDMC systems, for which 

A modeling error is explicitly considered. 
Disturbances are bounded and eventually reach a steady 

No process output constraints are considered. 
The results of Appendix A will be used in Appendix B to 

derive sufficient conditions for robust stability when process 
output constraints are present. 

We will first formulate the on-line optimization problem 
corresponding to the ELDMC controller. 

state. 

Formulation of on-line optimization for ELDMC 

3, 4 and 5 with manipulated input constraints: 
The plant and disturbances for all k are described by Eqs. 

The model used in ELDMC to predict, at time k ,  future 
outputs is: 

N 

J ( k + i )  = d ( k + i )  + c g j u ( k + i - j )  643) 
j =  I 

with 

N N 

+ 2 r,IAu(k+i)l +f(k) (Al l )  
i =  - N +  I 

(f( k )  1 T=o is a non-negative sequence to be determined in the 
sequel for showing disturbance rejection properties of ELDMC. 
Thus, Eqs. A3 to A1 1 constitute the ELDMC controller. 

Feasibility of ELDMC on-line problem 

A1 1 has a solution if 
The ELDMC on-line problem as defined by the Eqs. A6 to 

(feasibility of end condition)r umin (A13) 

The conditions (i) and (ii) are satisfied if relations 9, 7 and 8 
are true. 

Derivation of sufficient conditions for robust stability 
We will now derive robust stability conditions for the 

ELDMC controller defined above by Eqs. A3 to A l l .  The 
idea is to develop conditions that ensure the sequence 
1 @ ( k )  ] T=,, converges to 0. 

Assuming the conditions 9, 7 and 8 are satisfied, let 

(Ali(k) ,  Ali(k+ 11, . . . , Afi(k+p)J  (A 14) 

Remark 
Equation A4 above is a convenient assumption, in the tra- 

ditional DMC framework, used to include the feedback effect 
of the measurement y ( k ) .  The derivations in the sequel will 
hold whether or not this assumption is true. 

Let the ELDMC on-line solve, at time k,  the following min- 
imization problem 

subject to 

A u m a x Z A ~ ( k + i ) ?  -Aumax, i=O, 1 ,  2, . . . , p (A7) 

y ’ P - d ( k )  (end condition) (A9) u ( k + p )  = 
G 

A u ( k + p + i )  =0,  ir 1 (A 10) 

be the solution of Eq. A6 corresponding to 
dicted outputs 

the optimal pre- 

( j ( k +  I), . . . , j ( k + n h ) ) .  

Remark 
In the application of ELDMC, f i ( k )  is the only calculated 

variable which is implemented at time k. The actual value of 
the optimal cost @ ( k )  is not used. Hence, two ELDMC con- 
trollers, one minimizing the cost (Eq. A1 1) and another min- 
imizing 

nh Y 

J ( k ) = z  I L ( k + i ) - f p l  + x r , l A u ( k + i ) l  (A15) 
I =  I , = 0  

are equivalent, both resulting in solutions given by Eq. A14. 
Let us also denote all past inputs implemented before the 

sampling time k by l i ( k - j )  where jr 1 .  
Hence, at time k,  the combination of Eqs. A3 to A1 1 yields 
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nh yielding a suboptimal cost a* (k  + 1): 
+ ( k )  = ~ y ( / c )    PI + C I p ( k + i )  - J J ~ I  

I =  I nh 

P + * ( k +  I ) =  iy(k+ 1)-fpI + C Ijj(k+ 1 + i )  - fpI  

+ C r ,IAfi(k+i)I+f(k) (A16) , = I  

P -  I I =  - N + I  

+ C rllAfi(k+ 1 +i)I +rplAu'(k+ 1 + p )  1 
For the next sampling time k +  1 r = - N + 1  

* ( k +  I ) =  min J ( k + l )  (A17) 
A u ( k +  I).Au(k+Z),. .. .Au(k+ I + p )  

Obviously, 

+ f ( k +  1) (A27) 

subject to O s * ( k +  l ) s**(k+ 1) ('428) 

Au,,,?Au(k+ 1 +i)r -Puma,, i = O ,  1, 2, . . . , p (A18) * ( k ) r a J ( k +  l)+[*(k)-**(k+ 1)J (A29 

(Eq. A26) is a feasible solution of Eq. A17. 
It is clear that all fi 's  and Afi's satisfy the constraints (Eqs. 

A18 and A19) because they satisfied the constraints (Eqs. A7 
f p - a ( k +  1) (end condition) (A20) u ( k +  1 +p) = 

G 
and A8) in the previous sampling time k. Hence, a( k + 1 + p )  
remains to be selected so that it can satisfy the constraint (Eq. 
A18): 

Au ( k  + 1 + p + i) = 0, ir 1 (A21) 

where 
Au,,,IAu'(k+ l + p ) r  -AurnaX (A30) 

the constraint (Eq. A19), that is, 

P um,4u'(k+ l + p ) s u m a x  ('431) 
+ C rilAu(k+ 1 + i )  I + f ( k +  1) (A22) 

I =  - N + I  

and 

N 

J ( k +  I + i ) = a ( k +  l + i ) + C g j u ( k + i + l - j )  (A23) 
j =  I 

and the following end condition (derived from the combination 
of Eq. A20 with Eq. A25): 

p (w)=y 'P=d(k+ l )+Gu ' (k+  l + p )  

i) (A32) 

with Combining Eqs. A31 and A32, we get, equivalently 

I =  I N - 
2 Urnin G 

The above condition is satisfied if conditions 7 and 8 are true 

To satisfy the constraint (Eq. A30), we start with the com- 

d ( k +  l ) = y ( k +  1)- C g , u ( k +  1 - j )  urnax 2 
J =  I 

N 

j =  I 

= d ( k +  I ) +  C e J u ( k +  1 -A (A251 (starting assumption). 

bination of Eqs. A9 and AS, to get 
Let us t ry  to create a feasible (but not necessarily optimal) 

solution to Eq. A17 as 

(AG(k+ I), Au'(k+2),  . . . , Au'(k+p), A u ' ( k + l + p ) )  

Y 

P ( w ) = y S p = d ( k ) + G f i ( k + p ) + C e l f i ( k - i )  (A33) 
i =  I 

= ( A f i ( k +  l), Afi(k+2), . . . , AC(k+p),  Subtracting Eq. A33 from A32 we get 
Au'(k+ 1 + p ) )  (A26) 

- A d ( k + l ) - z e i A f i ( k + l - i )  

G ('434) 
where Au'(k+ 1 + p )  is to be selected. The corresponding pre- i= I Au'(k+ 1 + p )  = dicted future outputs are denoted by 

(j j(k+2),  . . . , j j ( k+  1 + n h ) )  The above Au'(k+ 1 + p )  must satisfy Eq. A30. This is guar- 
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anteed if inequality 6 is satisfied. From the preceding discussion 
it is evident that Eqs. 7, 8 and 6 guarantee the feasibility of 
the set (Eq. A26). 

We are now ready to derive closed-loop robust stability 
conditions, which guarantee that { @ ( k )  ] :=o is convergent. 
Inequality A29 yields 

cP(k )Zcp(k+  1)+ l y ( k )  -ySPI 

- l j ( k + l + n h ) - y S ~ l + ( l ~ ( k + l ) - y s ~ l -  ly (k+l ) -y”Pl)  
nh 

+ c ( l j q k + j ) - y s p l -  I j ( k + j ) - y ’ P l )  
,=z 

P 

- rp lAB(k+ 1 + p )  1 + ( r j - r l - , )  l A f i ( k + j )  1 
/ =  - N + 2  

+ (r-N+I)  IAC(k-N+ 1)1 + f ( k )  - f ( k +  1 )  (A35) 

or 

@(k)?cp(k+  1)+ ly(k) -ySPI 

- l j ( k +  1 + n h )  - y S P l -  l j ( k +  1 ) - y ( k +  1)1 
I I  h 

- c I j ( k + j )  -.V(k+j)I - r p l A P ( k +  1 + p )  I 
/ = 2  

P 

+ c ( r , - r J - l )  I A t i ( k + j )  I + f ( k )  - f ( k +  1) (A36) 
J = - N + I  

with r _  = 0. 
The predicted outputs ( p ( k + j ) ,  j =  1 ,  . . . , n h ]  and 

( j (  k + j ) ,  j =  2, . . . , 1 + nh 1 can be expressed in terms of the 
corresponding inputs in Eqs. A14 and A26, by means of Eqs. 
A3, A23, and A34. The measured outputsy(k) a n d y ( k +  1)  
can be expressed in terms of the corresponding inputs by means 
of Eq. 3.  Therefore, the following equalities are obtained after 
some manipulations. 

hir I 

+ I =  I + n h - p  2 e , _ , A f i ( k + j )  
j = - N + I  

- f= ( 5 g , ) A f i ( k + j )  (A37) 
J =  - N + Z + n h  I = 2 + n h - ~  

9 ( k +  I ) - y ( k +  1)= - A d ( k +  1) 

- 2 e , - , A f i ( k + j )  (A381 
, = - N + I  

9 ( k +  1 + i )  - j ( k +  1 + i )  
0 

= - A d ( k +  1)- e , _ , A C ( k + j ) ,  1 lisp (A39) 
I =  - N + I  

N+ I 

Substituting Eqs. A34, A37, A38, A39, and A40 in A36 yields: 

@(k)?cP(k+ 1 ) +  ly(k) -y”l 
P 

+ ( r , - r l .  I -u,) l A f i ( k + j )  I 
,=I 

0 

+ ( r J - r , - l - u l -  
,= - , v+  I 

where a, and b are given by Eqs. 13, 14 and 15. 
We would like to make the quantity added to cP(k+ 1) in 

the righthand side of inequality (Eq. A41) nonnegative, in order 
to guarantee that the sequence ( cP ( k )  1 y=o is nonincreasing. 
This is guaranteed if ( r,),P= - + I and If( k )  ) y = O  are chosen to 
satisfy the following equalities, for 6,?0, and for all disturb- 
ances satisfying Eqs. 4, 5 ,  7, 8 ,  6: 

rj - r, , - a,- b+. El_j=6J,  - ( I L )  
N +  1 s j s 0  (A43) 

f ( k )  =0, k > M  6445) 

The solution of Eqs. A42 to A45 is 

c 
I =  I 1 -~ 
IGI 

r j -  I = r, - a, - S,, 1 5 j s p  

Remark 
The following are dummy variables to help the calculation 

of parameters above, hence their calculated values are not 
needed but given for completeness. 

r,- I = rj - a, - (b+&)Z1-,-6,, - N +  1 5jsO (A48) 
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k r O ,  I f ( k )  =0, k>M] (A49) 

Hence, if Eqs. A46 to A49 are satisfied, { @ (k )  ) y=o is a non- 
increasing sequence and bounded below by zero. Therefore, 
{ @ ( k )  ) y z 0  converges. This implies that taking the limit of Eq. 
A41, as k - m ,  yields: 

P 1 l y ( k )  -y”I + sjlAz2(k+j) 1 
j =  - N + I  k - m  

* lim y ( k )  = y” (A501 
k - m  

Appendix 6: Effect of Soft Output Constraints 
We will use here the results of Appendix A to derive sufficient 

conditions for robust stability of closed-loop SISO ELDMC 
systems, for which 

A modeling error is explicitly considered. 
Disturbances are bounded and eventually reach a steady 

Process output constraints are considered. 
state. 

Formulation of ELDMC with process output constraints 
Equations A1 to A5 remain the same. Equation A6 becomes 

subject to 

~ , ~ ~ ~ - - ~ , s L ( k + j ) ~ y ~ ~ ~ + ~ ~ ,  j =  1, 2, . . . , nw (B2) 

and subject to Eqs. A7, AS, A9 and A10. 
The cost functional A1 1 will change to: 

nw 

J ( k )  = WFO+ w &+ l y ( k )  - y S P I  

J =  I 

nh P 

+ I J ( k + j )  -yspI + r , I A ~ ( k + j )  I + f ( k )  (B4) 
/ I  I =  - N + I  

where20=max(~(k)-y,ax], bmin-y(k)], 0)andisadummy 
variable which will be important for showing ELDMC closed- 
loop performance characteristics. 

Derivation of sufficient conditions for robust stability 
of ELDMC with process output constraints 

We will now proceed similarly to Appendix A, namely, we 
will first find a particular feasible solution at time k + 1, based 
on which we will show that ( @ ( k ) ) y = ,  is a converging se- 
quence, provided that certain sufficient conditions are satis- 
fied. 

Let the counterpart of the solution (Eq. A14) be 

{?I, . . . , 22, Az2(k), APli(k+ l), . . . , APli(k+p)) (B5) 

Hence, at time k, 

.. .. 
@ ( k )  = w,a+ w c 4 +  l y ( k )  -ySDI  

j = O  

nh P 

+ c 19(k+ j )  -yspI + c rjlAz2(k+j) I + f ( k )  (B6) 
I =  I 1 = - N + I  

For the next sampling time k +  1 

9 ( k +  1)= min J ( k +  1) (B7) 
el. .. . .c.,,Au(kt I) ,Au(k+Z),  . . . ,Au(k+ I + P )  

subject to 

Ej20, l s j s n w  039) 

and subject to Eqs. A18, A19, A20 and A21, where 

J ( k +  1) 
nw nh 

=w&+ wc€j+ l y ( k +  1)-ySPI + c I J (k+  1 + j )  -ySPI 
j =  I j =  I 

P 

+ 2 rjlAu(k+ l + j )  I + f ( k +  1) (B10) 
j = - N + I  

[;I, . . . , On,, Au’(k+ I), Au’(k+2), 

..., Au’(k+p), AZ2(k+l+p)J=( iZ+ I9(k+2)-j(k+2)1, 

..., Z n w +  I p ( k + n w ) - j ( k + n w ) I ,  

max(0, Ip (k+ l+nw)- fP I -Y) ,  AQ(k+l) ,  

PC(k+2), ..., APli(k+p), A l ( k + l + p ) )  (B11) 

where Y=min( lymax-ySPl, lySp-yminI). We will show that Eq. 
B11 represents a feasible solution at time k + 1. The feasibility 
of all terms but Zl’s was shown in Appendix A. For F1’s we 
have 

equivalently, 

ymh-Zj+, - 19(k+ 1 + j )  - j q k +  1 + j )  I 

Q ( k +  1 + j )  - I j (k+  1 + j )  - j ( k +  1 + j )  I 

S j ( k + l + j ) ,  1 S j S n w - 1  (B13) 

and 

Y m a x + ; j + I 2 P ( k +  1 + j ) ,  l s j s n w -  1 (B14) 
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equivalently, * ( k ) r * ( k +  1)+ ly(k)-ySPI + wio 

Ymax + Z j + I  + I j ( k +  1 + j )  - y ( k +  1 + j )  I 

r j ( k +  1 + j )  + I j ( k +  1 + j )  - j ( k +  1 + j )  I 

? y ( k +  1 + j ) ,  1 S j S n w -  1 (B15) 

Because 

the following relation can be obtained. 

Therefore, Eq. B11 is indeed feasible. 

tions for which (@((j) 
Based on the above discussion we will now develop condi- 

The counterpart of inequality A36 becomes: 
is nonincreasing and convergent. 

* ( k )  2 * ( k +  1)+ l y ( k )  -ySPI + wio- IY(k+ 1 + n h )  -ySPI 

P 

+ C (r,-r,-l -a,- wi , )  ~ ~ f i ( k + j )  I 
, = I  

n I  

+ 2 (tj-rl..,-aj-wcij 
I =  - N + l  

- [ b +  w ~ + & ] E , - ~ )  lA l ; (k+ j )  I 

+ c f ( k )  - f ( k +  1)- [ b +  wi+%]Admax (B22) 

where a,, 6 ,  ci,, 6, and q are given by Eqs. 13, 14, 15, 16, 17, 
18 and 19. 

We would like to make the quantity added to + ( k +  1) in 
the righthand side of inequality B22 nonnegative, in order to 
guarantee that the sequence [ *( k )  1 :=o is nonincreasing. This 
is guaranteed if ( r, - , w + ,  and (f( k )  1 y=o are chosen to satisfy 
the following equalities, for 6,r0, and for all disturbances 
satisfying Eqs. 4, 5 ,  7, 8 and 6. 

.. .. 
- I j ( k +  1)-y(k+ 1) I - wB,+ w(i, - E l o )  + c w(:,-El,. I )  

,=2 

r,-r,- -a,- wi,- b +  wb +- El- ,  =S,, 
nh ( " IS,) 

-N+ 1 s j i O  (B24) 
- I j ( k + j )  - j ( k + j )  I -rplAC(k+ 1 +p)  I 

, =2  

The similar procedure followed from Eqs. B12 to B16 yields: 

- I j ( k +  1)-y(k+ 1)l S(il -Z0) (B19) 

and from Eq. B11 the following set of equalities is obtained: 

- I j ( k + j )  - y ( k + j )  I = ( Z j - F j - ! ) ,  for 2 s j ~ n w  (B20) 

Hence, Eq. B18 becomes: 

* ( k ) r * . ( k +  1)+ l y ( k )  -fPI + wio 

- I J ( k +  1 + n h )  -yspI - wmax(0, Iy(k+ 1 + n w )  -ySpI - Y )  
nw 

-(1+ w )  I j ( k +  1)-y(k+ 1) I -  C w l j ( k + j )  - J ( k + j )  I 
j = 2  

nh 
- I j ( k + j )  - Y ( k + j )  I - rp lAC(k+ 1 +p)  I 

+ 2 ( r j - r j - l ) l A C ( k + j )  I + f ( k )  -f(k+ 1) (B21) 

j = 2  

j = - N + I  

Using Eqs. A37 to A40 (except that nw will substitute nh)  and 
Eq. B21, the counterpart of inequality A41 becomes: 

f ( k ) - f ( k +  1)- b + w b + L  ( - 1L) 
O s k s M  (B25) 

The solution of Eqs. B23 to B26 is: 

D N D 

6 , + ( b + w 6 ) x E , +  2 (aj+wGj) 
, . ,=I= - N +  I i = l  j = - N + 1  

r,-,=rj-aJ- w i j -  b+  wb+- - 6 j ,  ( " ISI) 

-N+ 1 S ~ S O  (B29) 

,420, [ f ( k ) = O ,  k > M ]  (B30) 

The rest of the proof is the same as in Appendix A. 
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Appendix C: Stability Condition of an Example 
Sufficient conditions for the example will be derived ac- 

cording to the theory outlined. Unit pulse response coefficients 
are: 

h,=gl+e,=O.O+el, where lell 50.12 

h2=g2+e2= -l.O+e,, where le,l (0.10 
h3 = g, + e3 = 2.0 + e3, where I e3 I I 0.08 
h4 = g4 + e4 = 0.0 + e4, where I e4 I 5 0.05 

ELDMC parameters are: p = 1 ,  nh = 3 
Settling time is: N = 4  
Constraints are: Au,,, = 0.2, u,,, = 0.2, umin = - 0.2 

The other calculated parameters are as follows: 

G = l ,  uj=O for lzjz-3, b=5 

Let us choose 6 1 = 6 0 = b - , = 6 - 2 = 6 - 3 = 0 ,  then: 

rl =2.7 and r0=2.7 

Hence, ELDMC closed loop will have no offset provided 
that the disturbance reaches a steady-state value after an ar- 
bitrary sampling time M and the following conditions are true. 

From Eq. 6 

Ad(k)s0.13 for k s M  
A d ( k )  = O  for k > M  

From Eqs. 7 and 8 

I$’-d(k) 150.13. 
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