
SIAM J. MATRIX ANAL. APPL.
Vol. 11, No. 2, pp. 239-271, April 1990

(C) 1990 Society for Industrial and Applied Mathematics
007

ROBUST STABILITY AND PERFORMANCE ANALYSIS FOR
STATE-SPACE SYSTEMS VIA QUADRATIC LYAPUNOV BOUNDS*

DENNIS S. BERNSTEINf AND WASSIM M. HADDAD

Abstract. For a given asymptotically stable linear dynamic system it is often of interest to determine
whether stability is preserved as the system varies within a specified class of uncertainties. If, in addition, there
also exist associated performance measures (such as the steady-state variances of selected state variables), it is
desirable to assess the worst-case performance over a class of plant variations. These are problems of robust
stability and performance analysis. In the present paper, quadratic Lyapunov bounds used to obtain a simultaneous
treatment of both robust stability and performance are considered. The approach is based on the construction
of modified Lyapunov equations, which provide sufficient conditions for robust stability along with robust
performance bounds. In this paper, a wide variety of quadratic Lyapunov bounds are systematically developed
and a unified treatment of several bounds developed previously for feedback control design is provided.
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1. Introduction. Unavoidable discrepancies between mathematical models and real-
world systems can result in degradation of control-system performance including insta-
bility [1 ], [2]. Ideally, feedback control systems should be designed to be robust with
respect to uncertainties, or perturbations, in the plant characteristics. Such uncertainties
may arise either due to limitations in performing system identification prior to control-
system implementation or because of unpredictable plant changes that occur during
operation. Thus robustness analysis must play a key role in control-system design. That
is, given an existing or proposed control system, determine the performance degradation
due to variations in the plant.

In performing robustness analysis there are two principal concerns, namely, stability
robustness and performance robustness. Stability robustness addresses the qualitative
question as to whether or not the system remains stable for all plant perturbations within
a specified class of uncertainties. A related problem involves determining the largest class
of plant perturbations under which stability is preserved. Once robust stability has been
ascertained, it is of interest to investigate quantitatively the performance degradation
within a given robust stability range. In practice it is often desirable to determine the
worst-case performance as a measure of degradation.

The concern for both robust stability and performance can be traced back to the
earliest developments in control theory. Design specifications such as gain and phase
margin have traditionally been used to gauge system reliability in the face of uncertainty.
In the modern control literature considerable effort has focused on rigorous robustness
analysis and design techniques in a variety of settings. Analysis and synthesis results have
been developed for both state-space and frequency-domain plant models to address struc-
tured parameter variations as well as normed-neighborhood uncertainty [3 ]-[ 7].

The present paper is concerned solely with the analysis of structured real-valued
parameter uncertainty within the context of state-space models. One motivation for such
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problems is illustrated by the examples given in [1] and [2]. These examples show that
standard linear-quadratic methods used to design either full-state feedback controllers
or dynamic compensators may result in closed-loop systems that are arbitrarily sensitive
to structured real-valued plant parameter variations. A particularly effective technique
for analyzing robust stability is to construct a quadratic Lyapunov function V(x)
xrPx, which guarantees stability of the system as the uncertain parameters vary over a
specified range. This technique has been extensively developed for both analysis and
synthesis (see, e.g., 8 ]- 37 ).

Although both robust stability and performance are of interest in practice, most of
the literature involving quadratic Lyapunov functions is confined to the problem of
robust stability. A notable exception is the early work of Chang and Peng [9 ], which
also provides bounds on worst-case quadratic performance within the context of full-
state-feedback control design. In the present paper, we further extend the approach of
9 to obtain a series of results for analyzing both robust stability and performance. As

will be seen, these results also provide substantial unification of more recent results per-
taining to robust stability alone.

To illustrate the basis for our approach, consider the system

(1.1) 2( t) (A + AA )x( t) + Dw( t), t[0, ), x(0) 0,

(1.2) y(t)=Ex(t),

where x(t) is an n-vector, A is an n n matrix denoting the nominal dynamics matrix,
AA denotes an uncertain perturbation ofA belonging to a specified set //, Dw(t) is (for
now) a white noise signal of intensity V= DD T, and y(t) is a q-vector of outputs. System
1.1 ), (1.2) may, for example, denote a control system in closed-loop configuration.

For the system (1.1) the performance measure involves the steady-state second
moment of the outputs y(t). In practice the diagonal elements of the second moment
are measures of the ability of the external disturbances Dw(t) to excite specified states.
In the presence of uncertainties AA, it is of interest to determine the worst-case steady-
state values of the second moments of selected states. Thus, we define the scalar perfor-
mance criterion

(1.3) Js(ll)= sup lim supE(yT(t)y(t)},
AA I1

where E denotes expectation and lim sup is a technicality o ensure that Jx(//) is a well-
defined quantity vn when A + AA has ignvalus in tla closed fight half plane. To
evaluate (1.3) define the second-moment matrix

Q(t)_-aE [x(t)xr(t)],
which satisfies the Lyapunov differential equation

(1.4) Oaa(t)=(A+AA)QaA(t)+QaA(t)(A+AA)r+ V,

so that (1.3) becomes

(1.5) Js() sup lim sup trQaA(t)R,
AA oI1

whereR ErE. To guarantee both robust stability and performance we consider modified
algebraic Lyapunov equations of the form

(1.6) O=AQ+QAr+f(Q)+ V,
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where ft(- is a matrix operator satisfying

1.7 AAQ + QAA r <= ft(Q)
for all AA o//and all nonnegative-definite matrices Q. The ordering in 1.7 is defined
with respect to the cone of nonnegative-definite matrices. Our results are based on the
following robust stability and performance result (for convenience, assume that V is
positive definite). Ifthere exists a positive-definite solution Q to (1.6), where ft(. satisfies
(1.7), then A + AA is asymptotically stable for all AA at? and, furthermore,

(1.8) Js(’) -< tr QR.

The robust stability result is a direct consequence of Lyapunov theory, while the perfor-
mance bound (1.8) follows from the fact that since A + AA is asymptotically stable,
QaA = limt-*oo QaA(t)exists, is independent of QaA(0), and satisfies

(1.9) O=(A+AA)QaA+Qaa(A+AA)r+ V.

Now subtracting (1.9) from (1.6) yields

0 (A + AA )(Q- QAA) 4r Q- Qaa)(A + AA r+ f(Q)_(AAQ + QAA r) + V,

which, by (1.7) and the fact that A + AA is stable, implies

(1.10) QA<-Q.

Now 1.5 and (1.10) yield the bound (1.8).
Since the ordering induced by the cone of nonnegative-definite matrices is only a

partial ordering, it should not be expected that there exists an operator ft(. satisfying
(1.7), which is a least upper bound. Indeed, there are many alternative definitions for
the bound ft(o ). To illustrate some of these alternatives, assume for convenience that
AA is of the form

(1.1 1) AA #lA, [al[ =<61,

where a is an uncertain real scalar parameter assumed only to satisfy the stated bounds,
and A is a known matrix denoting the structure of the parametric uncertainty. The
bound f(. utilized in [9] and [12] for full-state-feedback design was chosen to be

(1.12) ft(Q)=611A1Q+QAr l,

where denotes the nonnegative-definite matrix obtained by replacing each eigenvalue
by its absolute value. More recently, the quadratic (in Q) bound

(1.13) ft( Q) 61[AzA r + QAAQ]
has been considered, where Az, Ae are a factorization ofA of the form A1 AzAe.
Bound 1.13 was studied in 29 for robustness analysis and in 17 ], 25 ], 28 ], 30 ],
33 ], and 36] for robust controller synthesis. A third bound that has also been considered

is the linear (in Q) bound

(1.14) ft( Q) 6, aQ + a-lAQA ],

where a is an arbitrary positive scalar. As shown in [33], bound (1.14) arises from a
multiplicative white noise model with exponential disturbance weighting. Control-design
applications of bound (1.14) are given in [23], [27], [33]-[35]. The principal contri-
bution of the present paper is thus a unified development of bounds 1.12)-(1.14) for
both robust stability and performance analysis. In addition, we present a systematic
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approach that pays careful attention to the structure ofthe uncertainty set oh. For example,
we show that bound (1.12) guarantees stability over a rectangular uncertainty set while
(1.14) is most naturally associated with an ellipsoidal region. Furthermore, to provide a
methodical development, we identify three classes of bounds (Types I, II, and III) that
operate by exploiting, respectively, the symmetry ofAAQ + QAA r, the structure of Q,
and the structure ofAA. This approach clarifies the relationships among different bounds
and suggests several new bounds. The principal goal in this regard is to demonstrate the
richness of quadratic Lyapunov bounds to stimulate future developments.

Finally, the present paper also considers an alternative cost functional for robust
performance analysis. Specifically, in place of white noise disturbances, we reinterpret
w(t) in 1.1 as a deterministic L2 signal as inH theory [6]. By imposing anL norm
on the output y(t) (rather than an L2 norm as inH theory), the corresponding per-
formance measure is given by (see [38 ])

(1.1) sup lim sup kmax (QaA(t)R),
AA# t--*"

in contrast to (1.5). Both performance measures Js(ll) and Jz(//) are considered in
the paper.

The contents of the paper are as follows. After summarizing notation later in this
section, the Robust Stability Problem, Stochastic Robust Performance Problem, and
Deterministic Robust Performance Problem are introduced in 2. In 3 the basic result
guaranteeing robust stability and performance (Theorem 3.1 is stated. This result is
easily stated and forms the basis for all later developments. A dual version of Theorem
3.1 (Theorem 4.1 provides additional sufficient conditions and clarifies connections to
traditional robust stability results. The bound (.) and its dual A(. are given concrete
forms in 5. In 6, the bounds of 5 are merged with Theorem 3.1 to yield the main
results guaranteeing robust stability and performance (Theorems 6.1-6.5 via modified
Lyapunov equations. In 7 we analyze the modified Lyapunov equations with regard
to existence, uniqueness, and monotonicity of solutions. Additional bounds are derived
in 8 by utilizing a recursive substitution technique, while both upper and lower bounds
are obtained in 9. Finally, illustrative examples are considered in 10 and 11.

Notation. Note: All matrices have real entries.

R, RrXs, r, IF

lr
asymptotically

stable matrix
5

Z >- Z2
Z > Z2
trZ, Z r

x(z)
kmax (Z)

I1"
I1" I1

real numbers, r s real matrices,r, expectation,
r r identity matrix,
matrix with eigenvalues in open left half plane,

r r symmetric matrices,
r r symmetric nonnegative-definite matrices,
r r symmetric positive-definite matrices,
Z Z2 e r, Z, Z2 e,
Z Z2 e P, Z, Z2 e 5r,
trace of Z, transpose of Z,
eigenvalue of matrix Z,
maximum eigenvalue of matrix Z having real spectrum,
Euclidean vector norm,
spectral matrix norm (largest singular value),
Frobenius matrix norm.
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2. Robust stability and performance problems. Let o//c n denote a set of per-
turbations AA of a given nominal dynamics matrix A n . Throughout the paper it
is assumed that A is asymptotically stable and that 0 o//. We begin by considering the
question of whether or not A + AA is asymptotically stable for all AA

ROBUST STABILITY PROBLEM. Determine whether the linear system

(2.1) (t) (A + AA)x(t), t6[0, ),

is asymptotically stable for all AA 6

To consider the problem of robust performance it is necessary to introduce external
disturbances. In this paper we consider both stochastic and deterministic disturbance
models. The stochastic disturbance model involves white noise signals as in standard
LQG theory, whereas the deterministic disturbance model involves L signals as inH
theory [6]. By defining an appropriate performance measure for each disturbance class
it turns out that we can provide a simultaneous treatment of both cases.

We first consider the case of stochastic disturbances. In this case the robust perfor-
mance problem concerns the worst-case magnitude of the expected value of a quadratic
form involving outputs y(t) Ex(t), where E qn, when the system is subjected to
a standard white noise disturbance w(t) with weighting D na.

STOCHASTIC ROBUST PERFORMANCE PROBLEM. For the disturbed linear system

(2.2) (t)=(A + AA)x(t)+Dw(t), t[0, ), x(0)=0,

(2.3) y(t) Ex(t),

where w(. is a zero-mean d-dimensional white noise signal with intensity Ia, determine
a performance bound/3s satisfying

(2.4) Js(ll) A sup lim sup:{lly(t)[l2} =<Bs.

The system (2.2), (2.3) may denote, for example, a control system in closed-loop
configuration subjected to external white noise disturbances for which y(t) may be the
state regulation error. Such specializations are not required for this development, however.

Of course, since D and E may be rank deficient, there may be cases in which a finite
performance bound/3s satisfying (2.4) exists while (2.1) is not asymptotically stable over
h’. In practice, however, robust performance is mainly of interest when (2.1) is robustly
stable. In this case the performance Js(ll) is given in terms of the steady-state second
moment of the state. The following result from linear system theory will be useful. For
convenience define the n n nonnegative-definite matrices

R a=ET"E, VDD 7".

LEMMA 2.1. Suppose A + AA is asymptotically stablefor all AA 11. Then

(2.5) Js(//) sup tr QAAR,
AA oll

where the n n matrix Qaa A limt-oo E[x(t)xT(t)] is given by

(2.6) QzxA e (A + AA)tVe(A + ZXA)rt dt,

which is the unique, nonnegative-definite solution to

(2.7) O=(A+AA)QzxA+QzxA(A+AA)7+ V.
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To state the Deterministic Robust Performance Problem some additional notation
is required. For a measurable function z: [0, DO -- R define

(2.8) z(. a,z a= z t) 2 dt

which is an L: function norm with a Euclidean spatial norm, and define

IIz(’)ll,2ess. sup IIz(g)ll2,
t[0,)

which is anL function norm with a Euclidean spatial norm. We now reconsider (2.2)
with w(. intereted as a square-integrable function. In this case the robust performance
problem concerns the worst-caseL norm of the output y(t).

DETERMINISTIC ROBUST PERFORMANCE PROBLEM. For the disturbed linear system
(2.2), (2.3), where []w(. ,2 5 1, determine a performance bound satisfying

(2.9) j(og)a sup sup [y(.)[2 <9.
AAU ][w(’)]]2,2

The performance measure J(O) in (2.9) is given by the following result.
LEMMA 2.2. Suppose A + AA is asymptotically stablefor allA . Then

(2.0) J(Ou)= sup Xa (QR),

where QA is the unique, nonnegative-definite solution to (2.7).
Proof. The result is an immediate consequence of Theorem (b) of 38 ].
Remark 2.1. Although Js(O) and Jo() arise from different mathematical settings

they are quite similar in form. Note that in general J() Js(), and Jo()=
Js() if rank R 1.

Remark 2.2. In Lemma 2.2 QA can be viewed as the controllability Gramian for
the pair (A + AA, D) rather than the state covafiance. Note thatQ is independent of
x(0) and QA(O).

Remark 2.3. The stochastic performance measure Js() given by (2.5) can also
be written as

(2.11) Js() su

which involvcs the L norm of the impulse response of (2.2), (2.3). This stochastic
pcrformancc measure can thus also bc given a deterministic intcrctation by lctfing
w(t) denote impulses at time 0. For details of this formulation scc [46, p. 331 ].

In the present paper our approach is to obtain robust stability as a consequence of
sucicm conditions for robust performance. Such conditions arc developed in the fol-
lowing sections.

3. Sueiem conditions for robus stability and performance. The key step in ob-
taining robust stability and performance is to bound the unccain terms AA
in the Lyapunov equation (2.7) by means of a function (Q). Thc nonncgativc-dcfinitc
solution Q of this modified Lyapunov equation is then guaranteed to bc an upper bound
for Q. Thc following easily provcd result is fundamental and forms the basis for all
later developments. The rcsult is based on Lyapunov function thco as applied to linear
systems. For our puoscs, a suitable statcmcm of this result is given by Lcmma 12.2 of
39 ]. Essentially this result states that if the matrix equation 0 F +F + SS has
a solution F 0 and (, S) is stabilizablc, then is an asymptotically stable matrix. Of
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course, (if, S) is stabilizable (regardless of) if S has full row rank, and we note (see
[39, Thm. 3.6]) that if (, S) is stabilizable then so is (, [SSr + H] /2) for all non-
negative-definite matrices H.

THEOREM 3.1. Let 2 [n ._ n be such that

(3.1) AAQ+QAAr<=2(Q), AAll, on,
and suppose there exists Q satisfying

(3.2) O AQ + QA r+ f( Q) + v.
Then

3.3 (A + AA, D) is stabilizable, AA ll,

ifand only if
(3.4) A + AA is asymptotically stable, AA ql.

In this case,

(3.5) Qaa -< Q, AA

where QzxA n is given by (2.7), and

(3.6) Js(qg) _-< tr QR,

(3.7) JD(/’) --< )kmax (QR).

In addition, if there exists AA ql such that (A + AA, D) is controllable, then Q is
positive definite.

Proof. We stress that in (3.1), Q denotes an arbitrary element of n, whereas in
(3.2) Q denotes a specific solution ofthe modified Lyapunov equation. This minor abuse
of notation considerably simplifies the presentation. Now note that for all AA Rnn,
(3.2) is equivalent to

(3.8) O=(A+AA)Q+Q(A+AA)r+2(Q)-(AAQ+QAAr)+ V.

Hence, by assumption, (3.8) has a solution Q n for all AA 6 R,n. IfAA is restricted
to the set q/then, by (3.1), 2(Q) (AAQ + QAA) is nonnegative definite. Thus if
the stabilizability condition (3.3) holds for all AA o//, then it follows from Theorem
3.6 of [39] that (A + AA,[V+ f(Q)-(AAQ+ QAAr)] /z) is stabilizable for all
AA 6 //. It now follows from (3.8) and Lemma 12.2 of [39] that A + AA is asymp-
totically stable for all AA q/. Conversely, if A + AA is asymptotically stable for all
AA q/, then (3.3) is immediate. Next, subtracting (2.7) from (3.8) yields

O=(A+AA)(Q-Q/)+(Q-QzxA)(A+AA)7+f(Q)-(AAQ+QAAT"), AAql,

or, equivalently, since A + AA is asymptotically stable for all AA

(3.9) Q-QzxA e(A+zxA)t[f(Q)-(AAQWQAAT)]e(A+zxA)rt dt>=O,

which implies (3.5). The performance bound (3.6) is now an immediate consequence
of (2.5) and (3.5). To prove (3.7) we note that if 0 -<M =< M2 then ’mx (M) _-<
kmax (M2) (see, e.g., Corollary 7.7.4 of [40]). Thus

Jo(q/)= sup )kma (QzxAR) sup )kma (EQaAEr)
AA Oll AA Oll

(3.10)
< )kma (EQE T)._ )kma (QR).
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Finally, it follows from (3.8) that if (A + AA, D) is controllable for some AA q/, then
the controllability Gramian Q for the pair

(A + AA, [V+ ft(Q)-(AAQ + QAA r)]

is positive definite. [2]

For convenience we shall say that f(.) bounds ql if (3.1) is satisfied. To apply
Theorem 3.1, we first specify a function f(.) and an uncertainty set q/such that fl(.)
bounds h’. Ifthe existence ofa nonnegative-definite solution Q to (3.2) can be determined
analytically or numerically and (3.3) is satisfied, then robust stability is guaranteed and
the performance bounds (3.6), (3.7) can be computed. We can then enlarge q/, modify
ft(. ), and again attempt to solve (3.2). If, however, a nonnegative-definite solution to
3.2 cannot be determined, then o, must be decreased in size until (3.2) is solvable. For
example, f(. can be replaced by eft(. to bound co//, where e > enlarges o//and e <
shrinks o//. Of course, the actual range of uncertainty that can be bounded depends on
the nominal matrix A, the function f(. ), and the structure of //. In 5 the uncertainty
set q/and bound 2(. satisfying 3.1 are given concrete forms. We complete this section
with several observations.

Remark 3.1. If only robust stability is of interest, then the noise intensity V need
not have physical significance. In this case we may set D I, to satisfy (3.3).

Remark 3.2. Since A is asymptotically stable, Q satisfying (3.2) is given by

(3.11)

or, equivalently,

(3.12)

where Q0 6n is defined by

Q eat[ f(Q) + V]eArt dt,

Q eAt ft( Q)e" rt dt + Qo,

(3.13) Qo = eAtVeAT"t dt

and satisfies

(3.14) O=AQo+QoAr+ V.

Note that Qo --< Q and that the nominal performances Js( 0 } and Jz( 0 } are given
by tr QoR and Xmx (QoR), respectively.

Remark 3.3. Using (3.11 it is also useful to note that the bound for Js(ll) given
by (3.6) can be written as

(3.15) tr QR=tr eAt[f(Q)+ VleA’ dtR=tr Po[f(Q) + V],

where P0 n is defined by

(3.16) Po = e’4 rtReAt dt

and satisfies

(3.17) O=A rPo + PoA + R.
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The bound tr P0[ f(Q) + v] can be viewed as a dual formulation of the bound tr QR
since the roles ofA and A r are reversed. Dual bounds are developed in the following
section. Note that tr QoR tr PoV.

Remark 3.4. If f(.) bounds //then clearly 2(.) bounds the convex hull of //.
Hence, only convex uncertainty sets //need be considered. Next, we shall later use the
obvious fact that if 2 ’(. bounds o//, and fY(. bounds //", then f ’(. + fY(. bounds
0g, + o//,. Hence if og can be decomposed additively then it suffices to bound each com-
ponent separately. Finally, if ft(.) bounds ot and there exists fY N" -- N" such that
ft(Q) _-< ft’(Q) for all Q ", then 2’(. also bounds //. That is, any overbound ft’(.
for ft(. also bounds o?/. Of course, as we shall see, it is quite possible that an overbound
if(. for ft(. may actually bound a set o#, that is larger than the "original" uncertainty
set //.

4. Dual sufIieient conditions for robust stability and performance. As noted in Re-
mark 3.3, the performance bound tr QR given by (3.6) can be expressed equivalently in
terms of a dual variable P0 for which the roles ofA and A r are reversed. Using a similar
technique, additional conditions for robust stability and performance can be obtained
by developing a dual version of Theorem 3.1. A prime motivation for developing such
dual bounds is to draw connections with previous results in the literature relating to
robust stability. Specifically, we shall show that traditional robust stability techniques
based on the quadratic Lyapunov function V(x) xrPx correspond to dual conditions.
Robust performance bounds within the dual formulation, however, are difficult to mo-
tivate without first developing the primal performance bounds as was done in the previous
section. In addition, the dual bounds may, for certain problems, yield larger stability
regions and sharper performance bounds than the primal bounds.

LEMMA 4.1. Suppose A + AA is asymptotically stablefor all AA oil. Then

(4.1) Js(Oh) sup tr PzxAV,
AA oll

where PzxA ,n x n is the unique, nonnegative-definite solution to

4.2 0 (A + AA 7"pAa + PzXA(A + AA + R.

Proof. It need only be noted that

tr QzxaR tr e (A + AA)tVe(A + AA)rt dtR tr PzxA V,

where

Plea = e (A + AA)rtRe(a + aA)t dl

satisfies (4.2).
The proof of Lemma 4.1 relies on the fact that tr QzxaR tr PaAV. However,

it is not necessarily true that kmax (Q/,aR)= Xmax (P,AV) even when AA 0. For ex-
ample, if

[-IO]R=I2V=21A=
0 -2 11

then

QR=
1/2

and
1/2
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and thus kma (QoR) 15 + t145)/24 and kma (eoV) (5 + l)/8.Thus to obtain
a suitable dual version of Jz(//) we need to define a dual deterministic cost
which is distinct from JD(//). This can be done if the disturbance signals are taken to
be integrable rather than square integrable. Thus, for measurable z 0, ov -- r define

4.3 z(.) 11,_ z(t) 112 dt,

which is anL function norm with a Euclidean spatial norm. The dual deterministic cost
Jz(h’ is thus defined by

(4.4) JD(0//)& sup sup Y(’)II ,2,
AAeh IIw(.)[ll,2_

The following dual result follows from Theorem (a) of 38 ].
LEMMA 4.2. Suppose A + AA is asymptotically stablefor all AA ll. Then

(4.5)

where P,A n is the unique, nonnegative-definite solution to (4.2).
The dual version of Theorem 3.1 can now be stated.
THEOREM 4.1. Let A n n be such that

(4.6) AA rp+ PAA _-< A(P), AA co//, PI",

and suppose there exists P satisfying

(4.7) 0 =A 7-p+ PA + A( e)+ R.

Then

(4.8) (E,A + AA is detectable, AA ll,

ifand only if
(4.9) A + AA is asymptotically stable, AA oil.

In this case,

(4.10) PaA <=P, AA 6II,

where PAA is given by (4.2), and

(4.11) Js(l) <= tr PV,

(4.12) JD(II) <= Xmax (PV).

In addition, ifthere exists AA oil such that E A + &A is observable, then P is positive
definite.

Proof. The proof is completely analogous to the proof of Theorem 3.1. []

Remark 4.1. Note that Jz(ll <= Js(lg) and that Jz() Js(l) if rank V 1.
Combining this fact with Remark 2.1, it follows that Jz(//) Jz(//) if both rank R
and rank V 1. In general, however, we should not expect that Jz(//) Jz(//).

It is quite possible that the bounds tr QR and tr PV for Js(ll) given by (3.6) and
(4.11 may be different in spite of the fact, as shown in the proof of Lemma 4.1,
that tr Q,AR tr P,AV. That is, depending on ft(.) and A(.) either bound (3.6) or
bound (4.11 may be better for a particular problem. In general, we have the following
result.
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(4.13)

(4.14)

(4.15)

PROPOSITION 4.1. Let f( ), A(. ), Q, and P be as in Theorems 3.1 and 4.1, and let
Qo and Po be given by (3.13) and (3.16), respectively. Then

tr QoA(P) < tr Po2(Q) tr QR > tr PV,

tr QoA(P) tr Pof(Q) <: tr QR tr PV,

tr QoA(P) > tr Port(Q) <: tr QR < tr PV.

Proof. Note that

tr QR e[ f( Q) + V ]e r dt R tr Pof(Q) + tr e Ve, r dt R

and

so that

tr PV tr eArt A(P) +R ]eAt dt V= tr QoA(P) + tr eA rtReAt dt V

tr QR tr PV tr Pof(Q) tr QoA(P),

which yields (4.13 )-(4.15 ). 3
Remark 4.2. To draw connections with traditional Lyapunov theory, let R and V

be positive definite and assume that there exists a positive-definite solution to (4.7).
Then V(x) a__ xrpx satisfies l(x(t)) < 0 for x(.) satisfying (2.1) and for all AA e //.
Thus V(. is a Lyapunov function for (2.1) that guarantees robust asymptotic stability
over //.

5. Construction of the bounds fl(. ) and A(. ). As discussed in 1, we consider three
distinct classes ofbounds ft(. denoted by Type I, Type II, and Type III. Roughly speaking,
these bounds exploit, respectively, the symmetry of the Lyapunov terms AAQ + QAA r,
the structure of Q, and the structure of AA. The dual bounds A(.) can be constructed
similarly by replacing Q and AA by P and AA r. Hence these bounds will not be discussed
separately. For convenience in discussing the set h’, we shall use the terms rectangle and
ellipse to refer to closed regions bounded by such figures in multiple dimensions. As
usual, a polytope is the convex hull of a finite number of points.

5.1. Type I bounds. We begin by constructing bounds f(.) that exploit only the
symmetry of the Lyapunov terms AAQ + QAA . First we require the following well-
known definition of a function of a symmetric matrix as an extension of a real-valued
function (see, e.g., [40, p. 300]). Specifically, iff: -- , then (with a minor abuse of
notation) f: 5" - 5 can be defined by setting

f( S)& Uf( D)U,
where S UDUr, U is orthogonal, D is real diagonal, andf(D) is the diagonal matrix
obtained by applying f to each diagonal element ofD. Note that iff is the polynomial
f(x) =o aix then f(S) =0 aiS i. Note also that iff(x) xl then f(S)
(S2) l/E, where (.)1/2 denotes the (unique) nonnegative-definite square root. As in [41,
p. 262], we use the notation ]S] to denote ($2) 1/2. Finally, note that iff: R -- R and
g: - are such thatf(x) _-< g(x), x , thenf(S) <- g(S), S 5 n.

As a concretization of the uncertainty set o//, consider the set

(5.1) I AArnxn’AA= o’iAi, [ai[ <-ri, 1, ,p
i=l
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where, for 1, p" Ai E Nnxn is a given matrix denoting the structure of the para-
metric uncertainty, O" is a real uncertain parameter, and 6i denotes the range ofparameter
uncertainty. Clearly, the multidimensional set of uncertain parameters (al, "’", ap) is
the rectangle [-61, 61] X X [-rp, 6p] and h’l is a symmetric polytope of matrices
in Nnxn. Note that the symmetry of the uncertainty interval [-6i, 6i] entails no loss of
generality since the nominal value ofA can be redefined if necessary. Furthermore, it is
also possible, without loss of generality, to define 6i by replacing Ai by 6iAi. For
clarity, however, we choose not to employ this scaling. We begin by considering the
bound utilized by Chang and Peng in [9].

PROPOSITION 5.1. Thefunction
p

(5.2) fl(Q) 6ilAiQ+QA]
i=1

bounds dih"

Proof. For 1, p and ail --< 6i,

ri(AiQ + QA ]’) <= ri(AiQ + QA)
Summing over yields

p p

AAQ + QzXA r= ai(AiQ + QA) <=
i=1 i=1

which implies (3.1) with f(. fl (") and
Remark 5.1. It is tempting to prove Proposition 5.1 by writing

p p p

ri(AiQ + QA 7) <= , ri(AiQ + QA ’) <= , ]r(AiQ + QA )].
i=1 i=1 i=1

However, counterexamples show that the inequality [M1 + M2[ <- [Ml[ + [M:[ is not
generally true for arbitrary symmetric matrices M1, M2.

Remark 5.2. Because of its simplicity it is tempting to conjecture that fl (") is the
best bound for AAQ + QzXA 7- over the set h’l. To show that this is not the case, let
Q= 1/212,p 1,A1 [-l],and61 1. Then rl(A1Q + QA() <= 61[A1Q + QA([ =I2,
]all --< 1. However, it is also true that

rl(A1Q+QA)<[ 2 ] Il<l2’

Neither bound, however, is an overbound for the other. This is a consequence of the fact
that the nonnegative-definite matrix ordering is only a partial order.

As mentioned earlier, an overbound for fl (.) will also bound h’l. The following
result is immediate.

LEMMA 5.1. For 1, ..., p, let f N -- N satisfy

(5.3) f(x) >- xl, xea.
Then thefunction

p

(5.4) fz(Q) 6if(AiQ+QA)
i=1

is an overboundfor fl(" and hence also bounds 1,
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One particular choice of ft satisfying (5.3) will be considered here, namely,
the polynomial

(5.5) (X)"- -/i q- 71X2,

where i is an arbitrary positive constant. Thus 2(" has the following specialization.
COROLLARY 5.1. Let 1, "’", 5p be arbitrary positive constants. Then thefunction

(5.6) ft3(Q)&.= iiln+ --fii (AiQ+QA

is an overboundfor 21 (’) and hence also bounds 111.
Although overbounding ftl(’) by 3(" results in a looser bound for 0//1, it turns

out that ft3(’) actually bounds a set that is larger than //1. Specifically, in place of
//1 consider

(5.7) /2<1 }2. AA ERnxn" AA , ffiAi,
o2i

where al, ap are given positive constants. Note that (5.7) replaces the rectangle of
uncertain parameters al, , %) by an ellipse. Thus the set q/2 ofmatrix perturbations
is an ellipse of matrices in n, in contrast to the polytope q/1. Of course, q/1 q/2 if
p and al 61. Again it is possible to take ai without loss ofgenerality by replacing
Ai by aiAi. We again choose not to do this, however. The following result provides
a convenient characterization of the relationship between the rectangle q/1 and the
ellipse q/2.

PROPOSITION 5.2. Suppose qll is defined by the positive constants 61, "’, , and
let q12 be characterized by

(5.8) O/i=
3i }

i= 1, ,p,

where a is defined by

p

(5.9) a Z ii
i=1

and 1, 13 are arbitrary positive constants. Then the ellipse

,, "’", )" E .i

circumscribes the rectangle { (al, %): Iril i, 1, p and thus2 contains

o111. Furthermore, ft3 (’) actually bounds 2.
Proof. If Irl =< i, 1, p, then it follows from (5.8) and (5.9) that
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Thus the ellipse contains the rectangle. If, in addition, (al, rp) is a vertex of the
rectangle, i.e., ]at.] i, 1, p, then Pi= a/ai2 1, which corresponds to a
point on the boundary of the ellipse. To show that 23(" actually bounds2 note that

0-t1’= i
In- (AiQ + QA f- I+ Z (AQ+QA. -(AQ+QAr).

i=1 i=1

Since=/ < in, it follows that

-1

i=1

Utilizing (5.8) and (5.9) to substitute for a and a; yields (3.1) with 2(. 3(" and

Proposition 5.2 shows that each choice of constants /, ..., /3p > 0 leads to a
particular ellipse 0"//2 that contains the polytope //1. Furthermore, f3(" ), which by Cor-
ollary 5.1 bounds //, actually bounds the larger set //2. For convenience, we now dispense
with the constants/3, /3p that relate the rectangle // to the ellipse d2 and we
characterize 23(’) entirely in terms of a, a, ap.

COrOlLArY 5.2. Let a be an arbitrary positive constant. Then thefunction
p

OI. -1(5.10) ft4(Q)=In+ot , a2i(AiQ+QAf) 2

i=1

bounds.
Remark 5.3. Within the context of Corollary 5.2, the positive constant a plays no

role in defining the set 2, although f4(" is guaranteed to bound //2 for all choices of
a. It can be expected, however, that certain choices ofa provide better bounds than other
choices. This will be seen by example in 10.

The following variation of ft4(" was suggested by D. C. Hyland.
PROPOSITION 5.3. Let a be an arbitrary positive constant. Then, for Q > 0,

(5.10)’
-1 p

"4 Q)’-Q+ i= a[AQ+AiQAf+ QAQ-IAiQ+QAr]

bounds ’ll2.
Proof. Note that

O. [(oll[20"i)ol/2- ( I]2)(AiQ-JI-QAT)Q-I/2
o l/:ai QI/:_ i (AiQ+QA)Q -1/2X

Q+ ( AQ+Q Ar),
i=1 i=l

which yields the desired result. D
Remark 5.4. The bound 4’(Q) is of interest since it involves terms that arise from

a multiplicative white noise model with a Stratonovich correction. Specifically, the term
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AiQAf arises from an Ito model [33 ], whereas the terms A,2.Q and QAZiT can be viewed
as the shift A -- A + 1/2 Z= A,2. due to the Stratonovich interpretation of stochastic in-
tegration [43 ]. These terms have interesting ramifications in designing controllers for
flexible structures 23 ].

5.2. Type II bounds. We now consider additional bounds for //that exploit the
structure of Q. For these bounds the natural uncertainty set is given by

PROPOSITION 5.4. Let a be an arbitrary positive number and, for each Q E N n, let
Q nm and Q2 -mXn satisfy

(5.11 Q= QQ2.

Then thefunction
p

(5.12) fts(Q)aQQz+a- , oAiQ,QA
i=1

bounds 1.
Proof. Note that

0 <= Q- AQ Q- AQ

ff -1 Aia E QfQ2 + a a QQA- ai(AiO + QA)
i=1 i=1 i=1

which, since Z pi= a/a < 1, yields (3.1) with (.) 5(.) and 2.
We consider three specializations of5 (.). Specifically, we set m n and define

(5.3) Q, =Q, Q:=n,

(5.14) Q =Qz=Q 1/2,

(5.15) Q =In, Qz=Q.

COROLLARY 5.3. Let a be an arbitrary positive number. Then thefunctions
p

(5.16) 6(Q)aln + a- Z aAiQZA,
i=1

P

(5.17) 7(Q)aQ+ a-’ Z aAQA,
i=1

P

(5.18) 8(Q)aQ 2 + a- Z AiA
i=1

bound2.
Remark 5.5. Note that the term AiQ2A appearing in 6(’) also appears in 4(" ).

Fuhermore, both 4(’) and 6(’) involve a term propoional to In. Despite these
similarities, neither bound 4(" nor 6(" is an overbound for the other. Fuahermore,
the term AiQA appears in both 7(" and 4’(" ). However, neither v(" nor 4,(’) is
an overbound for the other.

Remark 5.6. The bound 7(" given by (5.17) has the distinction that it is linear
in Q. This bound was originally studied in [27] for systems with multiplicative white
noise and was shown to yield robust stability and performance in [33] and [35]. A
similar bound was studied in [34].
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Remark 5.7. By using (5.11) additional bounds can be developed. For example,
by setting

Ol Q1/4 Q2 0 3/4(5.19)

25 (.) becomes

(5.20)
p

9(Q) oQ 3/2 + o-1 _, oAiQ I/2A ’.
i=1

Remark 5.8. When p and c is replaced by cc, fiT(’) becomes

( Q) Q + a-AQA ].
A sum of such terms with i i can be used to bound the smaller rectangular set.
Similar remarks apply to 6 ("), 8 ("), and 9 (").

5.3. Type III bounds. We now consider bounds that exploit the structure ofA
itself. It turns out that these bounds permit consideration of an unceainty set that
is larger than #2. Specifically, define

(5.21) 3{Anxn’A=AA,AAM,AAN},
where Ac nxr andA r xn are unceain matrices, r is an arbitraff positive integer,
and M, N 6 " are given unceainty bounds. The bound 0(’ for3 is given by the
following result.

PROPOSITION 5.5. Let a be an arbitrary positive constant. Then thefunction
(5.22) o(Q) a-M+ aQNQ

bounds 3.
Proof. Note that

O [-/Az-/ZQA][-/ZAz-/ZQA]r

-AzA+QAAQ- [AzAQ + Q(AzA) r]-M+QNQ-(AQ+Q ),
which yields (3.1) with (.) 0(’) and 3.

Remark 5.9. The bound 0(’) was developed in [29] for robust analysis and in-
dependently in [25] and [28] for robust full-state feedback. Applications to fixed-order
dynamic compensation are given in [36].

Remark 5.10. Without loss of generality we can set in (5.22) by replacingM
and N by -M and N, respectively. Again for clarity we choose not to employ this
scaling.

Note that 8(’) is of the form 0(’) with M Pi=aAiA and N I,. Thus
8(’) also bounds 3 for this choice ofM and N. It turns out in this case that3 is
actually larger than 2. To see this consider the more general case in which M and
N satisfy

p

(5.23) AiAM, I,U.
i=1

In this case 0(" is an overbound for s(. and thus bounds 2. As in the case of 3("
overbounding (.), we should not be sufised to find that o(" with (5.23) actually
bounds a set that is larger than 2. Indeed, we now show thatz is actually a veff special
subset of3 whenM and N defining satisfy (5.23).
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PROPOSITION 5.6. IfMandN satisfy (5.23) thenl2 is a subset ofl13. Hence fo("
also bounds 112.

Proof. IfAA 6 //2 then AA p 2
i= aiAi, where Z P

i= ri /a _-< 1. Alternatively, we
can write AA AIAR, where r pn and

(5.24) AL=[OtlAl. .apAp], AR
trp/ "ap In

Note that with M and N satisfying (5.23) and AL and AR defined by (5.24), it follows
that ALA7 <__ M and ArAa =< N. Thus AA e /3 []

The following result provides further conditions under which f0(" bounds
PROPOSITION 5.7. Suppose Ai DEi, 1, p, where Di nni and Ei

Rnxn, and suppose that
p p

2 T<=(5.25) Z oliDiDi M, Z ETEiN.
i=1 i=1

Then 112 is a subset ofll3 and thus fifo(" also bounds ll2.
Proof. The result follows as in the proof Proposition 5.6.
Remark 5.11. When p 1, A DEI, M a2D1D, and N EThEl, it is con-

venient to replace a by aal so that ftl0(’) becomes

(5.26) fo,(Q) a[a-DO+ aQEEQ].

In certain situations it is desirable to consider subsets of //3 of special structure. For
example, define

o114/= { AAeNnxn:AA=DoALAEo, IIA, IIs_-< 1, lIAR IIs_--< 1},

where Do N nxn, and Eo e ’-x, are known matrices denoting the structure of the
uncertainty, andA e N,l xr and ARe Nr,: are uncertain matrices 28 ]. Finer structure
can be included within 0/4 by replacing DoMNEo by a sum of terms DiMiNiEi, where
D, E are known and M, N are uncertain 36]. Note, however, that even though 04 is
a proper subset of’3, theform ofthe bound ftl0(" does not change. Thus such refinements
render the bound f10(" conservative with respect to 0/4 since the larger uncertainty set

Y3 is actually being bounded.

6. Robust stability and performance via modified Lyapunov equations. We now
combine the principal results of 3, 4, and 5 to obtain a series ofconditions guaranteeing
robust stability and performance. In particular, we focus on bounds l, f4, 26, f7, and
f10. For simplicity we shall frequently assume that V is positive definite so that (3.3) is
satisfied. In this case it follows that the solution Q of (3.2) is positive definite. Our first
result is a corollary of Theorem 3.1 with ft(. 2 (.) and

THEOREM 6.1. Let V [n, 1, p > O, and suppose there exists Q z, satisfying

p

(MLEI) O=AQ+QAT+ 6i[AiQ+QAf + V.
i=1

Then A + AA is asymptotically stablefor all AA oll, and

(6.1) Js(Og) <- tr QR,

(6.2) Jz(// -< ,max (QR).
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For the next result define

(6.3) A, =A + - In

and

(6.4) i _-5 c’2 p

Setting f(. 4(" ), 6(" ), 7(’) and //= //2 yields the following corollary of Theo-
rem 3.1.

THEOREM 6.2. Let V P, c, o, c, > O, and suppose there exists Q P"
satisfying either

(MLE2) O= AQ+QAr+ ., q,.i(AiQTQA’)2+-In + V,
i=l

p

(MLE3) O= AQ+QAT+ "yiAiQZAfToIn + V,
i=1

oF

(MLE4) 0 A.Q + QA T. + Z .),A,QA ’+ V.
i=l

Then A + AA is asymptotically stablefor all AA o2, and

(6.5) Js(Oh2) =< tr QR,

(6.6) JD(ll2) <- max (QR).

Next we set 2(. fifo(’) and oy 3.
THEOREM 6.3. Let V ’, c > O, M ’, and N ’, and suppose there exists

Q z, satisfying

(MLE5) O=AQ+QAT+cQNQ+c-M+ V.

Then A + AA is asymptotically stablefor all 5A o113, and

(6.7) Js(/g3) _-< tr QR,

(6.8) JD(U3 <= kmax QR ).

Remark 6.1. Note that (MLE5) is a Riccati equation. This is precisely the equation
studied in 29 ].

Additional sufficient conditions can be obtained by considering "mixed" bounds.
That is, we can construct modified Lyapunov equations by combining two or more
different bounds. Although mixed bounds will not be considered further in this paper,
we present one such result for illustrative purposes.

THEOREM 6.4. Let V ’, c, 6, ..., 6 > O, M ’, and N n, and suppose
there exists Q " satisfying

p

(MLE1, 5) O=AQ+QAV+ , 6iIAiQ+QAI +cQNQ+c-IM+ V.
i=1
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Then A + AA is asymptotically stablefor all AA all + o//3, and

(6.9)

(6.10)

Js(Olll + //3) =< tr QR,

JD(ll-[-/3) < kma (OR).

As noted previously, the bound A(. can readily be constructed by replacing AA by
AA r in the definitions of ftl (’) through f10(" ). Denote these bounds by A (.) through
Ao(" ), respectively. For illustration we state the dual of Theorem 6.1 involving A (.).
The dual versions of (MLE1)-(MLE5) will be denoted by (MLED1)-(MLED5).

THEOREM 6.5. LetR 2n, 61 p . O, and suppose there existsP 2n satisfying

p

(MLED1) 0 =ArP+PA + Z 6[A[P+PA,[ +R.
i=1

Then A + AA is asymptotically stablefor all AA ll, and

(6.11 Js(lll)<= tr PV,

(6.12) jD(ll kmax (PV).

It is reasonable to expect that the sufficient conditions given by Theorems 3.1 and
4.1 are generally different. For example, the modified Lyapunov equations and their
duals need not both possess a solution, while the bounds tr QR and tr PV need not be
equal. An exception is the case in which 2(. f7(" and A(. A7(" ). Note that the
dual of (MLE4) is given by

p

P+PA + "yiA ]’PAi + V.(MLED4) 0 A r

i=1

PROPOSITION 6.1. Let a, a , ap > 0 and assume there exist Q, P n satisfying
(MLE4) and MLED4 Then

(6.13) tr QR=tr PV.

Proof. Note that

( ),P+PA+ 3/iAPAitrQR -trQ AT
i=1

-tr P A,Q+QA r+ Z "{iaiQA ]"
i=1

=tr PV.

Remark 6.2. By setting fl(.) Q7(" and A(. A7(" it follows from (4.14) that

(6.14) tr Qo ceP+ ",t,iAfPAi =tr Po cQ+ , "yiAiQA
i=1 i=1

7. Existence, uniqueness, and monotonicity of solutions to the modified Lyapunov
equations. It is important to stress that the sufficient conditions for robustness given by
Theorems 6.1-6. assume only that there exist nonnegative-definite solutions Q, P sat-
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isfying the modified Lyapunov equations. Indeed, no explicit assumptions on the problem
data A, V, R, and /Z were utilized for assuring robust stability and performance. In
applying Theorems 6.1-6.5 to specific problems it thus suffices to show that a nonnegative-
definite solution Q exists in order to obtain robust stability, while, for robust performance,
the bounds (6.1), (6.2), (6.5)-(6.8) require explicit knowledge of Q. Thus, any com-
putational method that yields a nonnegative-definite solution will suffice to guarantee
both robust stability and performance.

Before considering the numerical solution of the modified Lyapunov equations,
several relevant issues require discussion. For example, before seeking to compute solutions
to MLE )-(MLE5 it would be desirable to determine a priori whether these equations
actually possess nonnegative-definite solutions. For example, it may be useful to obtain
sufficient and / or necessary conditions for the existence ofnonnegative-definite solutions.
Thus, if the sufficient conditions are satisfied then existence (and hence robustness) is
assured, whereas if the necessary conditions are not satisfied then existence is ruled out.
If, on the other hand, either the sufficient conditions are not satisfied or the necessary
conditions are satisfied, then nothing can be surmised. Finally, such conditions need to
be easily verifiable and reasonably nonconservative since otherwise it would be more
prudent to attempt to numerically solve the modified Lyapunov equations themselves.

It is quite possible that at least some of the modified Lyapunov equations possess
multiple nonnegative-definite solutions. In this case we may seek the minimal solution
(i.e., the smallest with respect to the nonnegative-definite matrix ordering) to minimize
the performance bounds. If multiple solutions exist, none of which is minimal, then the
best bound would depend on the matrix R.

Since the matrix Q determines the performance bound, it is reasonable to expect Q
to be monotonic in //. That is, if // decreases in size, then the solution Q is more likely
to exist while decreasing in the nonnegative-definite matrix ordering. For example,
consider o//, characterized by , where ) _-< ;, 1, ..., p. Then we might expect
Q’ _-< Q, where Q’ is the solution to (MLE1) with 6i replaced by 6. Finally, monotonicity
with respect to V should also be expected. Because of linearity, the analysis of bound
ft7(" is simplest and it is possible to obtain necessary and sufficient conditions for the
existence of solutions to (MLE4). The basic tool required is the Kronecker matrix algebra
[42]. For convenience, define

p

(7.1) I =A(3)A+ 3’iAiAi,
i=1

where (R) denotes the Kronecker product and A (R) A, =A (R) In + In (R)A is the Kro-
necker sum.

PROPOSITION 7.1. If V n and 1 is asymptotically stable, then there exists a
unique Q n satisfying MLE4 and Q >= O. Conversely, iffor all V n there exists
Q >- 0 satisfying (MLE4), then s is asymptotically stable.

Proof. Since (MLE4) is equivalent to

(7.2) Q _vec-I -1 vec V],

existence and uniqueness hold. Here, vec and vec-1 denote the column-stacking operation
42 and its inverse. To prove that Q is nonnegative definite, we rewrite (7.2) as

(7.3) Q= vec -1 [e"t vec v] dt
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and show that the integrand is nonnegative-definite for all [0, ). (Note that the
following argument for fixed > 0 does not require that1 be stable.) Using the exponential
product formula, the exponential in (7.3) can be written as

(7.4) e"t= lim exp (AAs)t exp "yi(Ai@Ai)t
k--- i=1

For convenience, let S and N be r r matrices with N >= 0. Since (see 42

vec- [(S(R)S) vec N] SNST">=O(7.5)

and

(7.6)

it follows that

(7.7)

(S(R)S)=S(R)S,

Furthermore,

(7.8)

vec- [eS(R) s vec N] (k!)-I SkNSkT >= O.
k=O

vec- [es(R)s vec N] vec- [(eS(R)es) vec N] eSNeST>o.
Applying (7.7) and (7.8) alternately with (7.4) and using induction on k, it follows that
the integrand of (7.3) is nonnegative definite. To prove the converse, note that it follows
from (MLE4) that Q satisfies

(7.9) Q=vec -1 [e’Ut vec Q]+ vec- [e’U’ vec v] ds, te[0, oo).

Since the integral term on the fight-hand side of (7.9) is nonnegative definite, is bounded
from above by Q, and Vn is arbitrary, it follows that /is asymptotically stable. E]

We now show that if 1 is asymptotically stable then actually As (and thus A) is
asymptotically stable. This shows that the assumption that d is asymptotically stable is
consistent with the original hypothesis that A is asymptotically stable.

PROPOSITION 7.2. Assume ll is asymptotically stable, let c) [0, ci], 1,
p, and define

P ( O/t.2 \

Then ,d’ is also asymptotically stable. In particular, As andA are asymptotically stable.
Proof. Let Ven be arbitrary and let Q be the unique, nonnegative-definite solution

of (MLE4). Equivalently, Q satisfies

O=AQ+QAr+ c!!-i AQ+ V’,
i=1

where
p

’2)AiQA+ V.V’/ E -l(/2-zi
i=1

The exponential product formula is essential to the proof here since A. if) A. cannot be expressed as
Kronecker product S (R) S, and (2) A. (R) As and Z = tfiAi (R)A do not generally commute.
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Since V’ e ", the stability of’ now follows as in the proofofthe converse ofProposition
7.1. Finally, if V is chosen to be positive definite then YP (a’2i /a)AQA f + V’ is also
positive definite and it follows from Lemma 12.2 of 39 that A,, and hence A, is asymp-
totically stable.

Hence it follows from Proposition 7.2 that a necessary condition for to be asymp-
totically stable is that

(7.10) a<2 max ReXi(A).
i= 1, ,n

We now have the following monotonicity result.
PROPOSITION 7.3. Let ll’2 c 112, where ll’2 is defined as in (5.7) with ai replaced

by ai [0, ai], 1, p. Furthermore, let V pn, assume is asymptotically
stable, and let Q pn satisfy (MLE4). Then there exists Q’ n satisfying

(7.11) 0 A,Q’ + Q’A 7+ AQ’A+ V,

and, furthermore,

(7.12) Q’<-Q.

Consequently,

(7.13) tr Q’R <= tr QR,

(7.14) max(QrR)<=,max(QR).

Proof. Subtracting (7.11 from (MLE4) yields

o=(-’l+(a-’l+ 2; ,(a- a’l]+
i--I

where V’ is defined in the proof of Proposition 7.2. Since, by the converse portion of
Proposition 7.1, ’ is asymptotically stable, Q Q’ >= 0, which yields (7.12) and thus
(7.13) and (7.14). D

Returning now to the existence question, Proposition 7.1 shows that a solution to
(MLE4) exists so long as a l, , ap are sufficiently small such that remains asymp-
totically stable for some a > 0. To this end we can treat this as a stability perturbation
problem and apply results from 3 ]. Within our modified Lyapunov equation approach
we have the following related result. For this and the following result let I1" denote an
arbitrary vector norm on n2 and the corresponding induced matrix norm.

PROPOSITION 7.4. If

(7.15) (A(A) -l otln2Wa -l

_
aAi()Ai

i=1

<1,

thenfor all V Nn there exists Q Nn satisfying MLE4 and hence 1 is asymptotically
stable.

Proof. Define Qk if= o where Qo satisfies (3.14) and Qk + satisfies

O=AQk+l +ak+lAT+f7(Qk)+ V.
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Note that Qk >= 0, k 1, 2, .... Hence it follows that

vec Ok + vec Qk (a(A -1 vec ft7(Qk) vec ft7 Ok
and thus

Ilvec O +1 gee --< (A (R)A - I + - 22 Ai(R)A IINee O Nee O_l
i=l

Using (7.15) it follows that Q lim_ Q exists. Thus Q >_- 0 and satisfies (MLE4).
Finally, by the converse of Proposition 7.1, 1 is asymptotically stable. [5]

Since (MLE5) is nonlinear, a slightly different approach is required for existence.
For the following result let K,/3 > 0 satisfy

7.16 eAt <= te- et, -> O,

where I1" denotes an arbitrary submultiplicative matrix norm that is monotonic on n,
and define p = 2/3/r2.

PROPOSITION 7.5. Suppose V n and

7.17 4a Nil -’M+ V < 2,

Then there exists Q n satisfying (MLE5).
Proof. Consider the sequence Qk } if= 0 where Q0 satisfies (3.14) and Qk / is

given by

0 AQk + + Qk +A r+ ceQkNQk +a-M+ V.

Clearly, Qk >---- 0, k 0, 1, .... Next we have

eAt(7.18 Qk + aQkNQk+ a- M+ V ]e t dr,

which yields

(7.19) Qk +, op-’ll Nil Qk 2 + p-’ll o-’M+ V II.
Similarly, from (3.14) we obtain

Qo --< p-’ll v --< p-’ll o-’M+ V II,

Now suppose that

IIQII 2p-’lla-’M+ vii.

Then (7.17 and (7.19) imply

IIQ+, II--< ap-’[] Nil [2p-’lla-g/ viii 2 + p-]lo-g+ vii
<2p-’lla-lM+ VII.

Thus IlQk[I <-- 2p-’lla-’M + VII, k 0, 1, .... Next, (7.18) yields

Qk + Ok Ol eat[ QkNQk- Qk- NQk_ 1]er dt

o e[ QkN(Qk- Qk- 1) + (Qk- Qk- )NQk- 1]er dt
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and thus

Qk+ Qk -11 NIl (IIQ + Q- II)11 Qg-Q-

<= 4ap-2 Nil -M+ V Qk Q-

--< Q-Q+ II,
where e 4ap -- Nil -M + V II, Since by (7.17 e < 1, lim_ Qk exists, is nonnegative
definite, and satisfies (MLE5).

8. Additional upper bounds via recursive substitution. In this section we obtain
additional upper bounds for Js(11) and Jz(//) by utilizing a recursive substitution tech-
nique. The main idea involves rewriting (2.7) as

(8.1) Q/A =--vec- {(AA)-(AAAA)vecQxA}+Qo

and substituting this expression into the terms AAQAA + QAAAA T appearing in (2.7).
This technique yields an equation that is, as expected, equivalent to (2.7) but that permits
the development of additional bounds. As will be seen, the ability to develop new bounds
exploits the fact that the substitution technique leads to terms that are quadratic in AA.
We begin the development with the following technical result that does not require that
A be asymptotically stable.

PROPOSITION 8.1. Suppose A A is invertible and let AA g" ". IfQzxa satisfies
(2.7), then QAA also satisfies

0 AQzxA + QzxAA T__ vec- (AA( AA)(A (R)A)- (AA AA) vec QAa
(8.2)

+ AA (R) AA)(A (R)A)- vec V] + V.

Conversely, ifQaA satisfies 8.2 and (A AA (A AA is invertible, then QzXA also
satisfies (2.7).

Proof. To obtain (8.2) substitute (8.1) into (2.7) as noted above. Conversely, adding
the zero term AA (R) AA)(A A)- (A (R) A vec QAA AA AA) vec Qaa to (8.2),
it follows that (8.2) can be written as

0 [(A- AA)(A- AA)](AA)-[(A + AA)(A + AA) vec QAA + vec V],

which, under the invertibility assumption, implies that QzXA satisfies (2.7).
The following result is analogous to Theorem 3.1. We shall say that h’ is symmetric

if AA o//implies-AA e
THEOREM 8.1. Suppose ll is symmetric, let fro satisfy

8.3 AAQo + QoAA <= fo, AA oil,

where Qo satisfies (3.14), let (2 n _. n satisfy

(8.4)

-vec- [(/XA(R)/XA)(A(R)A)-(AA(R)/XA)vecQ]<__((Q), /XAell,

and suppose there exists Q satisfying

(8.5) O AQ + QA T+ (2( Q) + 2o + v.
Then

8.6 (A + AA,D is stabilizable, AA oil,
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ifand only if
(8.7)

In this case,

(8.8)

A + AA is asymptotically stable, AA ll.

QzxA <= Q, AA ll,

where QzXA satisfies (2.7), and

8.9 Js() <= tr QR,

(8.10) JD() <--- kmax (QR).

Proof. The equivalence of (8.6) and (8.7) follows from (8.5) as in the proof of
Theorem 3.1. Next (8.8) follows by comparing 8.5 and (8.2) while using (8.3) and
(8.4). Since o//is assumed to be symmetric, it follows from 8.7 that A AA is asymp-
totically stable, AA ’, and hence (A AA) (R) (A AA) is invertible, AA . Thus,
the converse portion of Proposition 8.1 implies that QaA satisfying (8.2) also satisfies
(2.7). Thus, the bound (8.8) can be used to obtain 8.9 and (8.10).

The principal difference between (8.4) and (3.1) is that AA appears linearly in
(3.1), whereas it appears quadratically in (8.4). By exploiting this structure we can
obtain new bounds for Qaa. To simplify matters, we now consider the bound in (8.4)
in two special cases. In the first case we set //= // and p so that AA aA,
Il -< . In this case (8.4) becomes

(8.11)

--a2 vec-I [(AI()A)(A()A)-(AI@A)vecQ]<-(](Q), lall _-<6,

One choice of ((.) that immediately suggests itselfcan be obtained by defining the matrix
function [. [+ on the set of symmetric matrices by

(8.12) Sl+ 1/2(S+ ISI),

which effectively replaces the negative eigenvalues of S by zeros. We shall thus utilize
the fact that

(8.13) 2,s=<211Sl+, Ill--<,

for all symmetric S.
COROLLARY 8.1. Let V , ll ll, p 1, let fro n satisfy (8.3), and suppose

there exists Q satisfying

(8.14) O=AO+QAr+2 l-vec -l [(A6)A)(A6)A)-(A6)AI) vec Q]I+ +2o+ V.

Then 8.7 )-(8.10) are satisfied.
For the next specialization we shall assume that

(8.15) AA )A A AA ), AA 6 OlI,

which holds, for example, for modal systems with frequency uncertainty (see 10). It
thus follows that (A (R) A)-(AA (R) AA) (AA AA)(A (R) A)-l and thus (8.4) can
be rewritten as

(8.16) AA2(+2AAO_.AAT+AAZT<-((Q), AAI1, Q’,

where ( n satisfies

(8.17) O=AO+OAT+Q.
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Assuming in addition to (8.15) that AA rA, [rl[ 1, (8.14) becomes

(8.18) O=AQ+QAT+6IAO_+2AOA+O.A27I++fo+ V.

Remark 8.1. It is interesting to note that the left-hand side of (8.16) is of the same
form as ft4,(’). Specifically, the term AA20_ + OAA zr is analogous to AQ + QAi r

whereas 2AAO_AA r is similar to AiQA.
9. An alternative approach yielding Uller and lower bounds. In this section we

develop a variation on the results of 3 that has the additional benefit of yielding both
upper and lower performance bounds. The basic approach was suggested by results ob-
tained in [44]. To simplify the presentation we assume as in the preceding section that
o//is symmetric. This symmetry assumption of course holds for all of the uncertainty
sets considered in previous sections. The underlying idea involves bounding the deviation
of QaA from Q0 rather than bounding QaA directly.

THEOREM 9.1. Let 2o n satisfy

(9.1) AAQo + OoAA <= 2o, AA ll,

let :n ..n be such that (3.1) is satisfied, and suppose there existsA n satisfying

(9.2) 0 AA2 + A2A r+ 2(A2) + f0.

Then

(9.3) (A + AA,f/Z)isstabilizable, AAll,

ifand only if
(9.4) A + AA is asymptotically stable, AA

In this case,

(9.5) Qo A <= QaA <= Qo + A, AA ll

where Qaa is given by (2.7), and

(9.6) tr Qo + / .9. R <= Js( ll <- tr Qo + ZX R

(9.7) max [(Qo- A)R]--< Jz(oh’) < ’max [(Qo + A)R].

Proof. Define

(9.8) AQ QzxA Qo

and subtract (3.14) from (2.7) to obtain

(9.9) 0 (A + AA AQ + AQ(A + AA + AAQo + QoAA
Now rewrite (9.2) as

(9.10) O=(A+AA)A+A(A+AA)r+f(A)-(AAA+AI&Ar)+2o.
Using (9.10), the equivalence of(9.3 and (9.4) is immediate as in the proofofTheorem
3.1. Next, subtracting (9.9) from (9.10) yields

0 =(A + AA)(A-- AQ)+(A2-- AQ)(A + AA)+ f(A)
(9.11) AAA + AAA T) + 20 AAQo + QoAA T).
Using 3.1 and 9.1 it follows from 9.11 that

A2 AQ >= 0,
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or, equivalently,

(9.12) Q,A <-Qo + A.
To obtain the lower bound rewrite (9.9) as

(9.13) O=(A+AA)(-AQ)+(-AQ)(A+AA)7"-(AAQo+QoAAr).

Also, note that because of the assumed symmetry of //, (9.1) holds with AA appearing
in the inequality replaced by -AA. Hence it can be shown similarly that

zX+ AQ>_-0,

or, equivalently,

(9.14) Qo-A <= Qaa.
Finally, 9.6 and (9.7) follow from 9.5 ).

Remark 9.1. To compare the upper bound in (9.5) with (3.5), rewrite (9.2) as

(9.15) O=A(Qo+ A)+(Qo+ A)Ar+ft(A)+fto+ V.

If ft(A.) + ft0 f( Q0 + A.) then (9.15) has the same form as (3.2) and thus the two
upper bounds are identical. This will be the case, for example, if ft(. ft7 (’) and f0 is
chosen to be fiT(Qo) since f7(" is linear. If, however, ft(/2) + ft0 < ft( Q0 + A2) then
the upper bound in (9.5) will be sharper. In any case it is clear that the individual
treatment of A2 and Q0 yields potentially new upper bounds.

Remark 9.2. Theorem 9.1 does not guarantee that the lower bound Q0 A for
QzxA is nonnegative definite. However, Qa is always nonnegative definite and thus the
lower bound in (9.5) may be of limited usefulness. Nevertheless, if Q0 A2 is indefinite
then, depending on R, the lower bounds in (9.6) and (9.7) may still be positive and thus
be meaningful lower bounds.

10. Analytical examlles. In this section we consider simple analytical examples
that illustrate the principal results of the paper. These examples also provide insight into
the individual characteristics of different bounds as a prelude to numerical examples
considered in the following section.

To begin we consider the simplest possible example. Set n 1, A < 0, R > 0,
V > 0, A 1, and o// { AA: IAAI _--< 6,}. For 6, < -A, QzxA V/2(IAI AA)
and Js(ll Jo(ll) RV 2(I A 6 ), where this worst-case performance is achieved
for AA 6. Solving (MLE1) yields Q V/2(IAI 6), which is a nonconservative
result for both robust stability and performance. The same result is obtained from
(MLE4) by setting a c di. To apply (MLE5), set 6 VMN. Choosing c

26 (IA 6 )NVagain yields the nonconservative result. Finally, the same result follows
from Theorem 8.1.

For the second example we consider nondestabilizing uncertainty in the imaginary
component of an uncertain eigenvalue, i.e., frequency uncertainty, in contrast to uncer-
tainty in the real part considered in the previous example. Let n 2,

A= v>0, w>0,=

V= R I2, and o//= {AA AA alA, [r[ =< 61}, where

[OlAI
-1 0
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Obviously, A + AA remains asymptotically stable for all values of a since AA affects
only the imaginary part of the poles of AA. The question then is whether the robustness
tests are able to guarantee this robustness. Note also that because of the choice of V,
Qaa Q0 (2)-I2 for all AA e //. For this example we note that (MLE is satisfied
by Q (2)- I2, which is independent of 6. Thus (MLE1) possesses a nonnegative-
definite solution for all/5 > 0, which shows that (MLE is nonconservative with respect
to robust stability and performance. Since A(AA) (AA)A, it can also be seen that the
same result holds for (8.18). The situation is considerably different for (MLE4) and
(MLE5). To analyze (MLE4) note that has an eigenvalue -2 + a + di. (This can
be shown by diagonalizing A and A and thus 1.) Since, by Proposition 7.1, must be
asymptotically stable, we require 6 < 2. This is, of course, an extremely conservative
result, especially when the damping is small. For (MLES) we can factorA D1 El.
Thus, let D I2 and El A1 and define M i2 12 and N 12. Assuming that Q is a
multiple of 12, it follows that Q is nonnegative definite only if 6 =< , which is again an
extremely conservative result. The reason for this conservatism becomes clear by noting
thatM and N as given above will also serve as bounds for perturbations of the form aI2
for which the range of nondestabilizing O" is trl < 61. This will also be the case for all
factorizationsDE ofA since DDr and ErE must be positive definite and thus will
also serve as bounds for destabilizing perturbations such as a I.

Finally, we consider a nondestabilizing uncertainty affecting the interaction ofa pair
of real poles. Let n 2, A 12, V R 12, and //= { AA AA trlA 1, al -< 1 },
where

A= 0"

Obviously, A + AA remains asymptotically stable for all values of a since AA does not
affect the nominal poles. Note that

o’7/4+1/2 o,/4
QAA

a/4

and Js(Oll) /5 + 1, where this worst-case performance is achieved for a il. In this
case (MLE1) has the solution Q (2 )-I2, which is valid only for 6 < 2, an
extremely conservative robust stability result. Furthermore, the corresponding perfor-
mance bound tr QR 2(2 di )- is conservative with respect to the actual worst-case
performance 6 21 + 1. In contrast, (MLE4) has the solution

[ (2- O/1) -1 -" a-6(2 O/al) -2 0
Q=

0 (2-- a61) -1

which is nonnegative definite for all 6 so long as a < 2/6. Hence (MLE4) is noncon-
servative with respect to robust stability. For robust performance,

tr QR 2(2- a6)- + a-6(2 a61) -2,

which can be shown to be an upper bound for 1/4612 + 1. Choosing, for example, a

6 yields tr QR 62 + 2. The parameter a can also be chosen to minimize tr QR,
although this is somewhat tedious to carry out analytically. Finally, (MLE5) has
the solution

Q=[1/2(l+a-16) 0

0 [1 --( --atl)l/2]/atl
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which exists so long as a =< 1/6. Hence (MLE5) is also nonconservative with respect
to robust stability. Choosing a 1//il yields tr QR 2i + , which lies above the
nonconservative bound 1/4i 21 + 1. Again, a can be chosen to minimize tr QR.

11. Numerical examples. In this section we consider additional examples illustrating
the results developed in earlier sections. In contrast to the analytical examples considered
in 10, however, we consider more complex examples by numerically solving the modified
Lyapunov equations. Here we focus on (MLE4) and (MLE5), which are the easiest to
solve numerically. Specifically, we solved (MLE4) by using the representation (7.2)
(although this may not be practical when n is large), and we solved (MLE5) by means
of a standard Riccati package. To simplify matters we consider only uncertainties AA of
the form trA. Evaluation and presentation of robust stability and performance results
for multiparameter uncertainty can be fairly complex and thus are deferred to a future
numerical study.

Since both robustness tests (MLE4) and (MLE5) depend on an arbitrary positive
constant a, it is desirable to determine the value of a that yields the tightest (i.e., lowest)
performance bound for each robust stability range. To this end we performed a simple
one-dimensional search to determine the best such a. Although analytical techniques
may assist in determining optimal values of a more efficiently, the search technique
proved to be adequate for the examples considered here.

As a first example we consider the control system given in to demonstrate the
lack of a guaranteed gain margin for LQG controllers. Hence consider

(.)

(.2)

with controller

(11.3)

(11.4)

and performance

o( t) Aoxo( t) + Bou( t) + Wl(t),

y( t) Coxo( t) + w2( t),

c( t) AcXc( t) + By( t),

u(t)=Cx(t),

J= lim E[x(t)Rxo(t)+ ur(t)R2u(t)].

The data are

[0]Bo= Co=J1 0],

[, l]V =R=p 1/2=R2 1,

where V and V2 are the intensities of w(t) and w2(t), respectively. Uncertainty ABo
in Bo is thus represented by alB, whereB [0 1] r. Thus the closed-loop system corre-
sponds to

AoA=
BCo

R=
0

Ac
0

0

0 BCc ]AI=
0 0
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where the zero in the (2, 2 block ofR denotes the fact that we are considering the robust
performance bound for the state regulation cost only. Choosing p 60, it follows that
the LQG gains are given by

Ac=
-20 -9

Be=
10

Cc=[-IO -10].

For this controller the actual stability region corresponds to ale (-.07, .01 so that the
largest symmetric region about am 0 is ]gml < .01. The worst-case performance over
each stability region I,1 < 6, is denoted by the solid line in Fig. 1, whereas the perfor-
mance bounds obtained from (MLE4) and (MLE5) are shown for several values of 61.
For (MLE5) we set Dm= [0 0 0] ar and El [0 0 Co]. Note that (MLE5) yields
considerably tighter estimates of worst-case performance, particularly as 61 approaches
.01. For (MLE4) optimal values of a were in the range .0012 to .0058, whereas for
(MLE5) (with 2m0,(’), see (5.26)) a was in the range .0143 to .0020.

As a second example we consider a pair of nominally uncoupled oscillators with
uncertain coupling. This example was considered in [45] using the majorant Lyapunov
technique. Let

-u col 0 0 0 0 0
--W --P 0 0 Am 0 0 0
0 0 --v co 0 0 0
0 0 -co -v 0 0 0

v .2, o:m .2, 092 1.8, R V 14,

and, for (MLE5), define Dl Al and El I4. We consider bounds on Js(ll) only.

10.0

9.5

9.0

8.5

z 8.0
0

m 7.5

z
: 7.0

Ou.. 6.,5

6.0

5.5

5.0

(R) MLE4

(R) MLE5 []

EXACT WORST CASE

STABILITY REGION 61 (xl0)

FIG.
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10-2 10-1
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Figure 2 illustrates the exact worst-case performance along with performance bounds
obtained from (MLE4) and MLE5 ). For MLE4 optimal values ofa ranged from .036
to. 141, whereas for (MLE5) optimal a was between .361 and .096. Although (MLE4)
was slightly less conservative than (MLE5), both bounds were able to guarantee robust
stability only for 61 .15, whereas the largest stability region is actually 61 .54. It is
interesting to contrast this result with [45] where the majorant Lyapunov technique
yielded a robust stability range of 61 .4 for a richer class of off-diagonal blocks having
maximum singular value less than

12. Conclusion. A variety of quadratic Lyapunov bounds have been developed for
both robust stability and performance. It seems clear, however, that no single quadratic
Lyapunov bound is superior to the others. Although the conservatism of each bound is
problem dependent, it is desirable to better understand the nature of the conservatism
in order to utilize the bounds in an effective manner. In addition, the issue of necessity
remains to be addressed. That is, ifa system is robustly quadratically stable (i.e., robustly
stable with a corresponding Lyapunov function), then is such a Lyapunov function
necessarily given by one of the modified Lyapunov equations given in this paper? Fur-
thermore, a better understanding is needed ofthe gap between robust stability and robust
quadratic stability.

Acknowledgment. We thank A. W. Daubendiek for producing the numerical results
in 11.

Note added in proof. The assumption x(0) 0 in (2.2) is stronger than necessary
for the treatment of (2.4). If x(0) 4 0, then Lemma 2.1 remains unchanged since the
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effect of x(0) vanishes as -- o. If, however, x(0) 0, then Qaa(t) is increasing on
[0, o and (2.4) is equivalent to

Js(//) sup sup IE Y(t)II 2 } -< s.
A’ t [0,o0)

For JD(q/), x(0) 0 is essential since Y(" )II o0,2 involves the supremum over 0, oz ).
Ifx(0) 4: 0, then the analysis can possibly be redone by considering the supremum over
t, o and letting -- o to eliminate the effect of the initial condition.

(2) A relationship between the linear bound ftT(. and the quadratic bound fo(
can be seen as follows. IfAA aA, I1 --< t, then factor AA ALAR as in q/3 according
toAt. trial Q/- andAR Q-/2 with boundsM= 62A QA randN Q-. The unusual
feature here is that the "splitting" of AA is Q-dependent. Then, by (5.22),

ft,o( Q) o-6A QA + oQ,

which has the form of f5 (Q).
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