
Robust stability of discrete systems 

The objective of this paper i s  to show how to choose a Liapunov function to obtain 
the best and sometimes exact estimates of the degree of exponential stability lor 
linear time-invariant discrete systems. The choice is  interesting because i t  i s  also 
shown that i t  provides the largest robustness bounds on non-linear time-varying 
perturbations which can be established by either norm-like or quadratic Liapunov 
functions. By applying the results obtained to large-scale systems, where the role of 
perturbations is  played by the interconnections among the subsystems, the least 
conservative stability conditions are derived for the overall system which are 
available in the context of vector Liapunov lunctions and M-matrices. 

I. Introduction 
An  attracttve feature o f  the Liapunov direct method is the fact that when we 

establish stability o f  a given dynamic system by a Liapunov function we can use the 
function to estimate the rate o f  decay o f  the transient response of the system. In linear 
time-invariant systems this amounts to providing an estimate o f  the degree o f  
(exponential) stability which, i n  the case of continuous-time systems, is synonymous 
with an estimate o f  the real part o f  the maximal eigenvalue o f  the system matrix. An  
added significance of the degree o f  stability is that i t  yields directly the robustness 
bounds on the non-linear time-varying perturbations which the system can tolerate 
without going unstable (Kalman and Bertram 1960). 

I n  large-scale dynamic systems, the interconnection terms can be regarded as 
perturbations o f  the subsystem dynamics. Then, the degree o f  stability o f  each 
subsystem becomes a measure of how high the interconnection level may be for a 
vector-type o f  Liapunov function to guarantee stability o f  the overall system. For this 
reason, an optimal choice o f  the norm-like Liapunov function was proposed (Siljak 
1976) which provides the exact estimate of the degree o f  stability of a subsystem when 
i t  is reprcscnted by a continuous-time linear time-invariant model. This estimate, 
howcvcr, requires the system matrix to be transformable into a semisimple form. I f  
this is not the case, one may prefer to stay i n  the original coordinate frame and choose 
the Liapunov function proposed by Patel and Toda (1980) at the expense o f  making 
the best, but not exact, estimate of the degree of exponential stability of the system. 

The objective o f  this paper i s  to reproduce the above described development in the 
context of discrete-time systems. There are some expected similarities between the two 
classes ofsystems, but there are a few notable distinctions. While the way in which one 
solves the Liapunov matrix equation to get the best function is the same, the norm- 
like Liapunov functions are generally better than the quadratic forms when discrete- 
time systems are considered. I f  the system matrix i s  i n  a semi-simple form, the two 
types o f  functions produce the exact estimate o f  the spectral radius o f  the matrix. 
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which i s  similar to the result available for continuous-time systems. The most pleasing 
similarity, which we were able to establish in this context, i s  the fact that by maximizing 
the estimate of the degree of stability we maximize at  the same time the robustness 
bounds on the additive perturbations which may act on the system. This fact i s  of 
particular importance in maximizing chances to establish exponential stability of 
Inrge-scale discrete-time systems using the methods of vector Liapunov functions 
and a discrcte version of the comparison principle formulated by Grujii. and Siljak 
(1973. 1974). The results can be used as a basis for robust stabilization of large-scale 
discrctc systcms by decentralized feedback in much the same way i t  was done in the 
continuous case (Siljak 1978). This i s  a welcome dcvclopment because or the recent 
widespread orientation in practical applications toward distributed controllers with 
par:lllel computational capabilities. 

2. Degree of stability 
Consider a discrete-time linear time-invariant system 

where x ( k )  E R" is the state o f S  at time k E T +  = (0. I. ...}, and A i s  a constant n x n 
matrix. We denote the solution at time k of(2.1) starting from xo = x(0) by x(k; x,) or, 
simply, by .u(k). We state the following. 

Dcjiniriun 2.2 
The system S i s  said to be exponentially stable i f  there exist numbers n > O  and 

0 < < I such that 

llx(k)ll G ~ I I X ~ I I P '  V ~ E T + , V X ~ E  R" (2.3) 

In the following development, we use the euclidean norm llxll= (xTx)"%nd the 
induced matrix norm 11 . 11 =aM( . ), where a,( . ) i s  the maximum singular value of 
the indicated matrix. 

We assume that S is exponentially stable and consider p i n  (2.3) to be the spectral 
radius of A. This value of p we term the degree ofsrubiliry of S and aim at computing 
an estimate i~ using the Liapunov direct method. We recall that (see Kalman and 
Bertram, 1960) S i s  asymptotically stable i f  and only i f  for any symmetric positive 
definite G there exists a unique symmetric positive definite matrix H which satisfies the 
Liapunov equation 

The solution of (2.4) i s  

To compute i, we consider two types of Liapunov functions based on (2.4), namely, 
quadratic and norm-like functions. We start with the quadratic form 

V(x) = x T ~ x  (2.6) 

which satisfies the inequalities 

~.(H)11x112 < V.4 < aM(H)II~I12 (2.7) 
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where a;( . )  is the minimum singular value of the indicated matrix. We compute 
A V [ . r ( k ) ] ,  = V[.x(k+ I ) ]  - V [ s ( k ) ]  with respect to (2 .1 )  and get the inequality 

AV[. \ - (k)] ,  < -o,(G)II.x(k)l12 v x  E R" (2 .8 )  

From ( 2 . 7 )  and ( 2 . 8 ) ,  wc get 

(2 .9 )  

so that 

(2 .10)  

Using ( 2 . 7 )  and (2 .10)  we obtain 

n Z 2 ( H )  a m ( G )  'I2 
. ~ ( k ) l l  < - ( [ I  aLi2 ( H )  --I ~ M ( H )  ) 1I.d (2.1 1 )  

Comparing (2.1 1 )  with (2 .3 ) ,  we get the estimate 

(2 .12)  

O u r  interest is to solve the following. 

Prohlen~ 2.1 3  

min ;,,(G) 
C 

subject to 

A T H A - H = - G  

Solurion 
From ( 2 . 5 ) ,  we write 

where H* is the solution of ( 2 . 3 )  corresponding to G =  I, and get 

to arrive at 

Inequality (2 .16)  implies 

Therefore, the unique minimum 6: = & ( I )  is achieved a t  G* = I 
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We turn our attention to a norm-like Liapunov function 

U(X) = (xTHx)'12 (2.18) 

which satisfies the inequalities 

d,'z(~)llsll S V ( X )  S aiZ(H)IIxII (2.19) 

and compute 

Av[x(k)], = [rT(k + I)Hx(k + - [ ~ ~ ( k ) H x ( k ) ] " ~  

By following the steps in arriving at (2.1 I), we get the estimate 

Now, we solve the following. 

Problem 2.22 

min p.(G) 
G 

subject to 

A T H A - H = - G  

Solurion 

From (2 .5 ) ,  we write 

Using (2.14) together with (2.23). and proceeding as in the solution of Problem 2.13, 
we get 

a,(G) 
o,(H) + oz ' (H)a i2(H - G) 

Noting that all three terms in the denominator at the right side oi(2.24) achieve their 
maximum at the same point, we get 
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Therefore, the unique minimum 6: =,?,( I )  is achieved as in Problem 2.13 at G* = I .  
n 
U 

The two estimates b,(G) and f i , . (G) compare as follows. 

Propositiori 2.26 
6,(G) < 6 , (G)  for all G with equality holding for G = I .  

Proof 
From the obvious inequality o,(H - G )  < u, (H)  - a,(G), we obtain 

~ M ( H )  - CTL(H) - U ~ ( H ) ~ C ) I I ~ ~  

<'I' < u,(H) + [&H)  - o, (H)u, (G)] l i2  (2.27) 

where Y = =a,(H) + a u 2 ( H ) a z 2 ( H  - G) .  Using (2.27), we obtain the inequality 

Y 2  - 2 a M ( H ) Y  + o M ( H ) a M ( G )  S O  (2.28) 

with equality holding for G = I. Finally, from (2.28) we get 

with equality for G = I .  0 

It is interesting to note that, unlike continuous-time systems (Siljak 1978), the two 
Liapunov functions do  not produce the same estimate of the degree of stability of S, 
and the norm-like function is superior to the corresponding quadratic form. 

To get a feeling of how conservative the obtained estimates are we consider the 
special form of A for which i t  is known (Siljak 1978) that in the continuous-time case 
the Liapunov method provides the e-xact estimate of the real part of its largest 
eigenvalue. Suppose A is semisimple having the form 

lpil cos 0; -1pJ sin Oi I , i = l , 2  ,..., p (2.31) 
IpiJ sin Oj lpil cos Bi 

Choosing G = I .  we get from (2.4) 

H * = d i a g { H , , H  ,,..., Hp,h2 ,+  ,,.... h.] (2.32) 

where 

We observe that 6: = 6: = max ipil = p, and conclude that both types of functions 
produce the exact estimate of the spectral radius of A, which is the maximal degree of 
stability of the corresponding discrete-time system as it was the case with continuous- 
time systems. 



3. Robustness bounds 
We consider ;I perturbed system 

S: ~ ( k  + I)  = Ax(k),+ h[k, ( k ) ]  (3.1) 

where the nonlinear perturbation h:  T +  x R"*R"  is bounded as  

IJIt(k,x)11<t11~11 V ~ E T + . V ~ E R "  (3.2) 

and < > 0. We assume that the nominal system S of(2 .1)  is exponentially stable with 
dcgrce / I >  and aim at computing the largest number [for which the perturbed system 9 
is also exponentially stable. We use both types of Liapunov functions and relate the 
robustness bound f to the estimate I, of the degree of stability of S. 

For the function V ( s )  of (2.6), we compute 

where the inequality pTHq < ( p T ~ p ) " 2 ( q T H q ) ' i 2  was used for p = Ax and q = h, 
together with (3.2). From (3.3). we observe that A V ( x )  < 0 when < i [ , (G)  where 

Note that the robustness bound corresponding to G = I is 

t :=  I -I,: (3 .5 )  

When we consider the norm-like function u(x) of (2.18). we compute 

A U ( X ) ~  = u(A.v + / I )  - u(.r) 

< t ; ( A r )  - u(x) + Iv(Ar + h)  - v(Ax)l 

S Au(& + Iu(A.r + It) - u(As)l 

where the inequality 1(pTHp)li2 - (qTHq)l"I  < a U 2 ( H )  Ilp- qll was used for p = As + h 
and q =  Ax, together with (2.20) and (3.2). From (3.6) ,  we obtain the robustness 
bound 

and note that 

can be regarded as  the stuhility ~nurgirt of S.  
We remark that the maximization of the robustness bound is reduced to the 

minimization of the estimate of the stability degree, which was solved in the preceding 
section. We recall, however, that the best (exact) estimate is achieved when the matrix 
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A is semisimple, which motivates a similarity transformation of A to a semisimple 
form. The transformation, however, eKects the perturbation function h,  and the 
improvement of the robustness bound depends ultimately upon the trade-off between 
the gain in the estimate of the stability margin and the change of size of h. 

We should also note that there are other ways of producing Liapunov functions 
for robustness analysis of discrete systems (see, e.g., Kalman and Bertram 1960. 
Geromel and Da Cruz 1987), but they may produce robustness bounds which are far 
from being the best available in this context. 

4. Interconnected systems 
We finally consider the perturbed system S of (3.1) as an interconnected system 

which is composed of N subsystems 

where x,(k) E R", is the state of S, at k ET+,  x(k) = [x:(k), x:(k) .  ..., x;lk)lT is the 
state of the overall system S, A, is an n, x n; constant matrix, h,:T+ x R"+  R"* is the 
ith interconnection function, and N = { I ,  2, ..., N}. 

We assume that each S; is exponentially stable, that is, for any symmetric positive 
definite G;, there exists a unique symmetric positive definite solution Hi to the 
Liapunov equation 

ATH,A, - H, = -G,, i E N (4.3) 

We also assume that the interconnections h,(k, x) satisfy the inequalities 

h ( k x 9  1 , x i  V ~ E T + , V X E R " , V ~ E N  
I 'N 

(4.4) 

for some non-negative numbers ti,. 
To establish exponential stability of the system S from the same property of the 

subsystems Si, we start first with subsystem Liapunov functions of the quadratic type, 

F(xj )  = xTHjxi (4.5) 

V ~ E T + , V X E R " . V ~ E N  ' (4.6) 
where 

We choose the function 
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as a candidate for Liapunov function for S, and compute AvV(x)$ using (4.6), 

AV,(X)~  < -wT(.x)@,w(x), Vx E R" (4.9) 

where 4 x 1  =(llx, 11, Ilx,ll, ..., I I x~ I I )~  and 

@ = C ~ C  - s T d ~  (4.10) 

with C=diag  { a , ,  a,, ..., a,), d = d i a g  (d,a,(H,),  d2a,(H,), ..., dNa,(HN)}, and 
B = (hij) where 

We now define a matrix 
W,,=C-B (4.12) 

and prove the following. 

Proposition 4.13 
The system S is exponentially stable if W, is an M-matrix 

Proof 
We note that if W, is an M-matrix then there exists a diagonal matrix 6 with 

positive elements such that Wv is positive definite (Tartar 1971). The proof then 
follows from inequality (4.9). 0 

The development leading to Proposition 4.13 is a straightforward application of 
the concept of vector Liapunov functions (see Siljak 1978, Araki 1978, Michel 1983, 
Vidyasagar 1986). An interesting part of the analysis, however, is the quantitative 
aspect of the test matrix W, = (w;) having the elements 

where f , ( ~ , )  is the robustness bound for the subsystem S, defined in (3.4). To 
maximize the chance of proving that W, is an M-matrix, we maximize the robustness 
bound by choosing G, = I ,  to get €,(I,) = I - 6;. 

When we consider norm-like Liapunov functions 

for the subsystems, we compute 

( G )  x i  - i j ~ j  V k  e l + ,  V x E R", V i~ N (4.16) 
j c N  I 

where f,,(Gi) is the stability margin of the subsystem S, defined in (3.7). We again 
choose the same type of function as in (4.8), 
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and compute 

Av,(x), < -dTbQv(.x) V .Y E R" (4.18) 

where d= [ d l u ~ 2 ( H l ) ,  d2~:2(H2), ..., d,yuz2(HN)]T, and with (wYj) where 

Proposition 4.20 
The system $ is exponentially stable if W, is a n  M-matrix. 

Proof 
If the matrix W, is an  M-matrix, then there exists a vector dwi th  positive elements 

such that dT W" has positive elements (Siljak 1978). The proof follows from (4.18). 
0 

As in the case of quadratic Liapunov functions, the best choice for the subsystem 
Liapunov functions is Cj = I t ,  which produces the maximum stability margin for Si. 
Note that for this choice of Gi, W, = W,. 

5. Conclusions 
It has been shown that we can choose norm-like and quadratic Liapunov 

functions that maximize the estimates of the degree of stability for linear discrete 
systems and, at the same time, produce the best robustness bounds on non-linear 
time-varying perturbations which are available in this context. Since the interconnec- 
tions in systems composed of interacting subsystems can be regarded as  perturbations 
of the subsystem dynamics, the obtained results have direct applications to stability 
analysis of large-scale systems via the concepts of vector Liapunov functions and 
M-matrices. 
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