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Abstract This paper aims at proposing a general framework for the establishement of
LMI conditions to analyse the robust stability of a singular hybrid Roesser model subject
to parametric uncertainties. The uncertain parameters are involved through implicit Linear
Fractional Representations (LFR). Special focus is put on the influence of the number of
uncertain parameters and the dimensionality of the model. More precisely it is shown that
each dimension can nearly be regarded as an uncertain parameter and the other way around.
Therefore, their influence on the conservatism of the obtained condition is very similar.

Keywords nD hybrid Roesser models · LMI conditions · Implicit LFR-uncertainty

1 Introduction

The past few decades have witnessed a large attention paid to the study of multidimensional
(nD-systems) as highlighted in the reference books Bose (1982), Gałkowski and Wood
(2001), Kaczorek (1985). The interest in such systems lies in the wide (and perhaps still
unknown) variety of their applications, e.g. nD-filtering (Lu and Antoniou 1992), nD-coding
and decoding (Shi and Zhang 2002), image and signal processing (Bracewell 1995; Dudgeon
and Merserau 1984), or more recently, repetitive processes (Rogers et al. 2007).

Two basic state-space models, that can be transformed one into the other, are used to
describe nD-systems. The first is due to Roesser (1975) and the second one was proposed
by Fornasini and Marchesini (1978). In this paper, the attention is focused on the former one
and more precisely on an hybrid implicit extension of this model.

As for conventional 1D models, the state-space methods are very popular in the realm of
nD-system theory since efficient numerical linear algebra routines can be used to analyse
the models. They can lead to stability conditions which are expressed in terms of linear
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matrix inequalities (LMI) (Boyd et al. 1994)—particularly “Lyapunov-like inequalities”—
that give an interpretation in the sense of Lyapunov, or rather of the existence of a Lyapunov
function (Gałkowski et al. 2003; Hinamoto 1993; Kaczorek 1985; 1994; Henrion 2001;
Kaczorek 2009). The proposed LMI stability conditions, when tractable, are usually only
sufficient. Note that some special cases can be dealt with using non conservative condi-
tions (Ebihara et al. 2006). However, these conditions are only formulated for 2D discrete
systems and cannot be easily extended to control design case.

In fact the amount of contributions proposing “Lyapunov-like conditions” can no longer
be estimated. Conditions for the discrete case, the continuous case, the 2D-case, the 3D-case,
exist but it becomes quite difficult to make connections between these numerous conditions.
The various proofs are based upon matrix manipulation, they often sound like each other
but it is nonetheless quite difficult to find a formal link between the different results. This
is one of the purpose of this paper. We try to propose a quite general framework to address
the stability analysis of nD hybrid Roesser models. Starting from the well-known (but non
tractable) stability conditions based upon characteristic polynomials (Jury 1978; Agathoklis
1988; Piekarski 1977), we relax these conditions using a powerful tool, well-known in the
realm of 1D-systems, namely the full block S-procedure. It allows us to establish a sufficient
LMI condition for the stability of an nD hybrid Roesser model which encompasses many
results of the literature. The connection with the Lyapunov framework is emphasized.

Moreover, to make the result even more general, we also consider parametric uncertainty
of the model. These parameters are involved through rational expressions in the entries of the
model matrices. To make our description as general as possible, we consider implicit linear
fractional representations (LFRs) which are well adapted to our reasoning and contribute to
reduce the conservatism of the obtained LMI conditions for robust stability.

A particular issue in the paper is our discussion concerning the resemblance between the
ways that Laplace or advance operators and uncertain parameters are handled and influence
the pessimism of the conditions. In that sense, the paper is really addressed to the community
of nD-systems to explain how some powerful tools which can be quite familiar to people
working on robust control, can be efficiently exploited to formulate a generic approach to
the robust analysis of uncertain nD Roesser models.

The paper is organized as follows. Section 2 introduces the implicit hybrid Roesser and
particularly insists on the uncertainty description. Section 3 states the main result by showing a
quite generic approach to the relaxation of well known stability conditions into tractable LMI
conditions. Section 4 focuses on the above-evoked resemblance between uncertain parameters
and Laplace (or advance) operators, showing that each of them induce a decision matrix in the
LMI system. Conservatism and possible further investigations are also commented. Section 5
proposes an illustrating example before the paper is concluded in Sect. 6.

Notations In the sequel, R denotes the set of real values whereas C denotes the set of complex
values. The matrix inequalities must be understood in the sense of Löwner i.e. M > 0 (resp.
M < 0, M ≥ 0 and M ≤ 0) means that the Hermitian matrix M is positive definite (resp.
negative definite, positive semi-definite or negative semi-definite). The symbol ’�’ denotes
the Redheffer-like product:

�M � M = �M �

⎡
⎣

AM BM

CM DM

EM FM

⎤
⎦

= DM + CM (EM − �M AM )−1(�M BM − FM ).
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For a given subset S of the set X , the set X \S denotes the set of the elements of X which
do not belong to S . Also let us define the following notations:

k⊕
i=1

Mi = diag
i=1,...k

{Mi }. (1)

At last, (•)′ denotes an evaded part, block or factor in an expression that can be recovered by
invoking symmetry.

2 Uncertain Roesser model

One of the most commonly used model for n-D discrete systems is the Roesser model
(RM) that has been originally introduced in Roesser (1975). It is also possible to define the
continuous or hybrid versions of Roesser model to describe n-D systems such as the following
form (Bochniak and Gałkowski 2005)

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂t1
x1(t1, . . . , tr , jr+1, . . . , jn)

...
∂

∂tr
xr (t1, . . . , tr , jr+1, . . . , jn)

xr+1(t1, . . . , tr , jr+1 + 1, . . . , jn)
...

xn(t1, . . . , tr , jr+1, . . . , jn + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t1, . . . , tr , jr+1, . . . , jn)
...

xr (t1, . . . , tr , jr+1, . . . , jn)

xr+1(t1, . . . , tr , jr+1, . . . , jn)
...

xn(t1, . . . , tr , jr+1, . . . , jn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The vectors xh(t1, . . . , tr , jr+1, . . . , jn) ∈ R
Nh , h = 1, .., n, where

∑n
h=1 Nh = N ,

are the local state subvectors. The global state vector is obtained by concatenating in a
column all these subvectors. A ∈ R

N×N is a dynamic matrix, E ∈ R
N×N is introduced to

consider implicit dynamics on this sequence. Notice that the hybrid formulation of positive
2D models has been recently considered by Kaczorek in Kaczorek (2000), also with fractional
aspects (Kaczorek 2008, 2011).

Also note that in the classic formulation of Roesser models (Roesser 1975; Bochniak and
Gałkowski 2005), the matrix E is the identity matrix. In the present note, we just slightly
extend this formulation to implicit (or descriptor if prefered) systems. Our purpose is not to
address the special issues encountered when dealing with implicit dynamics but simply to
propose a framework for the derivation of LMI stability condition, which is as general as
possible. Implicit models can be quite difficult to handle in the general nD context (Gałkowski
2000) but they can reasonably be considered when studying, for instance, iterative learning
control (ILC) schemes, or repetitive processes (Rogers et al. 2007). Indeed, if the “along
the pass dynamics” involve implicit dynamics, this implicit description will necessary make
a matrix E appear in the corresponding Roesser model. The reader must also be aware
that implicit does not necessarily mean singular. In other words, E is not necessarily rank
deficient. In the sequel, for the sake of simplicity, matrix E is assumed non singular but if
further investigation were to be led on the singular case, a particular attention should be paid
to Kaczorek (1988a,b, 1990, 1992), Gałkowski (2000).

Moreover, matrices A and E are here assumed to be uncertain. More precisely, they
are subject to parametric uncertainties in their entries. The parameters, denoted by δi ,
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i = 1, . . . , p, can be stacked into one single parameter vector δ which is assumed to belong
to a set ∇δ defined by

∇δ =

⎧⎪⎨
⎪⎩

δ =
⎡
⎢⎣

δ1
...

δp

⎤
⎥⎦ ∈ R

p : δ ≤ δi ≤ δ̄i ,

⎡
⎣

δi

δ̄i

⎤
⎦ ∈ R

2 ∀i

⎫⎪⎬
⎪⎭

, (3)

meaning that every real parameter belongs to a given finite range. Besides, in order to be quite
general in the description of the uncertainty, the parameters are assumed to appear in rational
expressions so we assume that A and E are described through implicit Linear Fractional
Representations with respect to δ as follows:

{
A = �A(δ) � A,

E = �E (δ) � E .
(4)

In the above expression, the matrix � is the “uncertainty matrix” defined by
⎧⎪⎨
⎪⎩

�A(δ) = p⊕
i=1

δi Iμi ∈ R
μ×μ,

�E (δ) = p⊕
i=1

δi Iνi ∈ R
ν×ν,

(5)

with, of course,
∑p

i=1 μi = μ and
∑p

i=1 νi = ν, and the matrices A and E are defined by

[
A E

] =
⎡
⎣

AA BA AE BE

CA DA CE DE

E A FA EE FE

⎤
⎦ . (6)

Moreover, the above LFR are assumed to be well-posed i.e. (E A − �A(δ)AA)−1 and
(EE − �E (δ)AE )−1 exist over ∇δ .

This so-called generalized (or implicit) LFR is a slight generalization of that proposed
in Hecker and Varga (2004), Peaucelle et al. (2007). It must be noticed that it is possible to
introduce different uncertain parameters in A and E but it is useless and this description is
more natural since some parameters can appear in both A and E.

Any reader familiar with LFRs-based uncertainties knows that a crucial issue can be the
size of the square matrix �(δ). There are infinitely many possible LFR which describe the
same matrices A and E but it matters to find an LFR with a minimum size of matrix �(δ).
This is a well-known hard problem. Even if the system model is non descriptor, meaning
that E = IN , it can be of high interest to consider implicit LFR on A (rather than a simple
LFR where E A = I, FA = 0). Indeed, they really can lead to a lower size of �A(δ) and
�E (δ) (Hecker and Varga 2004; Manceaux-Cumer and Chrétien 2001; Sari et al. 2011). Note
however that when the size of �A(δ) and �E (δ) increases, the conservatism does not always
drastically increases (see the example in Sect. 5).

With such a general uncertain nD models at hand, we now aim at deriving, in a systematic
fashion, robust stability conditions which are tractable from a computational point of view.

3 LMI relaxation of stability conditions

In this section, we first remind the reader of a stability condition which is here applied to
model (2).

123



Multidim Syst Sign Process (2013) 24:667–684 671

Theorem 1 (Extension of Agathoklis 1988; Jury 1978; Piekarski 1977; Bochniak and
Gałkowski 2005) Let the vector λ and the matrix �λ(λ) be defined by λ = [

λ1 . . . λn
]′

and

�λ(λ) = n⊕
h=1

λh INh ∈ C
N . (7)

The system (2) is robustly asymptotically stable if and only if

det(E�λ(λ) − A) 	= 0, ∀(δ, λ) ∈ ∇δ × ∇λ (8)

where the set ∇λ is defined by

∇λ =

⎧⎪⎨
⎪⎩

λ =
⎡
⎢⎣

λ1
...

λn

⎤
⎥⎦ ∈ C

k :
{

Re(λh) ≥ 0, h = 1, . . . , r,
|λh | ≥ 1, h = r + 1, . . . , n

⎫⎪⎬
⎪⎭

. (9)

Proof By rewriting the determinant in (8), the difference is equivalent to

det(E) det(�λ(λ) − E−1A) 	= 0, ∀(δ, λ) ∈ ∇δ × ∇λ. (10)

The reader is reminded of the nonsingularity of E (implicit nonsingular case). Thus, E−1

exists and det(E) 	= 0. Therefore, it comes

det(�λ(λ) − E−1A) 	= 0, ∀(δ, λ) ∈ ∇δ × ∇λ. (11)

and the condition of Bochniak and Gałkowski (2005) is recovered with E−1A as a dynamic
matrix. 
�

Notice that this condition is not tractable from a computational point of view and concerns
only stability but no other properties (regularity, impulse freeness or causality) which may
be studied while dealing with singular descriptor models. Hence our assumption that E is
nonsingular. However, even when E is singular, the present reasoning about stability is still
valid. But some additional constraints have to be included in order to cope with the previoulsy
mentioned properties, which goes beyond the topic of this article. Once again, see Kaczorek
(1988a,b, 1990) for pioneering insights into the singular case.

From condition (8), we will now derive a sufficient LMI condition for robust stability.
The first step consists in using the properties given in appendix 7 to write (E�λ(λ) − A)

as an implict LFR. Using (50), the product E�λ(λ) can be written

E�λ(λ) =
[

�E (δ) 0
0 �λ(λ)

]
�

⎡
⎢⎢⎢⎢⎣

AE BE 0
0 0 I

CE DE 0
EE FE 0
0 I 0

⎤
⎥⎥⎥⎥⎦

. (12)

Then, using the appendix, more precisely (49), the sum (E�(λ) − A) complies with

− A + E�λ(λ) =
⎡
⎣

�A(δ) 0 0
0 �E (δ) 0
0 0 �λ(λ)

⎤
⎦ �

⎡
⎣

¯A B̄
C D

Ē F̄

⎤
⎦ , (13)
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with

⎡
⎣

¯A B̄
C D

Ē F̄

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AA 0 0 BA

0 AE BE 0
0 0 0 I

−CA CE DE −DA

E A 0 0 FA

0 EE FE 0
0 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

Condition (8) can then be written

det

⎛
⎝� �

⎡
⎣

A B

C D

E F

⎤
⎦
⎞
⎠ 	= 0, ∀(δ, λ) ∈ ∇δ × ∇λ, (15)

where

� =
[

�(δ) 0
0 �λ(λ)

]
, with �(δ) = p⊕

i=1
δi Iμi +νi , (16)

by re-arranging the rows of ¯A , B̄, Ē , and F̄ to obtain A , B, E and F as in appendix 7.
Define the following various values related to the parameter ranges:

ci = δi + δ̄i

2
, gi =

(
δ̄i − δi

2

)2

− c2
i , i = 1, . . . , p. (17)

Also define the set ∇ as follows:

∇ =
{

� ∈ C
(μ+ν+N )×(μ+ν+N ) :

[
�

I

]′
X

[
�

I

]
≥ 0, ∀X ∈ X

}
(18)

where X is a set of multipliers defined by

X=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− p⊕
i=1

Pi 0 0

0 0 0

0 0
p+n⊕

h=p+r+1
Ph

(•)′ 0 0
0 (•)′ 0
0 0 0

p⊕
i=1

ci Pi 0 0

0
p+r⊕

h=p+1
Ph 0

0 0 0
p⊕

i=1
gi Pi 0 0

0 0 0

0 0 − p+n⊕
h=p+r+1

Ph

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Pk = P ′
k > 0, ∀k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (19)

With such a definition of ∇, it can be easily seen that

(δ, λ) ∈ ∇δ × ∇λ ⇒ � ∈ ∇. (20)

Unfortunately (we will come back to this issue), the reverse is not true. Therefore, ∇ char-
acterizes an overset of ∇δ × ∇λ. Nevertheless, condition (15) can be written

det(D + C (E − �A )−1(�B − F )) 	= 0, ∀(δ, λ) ∈ ∇δ × ∇λ. (21)

Due to (20), this condition holds if (but not only if)

det(D + C (E − �A )−1(�B − F )) 	= 0, ∀� ∈ ∇ (22)
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⇔ (•)′ (•)′(−I )

[
C ′
D ′

]′

︸ ︷︷ ︸
�

[
(E − �A )−1(�B − F )

I

]
< 0, ∀� ∈ ∇. (23)

By virtue of Corollary 1, this last inequality is equivalent to

∃X ∈ X : � +
[

E F
A B

]′
X

[
E F
A B

]
< 0. (24)

The previous reasoning is summarized in the next theorem:

Theorem 2 The system (2) is robustly asymptotically stable if there exist Hermitian positive
matrices Pk = P ′

k > 0, k = 1, . . . , μ + ν + n such that (24) holds with � and X defined
in (23) and (19) respectively.

Notice that this inequality is an LMI in the various matrices Pk and thus is very tractable
from a computational point of view.

4 Discussion

In this section, we propose comments about the meaning and the potentiality of Theorem 2.
We particularly insist on the resemblance between the problems induced by parametric uncer-
tainty and multidimensionality.

4.1 Dimensionality, number of parameters and conservatism

If one pays a little attention to condition (24), one can see that the decision variables in the
LMI are all Hermitian matrices (possibly symmetric in practice as it is assumed in the sequel)

{
Pi = P ′

i > 0, Pi ∈ R
(μi +νi )×(μi +νi ) ∀i ∈ {1, . . . , p},

Ph = P ′
h > 0, Ph ∈ R

Nh×Nh ∀h ∈ {p + 1, . . . , n}. (25)

So each parameter is considered in the LMI (as well as in matrix �) in the same fashion as a
Laplace or advance variable associated with a dimension, or the other way around. The main
conservatism of the condition is highlighted in (20). This equation means that the property is
ensured for any matrix � belonging to set ∇ which is largest than the required set. Indeed, if
one looks at the definition of ∇ in (18), it is clear that there is no constraint that would force
matrix � to comply with the structure given in (16). In other words, the LMI (24), when
satisfied, guarantees that det(E�λ(λ) − A) 	= 0 for the matrices � in ∇ among which those
of interest can be found. If ∇ exactly described the concerned set, the S-procedure would be
said lossless for our problem. Unfortunately, it is not the case; The structure given in (16) is
not taken into account.

Roughly speaking, the conservatism increases with the number of zero entries in � as
defined in (16). Consequently, the larger p and n are, the more conservative the LMI (24)
is. (Moreover, it matters to exhibit LFR so as to reduce μi and νi as much as possible in
order to also reduce the conservatism as well as the computation time.) It is not the first time
that uncertain parameters are interpreted as new dimensions. This idea is also evoked in a
completely different way in Rafajlowicz and Rafajlowicz (2011).

Several LMI or Lyapunov-like nominal stability conditions of nD systems encountered
in the literature could be deduced with our approach. We here propose few classic examples
of such LMI conditions. Indeed, consider a nominal purely continuous non implicit Roesser
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system i.e. A and E reduce to DA and I respectively and r = n. Then the expression
(�λ(λ) − DA) can be written

�λ(λ) − DA = �λ(λ) �

⎡
⎣

0 I
I 0
I DA

⎤
⎦ . (26)

Following the same reasoning as in the previous section (but with much simpler expressions),
a sufficient LMI condition for nominal stability is

∃X :
[−I 0

0 0

]
+

[
I DA

0 I

]′
X

[
I DA

0 I

]
< 0, (27)

with

X =
[

0 P
P 0

]
, P = n⊕

h=1
Ph, Ph = P ′

h > 0, (28)

which, by Finsler’s lemma (Finsler 1937), is equivalent to

∃X :
[

DA

I

]′
X

[
DA

I

]
< 0. (29)

This inequality also writes

D′
A P + P DA < 0, (30)

which simply means that
∑n

h=1 xh′
Ph xh is a Lyapunov function in the continuous sense for

the system.
In the same fashion, consider a nominal purely discrete non implicit Roesser system i.e.

A and E reduce to DA and I and r = 0, then the reasoning is the same except that, in this
case, X is defined by

X =
[

P 0
0 −P

]
, with P = n⊕

h=1
Ph, Ph = P ′

h > 0, (31)

which leads to

−P + D′
A P DA < 0, (32)

meaning, once again, that
∑n

h=1 xh′
Ph xh is a Lyapunov function in the discrete sense for the

system.
If now, one comes back to a conventional 1D system, inequalities (30) and (32) are the

usual Lyapunov’s and Stein’s inequalities respectively, in which P = P ′ is a full block
positive definite matrix.

In such 1D cases, the S-procedure is lossless so the conditions are not conservative. A
little more general example can be considered. Let the following nominal 2D hybrid Roesser
model be given:

[
∂

∂t
x1(t, j)

x2(t, j + 1)

]
=

[
A11 A12

A21 A22

]

︸ ︷︷ ︸
DA

[
x1(t, j)
x2(t, j)

]
. (33)
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Then, in that case, the structure of X is as follows:

X =

⎡
⎢⎢⎣

0 0 P1 0
0 P2 0 0
P1 0 0 0
0 0 0 −P2

⎤
⎥⎥⎦ , P1 = P ′

1 > 0, P2 = P ′
2 > 0. (34)

If one makes the choice

�λ(λ) − DA = �λ(λ) �

⎡
⎣

0 I
I −DA

I 0

⎤
⎦ (35)

Then, still the same reasonning leads to the next LMI condition
[

A′
21 P2 A21 + A′

11 P + P A11 A′
21 P2 A22 + P1 A12

A′
22 P2 A21 + A′

12 P1 A′
22 P2 A22 − P2

]
< 0, (36)

in which P1 acts as a Lyapunov matrix for the continuous dimension while P2 acts as a
Lyapunov matrix for the discrete dimension. If the choice (26) is made instead of (35),
LMI (36) is also obtained.

But of course, these are only very special instances of the present contribution which
enables large extensions to much more sophisticated analytical problems (see the next sub-
section).

Concerning the robustness aspects, there are of course many LMI results which cannot be
considered as special cases of our approach because the considered uncertainties are not the
same (norm-bounded case) or, when possible, are simply reformulated another way (polytopic
case as in Xu et al. 2010). However, we claim that the present approach is very general and
makes clearly the conservatism and the resemblance between the number of parameters
and the dimensionality appear. Moreover, concerning the popular polytopic description of
the parametric, the reader must be aware that if A and E do not depend linearly on the
parameters δi , then the polytopic description cannot be used a priori.

Coming back to the conservatism, another source of sufficiency comes from the fact that
in the definition of ∇, the realness of the parameters δi is not taken into account. Indeed the

approach impicitely assume that each δi belongs to a disc of center ci with radius

(
δ̄i − δi

2

)

whereas it also belongs to the real axis. This realness can be taken into account, following
the idea proposed in Iwasaki and Hara (2005), Scorletti Dinh et al. (2005), Bachelier and
Mehdi (2006), by changing the structure of X into

X = X ′ =
[

X11 X12

X21 X22

]
(37)

with

[
X11

X21

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− p⊕
i=1

Pi 0 0

0 0 0

0 0
p+n⊕

h=p+r+1
Ph

(•)′ 0 0
0 (•)′ 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
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[
X12

X22

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p⊕
i=1

ci Pi − G j 0 0

0
p+r⊕

h=p+1
Ph 0

0 0 0
p⊕

i=1
gi Pi 0 0

0 0 0

0 0 − p+n⊕
h=p+r+1

Ph

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Pk = P ′
k > 0 and Gi = −G ′

i . This modification preserves the linearity with respect to
the decision variables and thus just simply makes the LMI system a little more complicated,
slighlty increasing the computation. The examples show that the reduction of conservatism,
when it exists, is usually quite weak.

4.2 About possible extensions

To avoid even tougher notations, we have restricted our presentation to robust stability prob-
lems. Actually, the performances to be analyzed could be much more general. For instance,
positive realness or bounded realness (i.e. H∞-level) of a system could be studied in a sim-
ilar way. Indeed, Such properties can actually be expressed as in (56) with an appropriate
choice of � (different from that considered in (23)) and thus tested through S-procedure. In
fact, these properties can be connected to the so-called Kalman-Yakubovich-Popov (KYP)
lemma (Willems 1971; Rantzer 1996) a nD version of which has been proposed in Bachelier
et al. (2008). This would correspond to an extension of the results of Bachelier et al. (2008)
to the case where the matrices are subject to uncertain parameters as introduced in Sect. 2.
This could have been done here but perhaps it would have led to undue complications which
would have blurred the message we want to convey.

Going on with perspectives, the design is of course an interesting challenge. Many LMI
analytical conditions have been extended to design, especially the state feedback control law.
This is also something we are about to address. It seems that this approach is more powerful
for analysis than for synthesis, at least at first sight.

5 An illustrative example

To illustrate the relevance of the present contribution, the next model can be considered:
⎡
⎢⎣

1 + 2δ1 − 1

2 − δ1

δ1(1 − δ2)

δ2(2 − δ1)

0 1 + 1 − δ2

δ2

⎤
⎥⎦

︸ ︷︷ ︸
E

[
∂

∂t
x1(t, j)

x2(t, j + 1)

]
=

⎡
⎢⎣

−1 + 2δ1 − 1

δ1 − 1
0.2

0.1 + 1 − δ2

δ2
0.1

⎤
⎥⎦

︸ ︷︷ ︸
A

[
x1(t, j)
x2(t, j)

]
.

(38)

This system is a 2D hybrid Roesser model for which N = n = 2 and which involves two
uncertain parameters δ1 and δ2 in a rational way. These parameters are assumed to satisfy

{
δ1 = δ10(1 − α) ≤ δ1 ≤ δ1 = δ10(1 + α),

δ2 = δ20(1 − α) ≤ δ2 ≤ δ2 = δ20(1 + α),
(39)
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where δ10 = 0.5 and δ20 = 1 are the nominal values of the uncertain parameters and where
α > 0 is some sort of size of the box ∇δ where δ lies.

Matrices A and E can be formulated as implict LFRs as follows:

A =
[

δ1 0
0 δ2

]
�

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 2 0
0 1 1 0

−1 0 −1 0.2
0 1 0.1 0.1
1 0 1 0
0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(40)

and

E =
[

δ1 0
0 δ2

]
�

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 2 0
0 1 0 1
1 0 1 0
0 1 0 1
2 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (41)

With the notations in Eqs. (14) and (15), it comes

⎡
⎣

¯A B̄
C D

Ē F̄

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 2 0
0 1 0 0 0 0 1 0
0 0 1 1 2 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 0 1 0 1 −0.2
0 −1 0 1 0 1 −0.1 −0.1
1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 2 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

⇒
⎡
⎣

A B
C D
E F

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 2 0
0 0 1 1 2 0 0 0
0 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 0 1 0 1 −0.2
0 −1 0 1 0 1 −0.1 −0.1
1 0 0 0 0 0 1 0
0 0 2 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)
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Matrix � has the following structure:

� =

⎡
⎢⎢⎣

δ1 I2 0 0 0
0 δ2 I2 0 0
0 0 λ1 0
0 0 0 λ2

⎤
⎥⎥⎦ ∈ C

6×6. (44)

To test robust stability, the considered structure of the multilplier X is the one given by (19)
with

c1 = δi0 , gi = δi0(α
2 − 1), and Pi = P ′

i ∈ R
2×2, ∀i ∈ {1; 2},

Pi = Pi ∈ R, ∀i ∈ {3; 4},
and with

p = 2, r = 1, n = 2.

Notice that P1 and P2 are associated with δ1 and δ2 while P3 and P4 are associated with λ1

and λ2, i.e. with the continuous and discrete dynamics which are of course coupled.
By applying Theorem 2, i.e. by testing the feasibility of LMI condition (24), solutions are

found for all α such that

α ∈ [0; 0.68775].
(α = 0 corresponds to the nominal case.) Beyond this upper value 0.68775, the LMI is found
infeasible meaning that the stability cannot be proved owing to this condition (but it may still
hold since the condition is conservative).

As an example, for α = 0.5, the solutions proposed by the solver are

P1 =
[

1.2526 0.5714
0.5714 0.6914

]
> 0,

P2 =
[

0.3547 −0.3236
−0.3236 0.5238

]
> 0,

P3 = 0.2068, P4 = 0.1416.

For another choice of LFRs which is far from optimal (� ∈ R
10×10), the greatest value of α

for which stability could be assessed is 0.68766 (the details are omitted since the LFR is very
cumbersome). Thus, this is just slightly lower than with the small LFR since the best value
of α has been reduced by only 0.013 % and the question of numeric accuracy is of course
raised. The computation time is just a bit greater (less than twice). However, this is just an
example and small LFRs are easier to handle from many points of view.

6 Conclusion

In this paper, we have proposed a quite generic approach to analyse the robust stability of
implicit hybrid Roesser models. The uncertain parameters appear through implicit LFR in
the entries of the system matrices so the description is very general. The obtained conditions
are expressed in terms of LMI, so they are very tractable from a computational point of view.
Extensions to a larger class of problems beyond stability, e.g. positive realness or bounded
realness should soon follow. The design of control laws might be more difficult.
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7 A Some useful properties of implicit LFR

In this appendix, we focus a little on the properties of implicit LFRs. We only give the three
properties that are useful in the body of the paper.

Let three implicit LFRs be given:

M1 = �1 �

⎡
⎣

A1 B1

C1 D1

E1 F1

⎤
⎦ , (45)

M2 = �2 �

⎡
⎣

A2 B2

C2 D2

E2 F2

⎤
⎦ . (46)

M = �̄ �

⎡
⎣

Ā B̄
C D
Ē F̄

⎤
⎦ , (47)

with �̄ a block diagonal matrix which satisfies

�̄ = T −1�T, (48)

where � is also a block diagonal matrix and where T is a matrix which enables the permuation
of the blocks in � to get �̄. Then it comes:

Summation:

M1 + M2 =
[

�1 0
0 �2

]
�

⎡
⎢⎢⎢⎢⎣

A1 0 B1

0 A2 B2

C1 C2 D1 + D2

E1 0 F1

0 E2 F2

⎤
⎥⎥⎥⎥⎦

. (49)

Multiplication:

M1 M2 =
[

�1 0
0 �2

]
�

⎡
⎢⎢⎢⎢⎣

A1 B1C2 B1 D2

0 A2 B2

C1 D1C2 D1 D2

E1 F1C2 F1 D2

0 E2 F2

⎤
⎥⎥⎥⎥⎦

. (50)

Block permutation:

M = � �

⎡
⎣

A B
C D
E F

⎤
⎦ , (51)

with

[
A B
E F

]
=

[
T 0
0 T

] [
Ā B̄
Ē F̄

]
(52)
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8 Descriptor concrete S-procedure

In this appendix, we first recall the abstract full block S-procedure (Yakubovich 1971) for-
mulated about in the same way as in Scherer (2001) and then we make it more concrete by
specializing it to the case where implicit LFRs are involved.

Theorem 3 (Scherer 2001) Let the following mathematical objects be introduced :

• ∇, a compact set of complex matrices �;
• An Hermitian matrix �;
• A matrix V ∈ R

l×n;
• S (�), a family of subspaces C

l continuously depending on � over ∇;
• B(�) = {x ∈ C

n : V x ∈ S (�)}, � ∈ ∇.

Then the next two statements are equivalent :

a)

x ′�x < 0 ∀x ∈ B(�)\{0}, ∀� ∈ ∇. (53)

b)

∃X :
⎧⎨
⎩

V ′ X V + � < 0

z′ Xz ≥ 0 ∀z ∈ S (�),∀� ∈ ∇
(54)

Corollary 1 Let X be set of multipliers X which enables the characaterization of a compact
set of matrices � defined as follows:

∇ =
{
� :

[
�

I

]′
X

[
�

I

]
≥ 0, ∀X ∈ X.

}
(55)

Then the two following statements are equivalent:

i) ∀� ∈ ∇,

[
(E − �A)−1 (�B − F)

I

]′
�

[
(E − �A)−1 (�B − F)

I

]
< 0, (56)

ii)

∃X ∈ X :
[

E F
A B

]′
X

[
E F
A B

]
+ � < 0. (57)

Proof This is an application of Theorem 3. Indeed Assume that the subspace S (�) is defined
as

S (�) = Ker
([

I −�
])

, (58)

where Ker(.) denotes the right nullspace of a matrix. The elements of S (�) can be charac-
terized by

z =
[

�

I

]
q, q ∈ C

2μ. (59)
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Therefore, with such a characterization, the definition of ∇ in (55) is such that it makes the
second inequality in (54) verified. Indeed, it becomes the definition of ∇ itself. Moreover,
the matrix V is chosen as follows:

V =
[

E F
A B

]
. (60)

Then for any vector x of the form

x =
[

(E − �A)−1 (�B − F)

I

]
y, (61)

ones gets

[
I −�

]
V x = 0, (62)

which proves that V x belongs to S (�) i.e. that x belongs to B(�) as defined in Theorem 3.
Thus, applying Theorem 3 amounts to proving the equivalence between statements i) and ii).


�
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