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Abstract— In this paper, the stability of a Networked Control
System (NCS) with time-varying delays is analyzed. A discrete-
time state-space model is used to analyze the dynamics of the
NCS. The delay is introduced by the network itself and is
assumed to be upperbounded by a fraction of the sample-time.
A typical motion control example is presented in which the time-
variation of the delay results in an unstable system, although
for each fixed delay the system is stable. Conditions in terms
of LMIs are presented guaranteeing the robust asymptotic
stability of the discrete-time system, given bounds on the
uncertain time-varying delay. Moreover, it is shown that the
robust stability conditions also guarantee asymptotic stability
of the intersample behavior. Additionally, LMIs are presented
to synthesize a feedback controller that stabilizes the system for
the uncertain time-varying delay. The results are illustrated on
an example concerning a mechanical model of a motor driving
a roller in a printer.

I. INTRODUCTION

A networked control system (NCS) is a control system in
which (part of) the control loop is closed over a real-time
network. Examples can be found in e.g. DC motors, robots,
and automobiles as described in [1]. The use of a commu-
nication network that is shared between different devices
complicates the analysis and design of an NCS. Standard
analysis tools are not applicable due to the non-ideal behavior
of the network. Three effects [2], i.e. time-delay, data packet
dropouts ([3], [4]) and multiple packets, occur in an NCS. In
this paper, we assume that all data arrives and is transmitted
in one packet. Hence, our focus is on the effect of delays. The
time-delay, consisting of the previously described network
delay and the computation time, is assumed to be time-
varying, uncertain, and upperbounded by a fraction of the
constant sample-time. For this class of NCSs, we investigate
the influence of such delays on the stability.

In literature, many modeling approaches for NCSs with
delays are given, as well as different methods to assess the
stability. One of the first contributions is by Halevi and
Ray [5], where a discrete-time representation of an NCS
is derived, resulting in a finite-dimensional, time-varying
discrete-time model. The model is based on a system with
a time-driven controller and sensor and an event-driven
actuator. The stability is analyzed for systems with constant
and periodic time-delays. A comparable NCS model is given
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in [6] and [2], although the assumptions are slightly different,
because an event-driven controller is used. The stability
analysis is applicable for systems with constant delays only.
An extension is presented in [7], where random delays
are described. Optimal controllers and state estimators are
designed, dependent of the covariance of the delayed signals.
Stability results are obtained based on stochastic analysis.

A different modeling approach is used in [3] and [4],
where a continuous-time description, with a zero-order-hold
controller, is proposed. In [4], they show that their stability
conditions and controller design are less conservative than
those in [3]. Still, their result is conservative, because it is
based on Lyapunov-Krasovskii functionals that give conser-
vative results, in general. Here, our focus is on modeling and
analysis of NCSs in discrete-time exploiting stability analysis
tools for discrete-time switched systems.

It is well known that a constant delay decreases the
performance of a system and can even result in instability [1].
Examples showing the effect of time-variations in the delay
on the stability are rare. In this paper we show that an NCS,
based on a typical motion system, may become unstable for
time-varying delays, varying in a bounded set; even when
the NCS with any constant delay taken from this set is
asymptotically stable. The fact that the time-varying nature
may induce instability was also shown in [8]. The stability of
NCSs for time-varying delays is only investigated recently in
literature. In [9], Frequency-domain stability criteria, based
on the small gain theorem, are proposed to investigate the
stability of single-input-single-output control systems with
time-varying delays. Note that, in the current work, we
consider state-feedback designs and propose a synthesis
approach based on alternative stability criteria. In [10], one
studies the stability and stabilization problem of a NCS via
approximating the discrete-time NCS description depending
on the time-varying delay via a Taylor series. That leads to an
uncertain system with polytopic uncertainties and they obtain
LMIs for both the analysis and synthesis of a controller
for the approximated system. The procedure is iterative in
the sense that the order of the Taylor series approximation
is increased until - if ever - a feasible controller is found
for the approximated system. An additional LMI test has
to be performed to evaluate if the constructed controller
is also stabilizing for the original plant (i.e. including the
approximation error). In our approach, we propose a direct
convex embedding of the discrete-time NCS description in
an uncertain system that leads to an LMI condition without
the need for an iterative procedure. Another difference is
that, in [10], another controller structure is applied than in
this paper.

In this paper no assumptions on the occurrence of the
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delays are made and no online routine to determine the pre-
vious delays is implemented. The limitation in the time-delay
is that it is upperbounded by a fraction of the sample-time.
We adopt the discrete-time NCS model of [6]. For this class
of systems, LMI conditions for the robust stability of the
NCS are proposed, where the robustness refers to robustness
with respect to uncertain time-varying delays taken from a
bounded set. Moreover, it is shown that these LMI conditions
also ensure stability of the intersample behavior. Based on
the same method, LMIs are proposed, with which a robust
feedback controller for given bounds on the time-varying
delay can be constructed.

The outline of the paper is as follows. In Section II, the
NCS model is derived. Section III describes an example
from the document printing domain to motivate the stability
analysis of NCSs with time-varying delays. In Section IV, a
method to guarantee robust asymptotic stability of discrete-
time models of NCSs, with time-varying bounded delays, is
described. The proposed stability conditions are formulated
in terms of LMIs and guarantee stability at the sampling
instants. In Section V, we present a model for the intersample
behavior and show that the proposed LMIs for robust stability
also guarantee the asymptotic stability of the intersample
behavior. In Section VI, LMIs are proposed, solving the
synthesis problem of a robust feedback controller. In Sec-
tion VII, the results of Section IV are applied to the printer
example. Conclusions and directions for future research are
presented in Section VIII.

II. A NCS MODEL

In this paper, a discrete-time description of an NCS,
based on [6], is used. The NCS is schematically depicted
in Figure 1. It consists of a continuous-time plant and a
discrete-time controller, which receives information from the
plant only at the sampling instants tk = kh (with h the sample-
time). Additionally, in the model, the computation time and
the networked induced delays, i.e. the sensor-to-controller
delay τsc and the controller-to-actuator delay τca have to be
taken into account. Similar to [6] the sensor acts in a time-
driven fashion, and the controller and actuator (including the
zero-order-hold (ZOH) in Figure 1) act in an event-driven
fashion. Under these assumptions, in combination with a
controller that is independent of the time-delays, and the
assumption that vacant sampling does not occur (τsc < h)
all delays can be represented by a single delay τk, which is
taken into account in the discrete-time control signal uk [7],
[8]. The sampling instants tk are determined by the time-
driven sensor output. Moreover, we assume that the total
delay τk is smaller than the constant sample-time h: τk < h.
The continuous-time model of the NCS can then be given
by:

ẋ(t) = Ax(t)+Bu∗(t)
u∗(t) = uk, for t ∈ [kh+ τk,(k +1)h+ τk+1)

(1)

with A and B the continuous-time system and input matrices,
x(t) ∈ R f the state, t ∈ R the time, τk the delay at sampling
moment k, and uk ∈ R the delayed discrete-time input. For
the sake of simplicity, we assume that we measure the entire
state, i.e. yk = xk, at the sampling instants.

Clock

Sensor

Controller

PlantZOH

τscτca

uk u∗(t) yk

r(t) = 0

Fig. 1. Schematic overview of the networked control system.

The discretization of (1) on the sampling instants tk = kh
(the sampling moments) gives the NCS model, which is the
basis of our analysis:

xk+1 = eAhxk +
∫ h−τk

0
eAsdsBuk +

∫ h

h−τk

eAsdsBuk−1. (2)

This equation is only valid at the sampling instants tk, where
the state is given by xk := x(tk) and the input by uk. In this
work, we adopt a linear state feedback law and the reference
input (r(t) = 0 in Figure 1) of the feedback controller is
assumed to be zero, which results in the control law uk =
−Kxk. The closed-loop NCS model is then given by:

xk+1 = eAhxk −
∫ h−τk

0
eAsdsBKxk −

∫ h

h−τk

eAsdsBKxk−1. (3)

Now, by defining the state of the closed-loop NCS model
by ξk =

(
xT

k xT
k−1

)T
, we obtain the following state-space

model, given the maximum delay τmax ∈ [0,h]:

ξk+1 = Ã(τk)ξk, τk ∈ [0,τmax], (4)

with Ã(τk) =

(
eAh −

∫ h−τk
0 eAsdsBK −

∫ h
h−τk

eAsdsBK
I 0

)
, and

ξk ∈ Rn, with n = 2 f . Note that in (4) arbitrary time-varying
delays, upperbounded by τmax, are accounted for.

Before analyzing the stability of NCSs, we present a
motivating example showing the potentially destabilising
effect of time-varying delays.

III. A MOTIVATING EXAMPLE

The example is from the document printing domain [11].
In general, a paperpath, consisting of pinches (rollers), driven
by motors, is used to move a paper through the printer. Here,
the motor controllers share the CPU-time of one processor,
which is connected to the motors and sensors via a network
resulting in unpredictable time-varying delays in the control
loop.

We limit ourselves to one single motor driving one pinch,
as depicted in Figure 2. Still, the controller is connected to
the motor via the network. In the motor-pinch model, the
motor is assumed to behave ideally and slip between the
paper and the pinch is neglected, which gives:

ẍs =
nrP

JM +n2JP
u, (5)

with JM = 1.95 · 10−5kg/m2 the inertia of the motor, JP =
6.5 · 10−5 kg/m2 the inertia of the pinch, rP = 14 mm the
radius of the pinch, n = 0.2 the transmission ratio between
motor and pinch, xs the sheet position and u the motor torque.
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Lower pinch
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JP, rP

xs

n

JM

Motor
u

Fig. 2. Schematic overview of the motor-pinch example

The continuous-time state-space representation of (5),
where the delays are accounted for in the discrete-time input

uk is given by (1), with A =

(
0 1
0 0

)
, B =

(
0

nrP
JM+n2JP

)
, and

x(t) =
(
xs(t) ẋs(t)

)T
. Adopting a feedback controller of the

form uk = −Kxk, with K =
(
K1 K2

)
, the integrals in Ã(τk)

of (4) can be computed, which yields:

Ã(τk) =

⎛
⎜⎜⎝

1− 1
2 α2K1b h− 1

2 α2K2b τkβK1b τkβK2b
−αK1b 1−αK2b −τkK1b −τkK2b

1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ,

(6)
with b = nrP

JM+n2JP
, α = h− τk, and β = 1

2 τk −h.
If the delay τk is constant, the stability of (6) can be

determined by checking the eigenvalues of Ã(τk). Consider
this system with a sample-time h = 1 ms and two possible
constant delays: τa = 0.2 ms, and τb = 0.6 ms. A linear feed-
back gain K =

(
50 11.8

)
results in a stable system (4), (6)

for any constant delay τ in the interval [0,τb], see Figure 3.
The eigenvalues of the matrix Ã(τa) are λ1 = 0.996, λ2,3 =
−0.097±0.539i, and λ4 = 0. The eigenvalues of Ã(τb) are
λ1 = 0.996, λ2,3 = 0.203±0.927i, and λ4 = 0.

However, the system becomes unstable if the delays occur
in an alternating sequence (τa,τb,τa,τb, ...), as is shown in
the lower plot in Figure 3. The stability of this periodic
system can be obtained from the eigenvalues of the matrix
Ã(τb)Ã(τa) [5], which are: λ1 = 0.992, λ2 =−1.012, λ3 = 0,
and λ4 = −0.267.
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Fig. 3. Response of system (4), (6) for: (upper figure) constant τa = 2 ·10−4

s, τb = 6 ·10−4 s, and (lower figure) the alternating sequence τa,τb.

In many practical situations this periodic stability test is
too limited. The use of the network results in variations
in the time-delay, which are in general not periodic (see
e.g. [7]). Therefore, in the next section we propose a stability
condition for uncertain time-varying delays.

IV. ROBUST STABILITY OF THE NCS FOR TIME-VARYING

UNCERTAIN DELAYS

Consider again system (4). The time-delay τk is time-
varying, but upperbounded by τmax ∈ [0,h]. This results in
a discrete-time switching system, on the sample instants tk,
due to the dependence of the matrix Ã(τk) on τk. A sufficient
condition for stability is that for all matrices Ã(τk), τk ∈
[0,τmax] a common quadratic Lyapunov function exists, i.e.
that the following LMIs are feasible:

P = PT > 0
ÃT (τk)PÃ(τk)−P < 0, ∀τk ∈ [0,τmax].

(7)

According to (7), an infinite number of LMIs needs to be
checked, because τk can take infinitely many distinct values
in the interval [0,τmax]. In Theorem 4.1, we will propose a
result that uses a finite number of LMIs to guarantee robust
asymptotic stability for time-varying delays.

Theorem 4.1: Consider system (4), with the delay-
dependent matrix Ã(τk), τk ∈ [0,τmax], and τmax ∈ [0,h].
Define the set of matrices ¯A by:

¯A
�

= {Ā ∈ Rn×n : āi j = qi j or āi j = ri j, i, j = 1,2, ...,n}, (8)

with āi j the (i, j)th element of Ā, qi j = minτ∈[0,τmax] ãi j(τ),
and ri j = maxτ∈[0,τmax] ãi j(τ) the minimum and maximum
value of the (i, j)th element ãi j(τ) of Ã(τ), respectively.

If there exists a solution to the discrete-time Lyapunov
matrix inequalities:

P = PT > 0
ĀT PĀ−P < 0, ∀Ā ∈ ¯A ,

(9)

then system (4) is robustly globally asymptotically stable for
any sequence of delays τk taking values in [0,τmax].

Proof: Note that the set ˜A := {Ã(τ)|τ ∈ [0,τmax]}
satisfies ˜A ⊂ A with

A := c̄o( ¯A ) = {Â = (âi j) : qi j ≤ âi j ≤ ri j; i, j = 1,2, ...,n},
(10)

with “c̄o” denoting the convex hull. Therefore, the set of
interval matrices A is a convex overestimation of the set of
matrices ˜A . Due to the fact that A = c̄o( ¯A ), we can rewrite
every matrix Â ∈ A as a function of the matrices Ā ∈ ¯A :

Â =
L

∑
i=1

δiĀi, with δi ≥ 0,
L

∑
i=1

δi = 1, (11)

with L the size of the set ¯A .
We will prove that, under condition (9), V (ξ ) = ξ T Pξ is

a common quadratic Lyapunov function for the system

ξk+1 = Âkξk, for Âk ∈ c̄o( ¯A ), (12)

which implies GAS of (4) since ˜A ⊂ c̄o( ¯A ). V (ξ ) is a
common quadratic Lyapunov function for system (12) if the
following LMIs are feasible:

P = PT > 0
(∑L

i=1(δiĀi)
T )P(∑L

i=1 δiĀi)−P < 0.
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Applying Schur’s complement gives:(
P ∑L

i=1(δiĀi)
T P

∑L
i=1(PδiĀi) P

)
=

L

∑
i=1

δi

(
P ĀT

i P
PĀi P

)
> 0.

(13)
By applying Schur’s complement to the inequality in (13),
combined with the fact that every δi > 0, i = 1, . . . ,L, we can
show that (9) implies (13).

The number of LMIs we need to test for our stability
condition in (9), depends on the number of matrices in ¯A ,
as defined in (8). In general, this number of matrices L is
equal to 2m, with m = n2, and n the dimension of Ã(τk). Due
to the specific form of Ã(τk) in (4), where the lower half of
the matrix Ã is independent of τk, the size of ¯A is equal to
2

m
2 .
Note that the use of the overestimation A = c̄o( ¯A ) for ˜A

results in a conservative stability criterion for (4), because
specific knowledge on the dependence of the different matrix
entries of Ã(τk) on τk is lost. A tighter approximation of
Ã(τk), to derive less conservative stability conditions, is a
topic of future research.

V. INTERSAMPLE BEHAVIOR

In Theorem 4.1, we have provided sufficient conditions
for asymptotic stability at the sampling instances kh, k ∈
{1,2, ...}, but the behavior of the continuous-time system (1)
between the sample-times remains unknown. In this section,
we will show that the intersample behavior is asymptotically
stable as well.

Consider the continuous-time system (1). To study the
intersample behavior an additional variable t̃ = t − kh, t ∈
[kh,kh + h], is introduced for which holds t̃ ∈ [0,h]. To
determine the time-evolution of the state of the continuous-
time system for t ∈ [kh,kh+h], the well-known convolution
integral has to be solved. Two different cases can be dis-
tinguished, due to the uncertainty of the value of the delay
τk ∈ [0,h], namely τk > t̃ and τk ≤ t̃. For τk > t̃ and τk ≤ t̃
the time-evolutions of the state are, respectively, given by:

x(kh+ t̃) = eAt̃x(kh)−
∫ t̃

0
eAsdsBKx(kh−h) (14)

and

x(kh+ t̃) =
(

eAt̃ −
∫ t̃−τk

0 eAsdsBK
)

x(kh)−∫ t̃
t̃−τk

eAsdsBKx(kh−h).
(15)

For both cases, an upper bound for ‖x(kh + t̃)‖ can be
derived, as is stated in the following lemma.

Lemma 5.1: Consider the continuous-time system (1) and
the continuous-time state evolutions (14) and (15), and the
discrete-time system (3). Then the norms of the states of the
continuous-time system (1) are linearly related to the norms
of the states of the discrete-time system (3), according to the
following relations: if λmax �= 0:

‖x(kh+ t̃)‖ ≤ max
{

eλmaxh,1
}
‖x(kh)‖+

1
λmax

(
eλmaxh −1

)
‖BK‖(‖x(kh)‖+‖x(kh−h)‖),

(16)
and if λmax = 0:

‖x(kh+ t̃)‖ ≤ (1+h‖BK‖)‖x(kh)‖+h‖BK‖‖x(kh−h)‖,
(17)

for all t̃ ∈ [0,h] and λmax = 1
2 max(eig(A+AT )).

The proof of this Lemma is given in the Appendix. Next,
Theorem 5.2 shows that the conditions in Theorem 4.1 under
which the discrete-time system is asymptotically stable,
imply asymptotic stability of the intersample behavior.

Theorem 5.2: If system (4) satisfies the LMI conditions
in (9), then the continuous-time system (1) is asymptotically
stable.

Proof: Lemma 5.1 shows that the intersample behavior
is bounded, given boundedness of the states of the discrete-
time system (4). The Lyapunov-based stability argument
in Theorem 4.1 implies such boundedness of the states of
system (4). Moreover, if Theorem 4.1 is satisfied, then the
states of the discrete-time system converge to zero as k → ∞,
which, according to Lemma 5.1, results in convergence to
zero of the evolution of the states of the continuous-time
system.

Finally, condition (9) in Theorem 4.1 guarantees that
‖xk+1‖P ≤ γ‖xk‖P, with γ < 1. Lemma 5.1 can be rewritten in
terms of the P-norms of the states. The fact that the discrete-
time P-norms of the states at the sampling instants are
decreasing, combined with the adapted form of Lemma 5.1
implies that the intersample behavior is asymptotically stable.

VI. ROBUST CONTROLLER SYNTHESIS FOR THE NCS
WITH TIME-VARYING UNCERTAIN DELAYS

In section IV, we analyzed the robust stability of the NCS
system (4), given the feedback gain K. In this section we
will, based on this analysis, obtain results for the synthesis
problem of a robust feedback controller. To do so, we have to
rewrite Ã(τ) in (4) in a suitable form for controller synthesis:

Ã(τ) = Ax + B̃(τ)

(
K 0
0 K

)
= Ax + B̃(τ)Ktot , (18)

with Ax =

(
eAh 0
I 0

)
, and B̃(τ) =(

−
∫ h−τ

0 eAsBds −
∫ h

h−τ eAsBds
0 0

)
. We define, analogously

to ¯A in (8), the set of matrices B̄ = {B̄1, ..., B̄G} such that:

{B̃(τ)|τ ∈ [0,τmax]} ⊂ B = c̄o{B̄}, (19)

with G = 2n the number of matrices in B̄, due to the form
of B̃(τ) in (18) and B defined analogue to (10). The set of
matrices B̄ is thus defined as:

B̄
�

= {B̄ ∈ Rn×2 : b̄i j = si j or b̄i j = ti j, i = 1,2, ...,n, j = 1,2},
(20)

with b̄i j the (i, j)th element of B̄ and si j = minτ∈[0,τmax] b̃i j(τ)

and ti j = maxτ∈[0,τmax] b̃i j(τ) the minimum and maximum
value of the (i, j)th element b̃i j(τ) of B̃(τ) for values of
τ ∈ [0,τmax], respectively.

Theorem 6.1: If there exists Z =

(
Z̄ 0
0 Z̄

)
, and Y =(

Ȳ 0
0 Ȳ

)
, with Y = Y T > 0 such that it holds that:

(
Y YAT

x +ZT B̄T
i

AxY + B̄iZ Y

)
> 0, ∀B̄i ∈ B̄, (21)
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then K = Z̄Ȳ−1 and P =Y−1 give the feedback gain K (Ktot =
ZY−1) and the Lyapunov function V (ξ ) = ξ T Pξ , and the
discrete-time system (4), with (18), and the continuous-time
system (1) both are globally asymptotically stable.

Proof: We will show that LMI (21) is a sufficient
condition for the GAS of system (4), (18). Since (21) holds
for all B̄i ∈ B̄, we have that for all µ1, ...µG ≥ 0, with
∑G

i=1 µi = 1:

0 < ∑G
i=1 µi

(
Y YAT

x +ZT B̄T
i

AxY + B̄iZ Y

)

=

(
Y YAT

x +ZT (∑G
i=1 µiB̄i)

T

AxY +(∑G
i=1 µiB̄i)Z Y

)
.

Hence, analogously to (11), we obtain:(
Y YAT

x +ZT B̂T

AxY + B̂Z Y

)
> 0, ∀B̂ ∈ B. (22)

Pre- and postmultiplying (22) by

(
Y−1 0

0 Y−1

)
gives:

(
Y−1 AT

x Y−1 +Y−1ZT B̂TY−1

Y−1Ax +Y−1B̂ZY−1 Y−1

)
> 0,

for all B̂ ∈B. Substituting Y−1 = P, and ZY−1 = Ktot yields:(
P AT

x P+KT
tot B̂

T P
PAx +PB̂Ktot P

)
> 0, ∀B̂ ∈ B.

Hence, using Schur complements, we obtain:

P = PT > 0
P− (Ax + B̂Ktot)

T P(Ax + B̂Ktot) > 0, ∀ B̂ ∈ B.
(23)

Using (19), it is obvious that (23) is a sufficient condition
for:

P = PT > 0
P− (Ax + B̃(τ)Ktot)

T P(Ax + B̃(τ)Ktot) > 0, ∀τ ∈ [0,τmax].

Hence, V (ξ ) = ξ T Pξ is a common quadratic Lyapunov func-
tion for (4), (18) and proves GAS on the sample instants kh.
Using Theorem 5.2, we can also prove asymptotic stability
of system (1), including the intersample behavior.

Remark As already mentioned, the “structured state feed-
back synthesis” problem is known to be notoriously difficult.
To obtain a convex problem we introduced some additional
conservatism. However, if instead of state feedback uk =
−Kxk, we would use a different control structure of the form
uk = K1xk +K2uk−1 as proposed in [10], the “stability” LMIs
as in (9) could be transformed into “synthesis” LMIs without
introducing additional conservatism. The reason for this fact
is that the system description (4) would be based on the
state variable (xT

k ,uT
k−1)

T and Ktot = [K1 K2] in (18) would
be unstructured.

VII. EXAMPLE

In this section, Theorem 4.1 is applied to system (4) with
(6). For uk =

(
50 K2

)
xk and a given τmax, we will determine

the values of K2 for which robust global asymptotic stability
is guaranteed. Under the assumption that τk ∈ [0,τmax], with
τmax ∈ [0,h], the upper and lower bounds of the elements of
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Fig. 4. Robust stability bound for time-varying delays, with K1 = 50.

Ã(τk) in (6) can be determined. This leads to the following
matrices Q = (qi j) and R = (ri j), as defined in (8):

Q =

⎛
⎜⎜⎝

1− 1
2 h2K1b h(1− 1

2 h)K2b τmaxβ̂K1b τmaxβ̂K2b
−hK1b 1−hK2b −τmaxK1b −τmaxK2b

1 0 0 0
0 1 0 0

⎞
⎟⎟⎠

R =

⎛
⎜⎜⎝

1− 1
2 α̂2K1b h− 1

2 α̂2K2b 0 0
−α̂K1b 1− α̂K2b 0 0

1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ,

with b = nrP
JM+n2JP

, α̂ = h− τmax, and β̂ = 1
2 τmax −h. The set

of matrices ¯A in (8) consists of 28 matrices for our example.
The maximum values of K2 that still guarantee robust

asymptotic stability for time-delay variations τk ∈ [0,τmax],
τmax ∈ [0,h] are given in Figure 4. For maximum delays
larger than 0.68 ms (68 % of the sample-time) no values
of K2 satisfying Theorem 4.1 could be found. For such large
τmax (and K1 = 50), robust stability can not be guaranteed
anymore, on the basis of Theorem 4.1.

Additionally, a dashed line is given in Figure 4, represent-
ing the maximum allowable value of K2 that ensures stability
for the constant delay τmax. As expected, the controller, used
in Section III, is located in the area not satisfying (9), but
also in the stable region for constant delays. In the no-delay
case (τmax = 0), Theorem 4.1 gives the same result as the
constant delay case. For delays for which τmax ≤ 0.68h, the
stability conditions in (9) do not seem overly conservative.
For larger delays we can not give a precise answer on the
conservativeness of our results. Reducing conservatism is one
of the topics for future research.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the robust stability of net-
worked control systems (NCS) with uncertain, time-varying,
bounded time-delays. A typical motion control example is
presented where time-variations in the delay, varying in a
bounded set, result in instability, although the controller is
chosen such that it stabilizes the system for all constant
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values of the delay in this bounded set. Sufficient condi-
tions for the robust global asymptotic stability (GAS) of
the discrete-time NCS, with uncertain bounded time-varying
delays, are proposed in terms of LMIs. Herein, the robustness
refers to the fact that the conditions guarantee GAS of the
NCS for any time-varying uncertain delay satisfying these
bounds. Moreover, it is shown that the proposed LMIs also
guarantee the stability of the intersample behavior. Based
on the analysis for robust stability, the synthesis problem
of robust controller design is solved. LMIs are presented
that characterise controllers that induce stability for a given
interval of the time-varying delay.

Future research deals with the reduction of the number of
LMIs, in combination with a reduction of the overapproxi-
mation, based on knowledge of the dependence between the
different matrix entries of Ã in (4). Additionally, to reduce
the conservatism caused by the use of a common quadratic
Lyapunov function, methods, such as in [13], where LMI
conditions for stability of convex bounded polytopes based
on a parameter-dependent Lyapunov function are presented,
can be used.
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APPENDIX: PROOF OF LEMMA 5.1

First the case τk ≤ t̃ is considered. Then, the norm of (15)
satisfies:

‖x(kh+ t̃)‖ ≤ ‖eAt̃x(kh)‖+‖
∫ t̃−τk

0 eAsdsBKx(kh)‖+

‖
∫ t̃

t̃−τk
eAsdsBKx(kh−h)‖.

(24)
The first term in the right-hand side can be rewritten us-
ing Wazewski’s inequalities [14], and [15]: ‖eAt̃x(kh)‖ ≤
‖x(kh)‖eλmaxt̃ , with λmax = 1

2 max
(
eig(A+AT )

)
. Under the

assumption that t̃ ∈ [0,h] and τk ∈ [0, t̃], it holds that:

‖eAt̃x(kh)‖ ≤ ‖x(kh)‖max
{

eλmaxh,1
}

. (25)

To rewrite the second term of the right-
hand side of (24), the integrals are rewritten:
‖

∫ t̃−τk
0

(
eAs

)
BKx(kh)ds‖ ≤ ‖BK‖‖x(kh)‖

∫ t̃−τk
0

(
eλmaxs

)
ds.

This integral can be solved exactly, because λmax is a real
number, yielding:

‖
∫ t̃−τk

0

(
eAs

)
BKx(kh)ds‖ ≤{

‖BK‖‖x(kh)‖ eλmaxh−1
λmax

if λmax �= 0
‖BK‖‖x(kh)‖h if λmax = 0.

(26)

In a similar fashion, it holds that:

‖
∫ t̃

t̃−τk

(
eAsBKx(kh−h)

)
ds‖ ≤{

‖BK‖‖x(kh−h)‖ eλmaxh−1
λmax

if λmax �= 0
‖BK‖‖x(kh−h)‖h if λmax = 0.

(27)

Substituting (25), (26), and (27) in (24), leads to the result
presented by (16) and (17) in Lemma 5.1 for τk ≤ t̃.

Next the second case (τk > t̃) has to be studied. The norm
of ‖x(kh+ t̃)‖ in (14) is bounded as:

‖x(kh+ t̃)‖≤ ‖eAt̃x(kh)‖+‖
∫ t̃

0

(
eAs)BKx(kh−h)ds‖. (28)

The first part of the right-hand side of (28) is exactly equal
to the first part of (24). The corresponding upper bound is
given by (25). The upper bound of the second part of the
right-hand side of (28) can be derived analogously to (26):

‖
∫ t̃

0

(
eAs

)
BKx(kh−h)ds‖ ≤{

‖BK‖‖x(kh−h)‖ eλmaxh−1
λmax

if λmax �= 0
‖BK‖‖x(kh−h)‖h if λmax = 0.

(29)

For the assumption τk > t̃ two equations can hold, dependent
of the value of λmax: if λmax �= 0:

‖x(kh+ t̃)‖ ≤ ‖x(kh)‖max
{

eλmaxh,1
}

+

‖BK‖‖x(kh−h)‖ eλmaxh−1
λmax

,
(30)

if λmax = 0:

‖x(kh+ t̃)‖ ≤ ‖x(kh)‖max
{

eλmaxh,1
}

+‖BK‖‖x(kh−h)‖h.

(31)
Since the right-hand side of (30) and (31) are upperbounded
by the right-hand side of (16) and (17), respectively, the
result follows.
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