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Robust Stability of Two-Dimensional
Uncertain Discrete Systems

Zidong Wang and Xiaohui Liu

Abstract—In this letter, we deal with the robust stability problem
for linear two-dimensional (2-D) discrete time-invariant systems
described by a 2-D local state–space (LSS) Fornasini–Marchesini
second model. The class of systems under investigation involves pa-
rameter uncertainties that are assumed to be norm-bounded. We
first focus on deriving the sufficient conditions under which the
uncertain 2-D systems keep robustly asymptotically stable for all
admissible parameter uncertainties. It is shown that the problem
addressed can be recast to a convex optimization one characterized
by linear matrix inequalities (LMIs), and therefore a numerically
attractive LMI approach can be exploited to test the robust sta-
bility of the uncertain discrete-time 2-D systems. We further apply
the obtained results to study the robust stability of perturbed 2-D
digital filters with overflow nonlinearities.

Index Terms—Linear matrix inequalities, overflow nonlinear-
ities, parameter uncertainty, robust stability, two-dimensional
discrete-time.

I. INTRODUCTION

I N THE PAST decade, the stability analysis problem for
two-dimensional (2-D) linear and nonlinear discrete sys-

tems (filters) has received considerable attention and various
Lyapunov approaches have been proposed as effective tool.
In particular, the constant 2-D Lyapunov equation has been
investigated in [1] and [7] for the Roesser models. More-
over, the constant Lyapunov-type criterion has been given in
[10] to guarantee the asymptotic stability of the 2-D linear
Fornasini-Marchesini models and this result has been further
improved in [13]. In [3] and [12], the Lyapunov stability
problem has been investigated for 2-D digital filters with
overflow nonlinearities. Also, the stabilization problem (or
more advancely, the feedback control synthesis problem) of
2-D systems has been extensively studied and most relevant
work have been concerned with solving linear polynomials or
polynomial matrices in two variables (e.g., see [2], [8], and
[11]).

On the other hand, since modeling error (implementation
error) is very often the cause of the instability of the 2-D
systems (2-D filters), the robust stability synthesis (orstabi-
lization) issue has also begun to draw initial attention (e.g., see
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[6]). It is noticeable that, in one-dimensional (1-D) case, the
important robust stability analysis problem for linear systems
with parameter uncertainties has been a hot research topic
over the last three decades. The robust filtering problem for
the 1-D case has also been well studied (see [15]–[17] and the
references therein). However, so far, there are very few results
on the robust stabilityanalysis problem for uncertain 2-D
systems (filters), especially for uncertain 2-D systems (filters)
with overflow nonlinearities.

In this letter, we first deal with the robust stability analysis
problem for linear 2-D discrete time-invariant systems de-
scribed by a 2-D local state-space (LSS) Fornasini–Marchesini
second model. The class of systems under investigation involves
parameter uncertainties that are assumed to be norm-bounded.
We focus on deriving the sufficient conditions under which
the uncertain 2-D systems keep robustly asymptotically stable
for all admissible parameter uncertainties. It is shown that
the problem addressed can be recast to a convex optimization
one characterized by linear matrix inequalities (LMIs), and
therefore a numerically attractive LMI approach [4], [9] can
be employed to test the robust stability of the uncertain linear
discrete-time 2-D systems. Furthermore, by using the similar
method, we tackle the robust stability analysis problem for
perturbed 2-D digital filters with overflow nonlinearities. It
should be pointed out that, in the past few years, linear matrix
inequalities (LMIs) have gained much attention for their com-
putational tractability and usefulness in control engineering and
the number of control problems that can be formulated as LMI
problems is large and continue to grow [4]. The LMIs can now
be solved efficiently by the powerful Matlab LMI Toolbox [9].

II. PROBLEM FORMULATION

Consider the uncertain 2-D discrete system described by the
2-D LSS model [14]

(1)

where is the state vector and are
known constant matrices.

The matrices and represent parametric perturba-
tions in the system state matrices and are assumed to be of the
following form (e.g., see [6])

(2)

where is an uncertain matrix with Lebesgue
measurable elements bounded by

(3)

1070-9908/03$17.00 © 2003 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on March 23, 2009 at 09:19 from IEEE Xplore.  Restrictions apply.



134 IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 5, MAY 2003

and , , and are known constant matrices of appropriate
dimensions that specify how the elements of the nominal ma-
trices and are affected by the uncertain parameters in

. and are said to be admissible if both (2) and
(3) hold.

The system (1) is said to be robustly asymptotically stable if
it is asymptotically stable [with respect to the equilibrium (0,0)]
for all admissible uncertainties described by (2) and (3). The
objective of this letter is to determine whether the 2-D discrete
system (1) is robustly asymptotically stable, i.e., to derive the
easy-to-test conditions under which the system (1) remains ro-
bustly asymptotically stable.

III. M AIN RESULTS AND PROOFS

To begin with, we recall several important lemmas that will
be frequently used in the derivation of our main results. The first
one is well known on the asymptotic stability of the 2-D nominal
discrete systems.

Lemma 1: [10]: The nominal 2-D discrete LSS system

(4)

is asymptotically stable if there exist an symmetric matrix
, positive scalars and satisfying such that

(5)

where

(6)

The next lemma is the so-called Schur Complement Lemma.
Lemma 2: Given constant matrices , and of appro-

priate dimensions where and are symmetric and ,
then if and only if

or

The following lemma reveals that the robust stability of a
“discrete-time system” subjected to the norm-bounded uncer-
tainty can be guaranteed by the existence of the positive definite
solution to a matrix inequality.

Lemma 3: [18]: Let , , ,
be given matrices and be any

matrix satisfying . Then there exists a positive definite
matrix meeting

(7)

if and only if there exist a scalar and a positive definite
matrix such that

(8)

For the sake of simplicity, we make the following definitions:

(9)

(10)

(11)

Our first result given below shows that the uncertain discrete
2-D system (1) is robustly asymptotically stable if there exists
a positive definite solution to a matrix inequality involving a
scalar parameter.

Theorem 1: Consider the linear uncertain 2-D discrete-time
LSS system (1). Assume that the uncertainties and
satisfy (2)–(3). Then the system (1) is robustly asymptotically
stable if, for some positive scalarsand satisfying ,
there exists a positive scalarsuch that the matrix inequality

(12)

has a positive definite solution .
Proof: It follows from (2) that

(13)

Then, it is easy to see from Lemma 1 that the uncertain dis-
crete 2-D system (1) is robustly asymptotically stable if, for
some positive scalarsand satisfying , there exists
a positive definite matrix meeting

(14)

Furthermore, it results from Lemma 3 that, the inequality (14)
holds if and only if, for some positive scalarsand satisfying

, there exists a scalar such that

(15)

has a positive definite solution .
Note that the inequality (15) can be rewritten as

(16)

where and are defined in (10).
It then follows from the Schur Complement Lemma (Lemma

2) that the inequality (16) holds if and only if

(17)

Pre- and postmultiplying the inequality (17) by
, respectively, yield

(18)

which, by means of the definitions (9) and (10), can be expressed
as the following:

(19)
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i.e., (12) holds. This completes the proof of our first result.
Remark 1: It should be pointed out that the characteriza-

tion condition (12) cannot easily be used, since it involves both
and and is therefore not a linear matrix inequality. This

brings considerable difficulties in practical application because
the powerful Matlab LMI toolbox [4], [9] cannot be utilized.
This awkward situation motivates us to further convert (12) into
an LMI. On the other hand, we may also notice that the matrix
inequality (12) is not jointly linear on ( ) and .
Fortunately, this minor “problem” can be ignored, as ,
and we can solve (12) by increasing with an acceptable
step size.

The following theorem provides the sufficient conditions for
the robust asymptotic stability of the uncertain 2-D discrete
system (1) in terms of an LMI.

Theorem 2: The 2-D discrete-time LSS system (1) with pa-
rameter uncertainties satisfying (2) and (3) is robustly asymptot-
ically stable if, for some positive scalarsand ( ),
there exist a positive scalar and a positive definite matrix

such that the following linear matrix inequality

(20)

holds, where and are defined in (11).
Proof: First, for technical convenience, we set .

Then, the Schur Complement Lemma (Lemma 2) implies that
(12) is true if and only if the following inequality

(21)

holds for some positive scalar and positive definite
matrix , i.e., (20) holds. This proves the theorem.

Remark 2: It is clear that, for a given scalar , the in-
equality (20) is jointly linear on both and and therefore the
Matlab LMI Toolbox can be exploited to investigate the robust
asymptotic stability of the discrete-time 2-D system (1).

The algorithm for testing the robust stability can be described
as follows.

• Give an initial value , which can be small enough.
• Solve the LMI (20) for and by using

the LMI Toolbox. If there are a positive scalarand a
positive definite matrix solving (20), then the uncertain
2-D system (1) is robustly asymptotically stable, and the
procedure stops; if there are no solutions, then increase

by an acceptable step size, and solve LMI (20)
again.

• If approaches one eventually, then it means that the un-
certain discrete-time 2-D system isnot robustly asymptot-
ically stable.

Remark 3: It is worth mentioning that although the uncer-
tainty in this letter is assumed to be norm-bounded, it is not dif-
ficult to consider more general description of the uncertainty

within the same framework developed in this letter. For ex-
ample, it has been shown in [5] that the more involved polytopic
convex uncertainty can be taken into account by introducing
some LMIs and the corresponding robustness can be guaranteed
when the solutions to certain LMIs are known to exist. Thus,
following along the line of the proof of Theorem 2, we will be
able to further consider the robust stability analysis problem for
more general uncertain 2-D systems in terms of LMIs and the
present techniques can all be applied.

IV. STABILITY ANALYSIS OF 2-D DIGITAL FILTERS WITH

OVERFLOW NONLINEARITIES

This section aims at showing the applicability of the results
we obtained in the previous section. We shall choose the 2-D
digital filters with overflow nonlinearities as an example.

Consider the zero-input 2-D nonlinear digital filters with im-
plementation error as follows:

(22)

where is the state vector; are
known constant matrices; and the perturbation matrices
and (introduced as implementation error) have the same
structure as in (2) and (3). The nonlinear repre-
senting overflow effects in 2-D digital filters (22) is defined by

where is piece-
wise continuous and is defined by [12]

(23)

where , .
Remark 4: In practice, finite word-length realizations of dig-

ital filters often result in systems which are inherently nonlinear,
and the asymptotic stability of such filters is of significance. As
shown in [12], the class of overflow nonlinearities described in
(23) constitute a generalization of the usual types of overflow
arithmetic employed in applications such as zeroing, two’s com-
plement, triangular and saturation overflow characteristics.

Remark 5: Note that when implementing the digital filters, it
is usually unavoidable to bring some implementation error, and
sometimes this will lead to the instability of the digital filters,
since the stability of the digital filters is very sensitive to the
filter parameters. Thus, we introduce the terms and
to account for the implementation error. When the perturbations
disappear (i.e., and ), the system (22) will
recover the one studied in [12].

Our goal in this section is to establish the conditions for the
robust Lyapunov stability of the perturbed nonlinear 2-D filter
(22). To do this, we first introduce the following result which
offers the stability conditions for thenominal2-D filter (22).

Lemma 4: [12]: Consider the nominal zero-input 2-D non-
linear digital filter (22) (setting and ).
If there exists a positive definite matrix such that

(for all ,
) and

(24)
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where and are defined in (6) and ( ,
), then the equilibrium of thenominal2-D digital

filter (22) is globally asymptotically stable.
Now, let us consider theperturbednonlinear 2-D filter (22).

The following theorem establishes the sufficient conditions for
the robust global asymptotic stability of the trivial solution of
(22) in terms of an LMI. Hence, using the Matlab toolbox, it
is straightforward to test whether the perturbed nonlinear 2-D
system (22) remains globally asymptotically stable.

Theorem 3: The equilibrium of the perturbed non-
linear 2-D filter (22) is globally asymptotically stable if, for
some positive scalarsand ( ), there exist a positive
scalar and a positive definite matrix such that

(25)

and

(26)

where and are defined in (11).
Proof: The proof is a combination of Lemma 1 and Corol-

lary 2 of [12] and Theorem 2 in the previous section and is thus
omitted.

Remark 6: In application, when we test the robust global
asymptotic stability of the perturbed nonlinear 2-D filter (22),
the procedure is similar to that given for the linear case. The
only difference is that, in the nonlinear case, we should first
solve the LMI (26) for a given and also check if there is a
solution meeting (25). Therefore, the approach devel-
oped in this section is numerically practical.

V. CONCLUSION

This letter has studied the robust stability analysis problem
for a class of uncertain discrete 2-D systems. We have first con-
sidered the linear case. Sufficient conditions have been derived
to ensure the robust asymptotic stability of the uncertain 2-D
systems, which are given in terms of the solutions to a linear ma-

trix inequalities and are therefore easy to test. Furthermore, to
show the application potentials of the results obtained, we have
investigated the robust stability for a class of perturbed 2-D dig-
ital filters with overflow nonlinearities.
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