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Abstract— In this paper we study the robustness analysis
problem for linear continuous-time systems subject to para-
metric time-varying uncertainties making use of piecewise
linear (polyhedral) Lyapunov functions. A given class of
Lyapunov functions is said to be “universal” for the uncertain
system under consideration if the search of a Lyapunov
function that proves the robust stability of the system can
be restricted, without conservatism, to the elements of the
class. In the literature it has been shown that the class of
polyhedral functions is universal, while, for instance, the class
of quadratic Lyapunov functions is not. This fact justifies the
effort of developing efficient algorithms for the construction
of optimal polyhedral Lyapunov functions. In this context, we
provide a novel procedure that enables to construct, in the
general n-dimensional case, a polyhedral Lyapunov function
to prove the robust stability of a given system. Some numerical
examples are included, where we show the effectiveness of
the proposed approach comparing it with other approaches
proposed in the literature.

Index Terms— Linear uncertain systems, robust stability,
polyhedral Lyapunov functions.

I. INTRODUCTION

Robust control has been widely investigated by the auto-

matic control community especially during the 1980’s and

1990’s. Several different approaches have been proposed

both for robust stability analysis and for the design of robust

control systems (see [11] and [2] for a survey). In this paper

we focus on the robust stability analysis problem for linear

continuous-time systems subject to parametric time-varying

uncertainties. Typically, this problem is tackled by means

of quadratic Lyapunov functions (see for instance [13], [3],

[8]). As a matter of fact, this approach has been shown to be

conservative with respect to approaches using other types of

Lyapunov functions [18]; in particular polyhedral Lyapunov

functions, namely functions that are positively homogenous

and whose level surfaces are the boundary of a polytope,

are a strong basis to set up a less conservative robustness

analysis tool.

The use of polyhedral Lyapunov functions for robust

stability analysis was first proposed in [9], [10]. In [14] it

is proved that they are universal for the robustness analysis

problem involving linear systems subject to parametric

uncertainties, in the sense that the existence of a Lyapunov

function which proves robust stability of the given uncertain

system implies the existence of a polyhedral Lyapunov

function which does the same job. In [6] it is also shown that

these functions are universal for the stabilization problem.
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One problem concerning the use of polyhedral functions

in the robust stability context, consists in the development

of an efficient numerical approach to find, for a given

uncertain system, an optimal polyhedral Lyapunov function.

In [5], the author proposes a procedure for constructing

a polyhedral Lyapunov function for a linear discrete-time

system; this procedure is then extended [6] to continuous-

time systems via a suitable “Euler approximating system”.

Conversely, in this paper we propose a novel procedure

to directly construct, in the general n-dimensional case,

a polyhedral Lyapunov function for the class of linear

continuous-time systems subject to parametric uncertainties.

A necessary and sufficient condition for the existence of a

polyhedral Lyapunov function, which allows to prove the

robust stability of the given system, is provided. Such con-

dition requires that a certain optimization problem admits a

feasible solution; therefore a workable numerical algorithm

is provided to solve the optimization problem.

The paper is organized as follows: in Section II we

give some preliminary definitions and results concerning

polytopes and the problem we deal with is precisely stated.

In Section III the main result of our work is provided. In

Section IV some numerical examples, concerning second

and third-order linear uncertain systems, illustrate the ef-

fectiveness of the proposed approach; in these examples

we show that our method performs slightly better than the

method proposed in [15] and [16]. Finally, some conclu-

sions are drawn in Section V.

II. PRELIMINARIES

In this paper we deal with the stability of a linear system

subject to uncertain parameters

ẋ(t) = A(p)x(t) , (1)

where A(·) : R ⊂ R
q → R

n×n, and R is a box, i. e.

R := [p
1
, p1] × [p

2
, p2] × · · · × [p

q
, pq] .

In the sequel we shall assume the following.

• The vector-valued function

p(·) =
(

p1(·) p2(·) · · · pq(·)
)T

,

is any Lebesgue measurable function p(·) : [0, +∞] →
R.

• The matrix-valued function A(·) depends multiaffinely

on the parameter vector p , that is

A(p) =

1
∑

i1,...,iq
=0

Ai1,...,iq
pi1
1 · · · piq

q . (2)
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Remark 1: The structure assumed for the system matri-

ces in (2) captures many cases of practical interest and, in

particular, the affine dependence on parameters; for more

details the interested reader is referred to [2]. ♦

Definition 1 (Robust stability): System (1) is said to be

robustly stable if for any Lebesgue measurable vector-

valued function p(·) : [0, +∞] → R, the resulting linear

time-varying system

ẋ(t) = A
(

p(t)
)

x(t)

is exponentially stable. ♦

We focus on the problem of determining some conditions

guaranteeing the robust stability of system (1). In order

to study this problem, we will make use of the class of

(symmetrical) polyhedral Lyapunov functions, which are

piecewise linear functions of the following form

V (x) = ‖QT x‖∞ , (3)

where Q ∈ R
n×m is a full row rank matrix and, given

a vector v ∈ R
n, ‖v‖∞ := maxi=1,...,n |vi| denotes the

infinity norm of v.

A. Notions on polytopes

In the following we provide some preliminary definitions

and results on linear algebra and polytopes which will be

useful to state the main result of the paper.

If we deal with a finite set, say K = {x(1), . . . , x(l)} ⊂
R

n, the convex hull of K turns out to be a polytope, whose

dimension ([19], p. 5), is given by the dimension of the

affine hull of K , i. e.

rank
[

x(2) − x(1) x(3) − x(1) . . . x(l) − x(1)
]

.

Moreover, as stated in the next lemma, the set of vertices

of a given polytope P is a subset of K .

Lemma 1 ([19]): Given a polytope defined as the convex

hull of K = {x(1), . . . , x(l)} ⊂ R
n, the vertices of the

polytope are the points x(i) ∈ K which satisfy the following

property

x(i) /∈ conv
(

K − {x(i)}
)

.

♦

Remark 2: Note that, given a collection of symmetric

points K = {x(1), . . . , x(2l)}, x(i) = −x(l+i), i = 1, . . . , l,
if x(i) is a vertex of conv(K), then also x(l+i) = −x(i) is

a vertex of conv(K). ♦

In this paper we will focus on polytopes symmetrical with

respect to the origin of R
n. To this regard note that, given

any symmetrical polytope P ⊂ R
n, there always exists a

full row rank matrix Q ∈ R
n×m, m ≥ n, such that the

polytope P can be alternatively defined as (see [17], p. 6)

P = ℘(Q) := {x ∈ R
n : ‖QT x‖∞ ≤ 1} . (4)

Therefore a given symmetric polytope P admits two dif-

ferent equivalent descriptions. The Matlab routine convhulln

allows to find the description matrix Q of a polytope starting

from its vertices.

In the following, given a symmetric polytope ℘(Q), we

indicate with x
(i)
Q with i = 1 . . . 2l the vertices of ℘(Q) and

we suppose that x
(i)
Q = −x

(i+l)
Q for i = 1 . . . l. Moreover

we indicate with qi,h, with h = 1 . . . si, the si columns of

Q such that qT
i,hx

(i)
Q = 1.

B. Quadratic and Polyhedral Stability

Let us consider the following definitions.

Definition 2 (Quadratic stability, [13], [3], [8]):

System (1) is said to be quadratically stable if and only

if (iff) there exists a quadratic Lyapunov function in the

form xT Qx, with Q symmetric positive definite, such that

its derivative along the solutions of system (1) is negative

definite for all p ∈ R. ♦

In order to state the definition of polyhedral stability,

given a generic system in the form ẋ = f(x) and a

Lyapunov function V (x), we recall the definition of Dini

(upper) derivative [12] of V (x) along the solutions of the

system

V̇ (x) = lim sup
τ→0+

V (x + τẋ) − V (x)

τ

∣

∣

∣

∣

ẋ=f(x)

.

Such definition returns the classical derivative when V (x)
is continuously differentiable, but also enables to treat the

more general case in which the Lyapunov function is not

differentiable everywhere (as it is the case of polyhedral

functions).

Definition 3 (Polyhedral stability, [6]): System (1) is

said to be polyhedrally stable iff there exist a polyhedral

Lyapunov function in the form (3) such that its Dini

derivative along the solutions of system (1) is negative

definite for all p ∈ R. ♦

Both quadratic stability and polyhedral stability guarantee

robust stability of system (1); however polyhedral Lyapunov

functions are “better” than quadratic Lyapunov functions.

To clarify this point, recall that, according to [6], a given

class of Lyapunov functions is said to be “universal” for

system (1) if the existence of a Lyapunov function which

proves robust stability of the uncertain system implies the

existence of a Lyapunov function belonging to the class

which does the same job.

Following this definition, the class of quadratic Lyapunov

functions is not universal for systems in the form (1). For

example in [7], p. 73, an uncertain system depending on

one parameter is shown to be robustly stable, by using a

piecewise quadratic Lyapunov function, but not quadrati-

cally stable (for an interesting discussion on this issue see

the seminal paper [9]).

Conversely, as shown in [10], [6], the class of polyhedral

Lyapunov functions is universal. This consideration justifies

the effort of developing efficient algorithms for the construc-

tion of optimal polyhedral Lyapunov functions, which is the

topic discussed in the next section.
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III. MAIN RESULT

The following result provides a necessary and sufficient

condition for polyhedral stability of system (1).

Theorem 1: System (1) is polyhedrally stable iff there

exists polytope ℘(Q) of dimension n such that the following

condition holds for all i = 1, . . . , l, h = 1, . . . , si,

max
p∈vert(R)

qT
i,h A(p) x

(i)
Q < 0 , (5)

where vert(R) denotes the set of all vertices of R.

Proof: According to Definition 3, system (1) is

polyhedrally stable iff there exists a full row rank matrix

Q ∈ R
n×m such that the Dini derivative of the polyhedral

Lyapunov function V (x) = ‖QT x‖∞ along the solutions

of system (1) is negative definite for all p ∈ R.

In the rest of the proof we shall show that such derivative

is negative definite iff condition (5) holds.

To this end, note that the Dini derivative can be expressed

as

V̇ (x) = max
j∈I(x)

q̃T
j A(p)x , (6)

where Q̃ =
(

Q −Q
)

, q̃j denotes the j − th column of Q̃
and I(x) is the set of the indexes j such that V (x) = q̃T

j x
(see [6]).

Now, the derivative (6) is negative definite for all p ∈ R
iff its maximum on R is negative. We have

max
p∈R

V̇ (x) = max
p∈R

max
j∈I(x)

q̃T
j A(p)x

= max
j∈I(x)

max
p∈R

q̃T
j A(p)x

= max
j∈I(x)

max
p∈vert(R)

q̃T
j A(p)x

= max
p∈vert(R)

max
j∈I(x)

q̃T
j A(p)x , (7)

where we have used the fact that a multiaffine function

defined on a box R attains its maximum at one of the

vertices of R (see [4]).

Now, it is straightforward to show that the Lyapunov

derivative of a polyhedral function enjoys the radial property

V̇ (µx) = µV̇ (x) ∀µ ≥ 0 ,

and therefore its sign behavior can be inferred by the

behavior on the boundary of the polytope P defined in (4).

Moreover, notice that, for a given p ∈ vert(R), the

maximum value of the linear function

q̃T
j A(p)x

on the j-th face of P is attained at the vertices of the face

itself. Hence, from (7) we have that V̇ (x) is negative definite

for all p ∈ R iff

max
p∈vert(R)

max
j∈I(x

(i)
Q

)

q̃T
j A(p)x

(i)
Q < 0 (8)

for all i = 1, . . . , 2l. The symmetry of the polytope implies

that (8) is equivalent to

max
p∈vert(R)

max
j∈I(x

(i)
Q

)

qT
j A(p)x

(i)
Q < 0

for all i = 1, . . . , l.
Finally, for a given i, the set {qj , j ∈ I(x

(i)
Q )} is equal

to the set {qi,h , h = 1, . . . , si}; therefore we can conclude

that V̇ (x) is negative definite for all p ∈ R iff

max
p∈vert(R)

qT
i,h A(p) x

(i)
Q < 0 (9)

for all i = 1, . . . , l, and h = 1, . . . , si. This concludes the

proof.

In order to find a polyhedral Lyapunov function satisfying

the conditions of Theorem 1, the following procedure can

be adopted.

Procedure 1 (Implementation of Theorem 1):

1) Fix an initial number 2l ≥ 2n of symmetric points

x
(i)
Q on a hypersphere with radius 1. Let indicate with

K0 = {x
(i)
Q }i=1,...,2l the set of such points.

2) Find a set of points K solving the problem

min
K

max
p∈vert(R)

f(K, p) (10)

s.t. rank(Q) = n (11)

with initial condition K0, where

f(K, p) = max
i=1,...,l

max
h=1,...,si

qT
i,h A(p) x

(i)
Q . (12)

3) Let M = minK (maxp f(K, p)). If M < 0 then set

Kopt = arg M, (13)

and go to step 4, else choose a new vertex ( as

explained in Remark 4), set

K0 = K ∪
{

x
(l+1)
Q ,−x

(l+1)
Q

}

, x
(l+1)
Q ∈ R

n (14a)

l = l + 1 (14b)

and go to step 2.

4) The polyhedral Lyapunov function which proves the

polyhedral stability of system (1) is

V (x) = ‖QT x‖∞ (15)

where Q describes the polytope of vertices Kopt.

♦

Remark 3: To solve problem (10), we have made use

of the Matlab 7.5.0 and in particular of the Optimization

Toolbox routine fminimax [1], with variables x
(i)
Q , i =

1, . . . , l. ♦

Remark 4: In step 3, the choice of x
(l+1)
Q is done putting

such point on one of the faces of ℘(Q)where the condition

of Theorem 1 is not verified. In this way, since at each step

the algorithm begins from the solution found in the previous

step, the value M decreases (or, at least, does not increase)

at each step. ♦

Procedure 1 does not guarantee to find a polyhedral

Lyapunov function satisfying the conditions of Theorem 1

even if system (1) is robustly stable. This is due to the

fact that (12) is not convex with respect to the optimization

variables. Hence even if Theorem 1 provides a neces-

sary and sufficient condition for polyhedral stability (and
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Fig. 1. Trend of the parameter M

therefore for robust stability, since polyhedral functions

are universal), applying Procedure 1 we introduce some

conservatism.

IV. NUMERICAL EXAMPLES

A. Example 1

In this example we will compare our method for con-

structing a polyhedral Lyapunov function with the one

presented in [15]. Let us consider the following linear

uncertain system [15]

ẋ = (p1A1 + p2A2)x , p1, p2 ≥ 0 : p1 + p2 = 1, (16)

with

A1 =

(

0 1
−0.01 −2

)

, A2 =

(

0 1
−γ −2

)

.

It is easy to prove that system (16) is quadratically stable

for 0 < γ ≤ 4.3. The author in [15] proves that the system

is polyhedrally stable for γ up to 11.3. With our approach,

instead, we manage to prove that system (16) is robustly

stable for 0 < γ ≤ 11.45. We show the result of the

Procedure 1 when γ = 11.45. We started with l = 5;

Fig. 1 shows the trend of the parameter M defined in

step 3 of Procedure 1 depending on the number l of vertices.

According to Remark 4, M is a decreasing function of l.
Fig. 2 shows the last polytope ℘(Q) of 122 vertices (l = 61)

which proves the polyhedral (and hence robust) stability of

system (16) for γ = 11.45. ♦

B. Example 2

Consider the linear uncertain system

ẋ = (A1 + A2p)x , p ∈ [−γ, γ] , (17)

with

A1 =





0 1 0
0 0 1
−1 −3 −6



 , A2 =





0 0 0
0 0 0
1 0 0



 .

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x
2

Fig. 2. Polyhedral Lyapunov function for the system in Example 1

Fig. 3. Polyhedral Lyapunov function for the system in Example 2

System (17) is quadratically stable for γ ≤ 0.962.

However using the approach based on polyhedral functions,

it is possible to prove the robust stability of (17) up to

γ = 0.999 with the polytope ℘(Q) of 20 vertices (l = 10)

shown in Fig. 3. ♦

C. Example 3

Let us consider the feedback loop studied in [16] (see

Figure 4) composed by a double integrator with a phase lead

element 1+s
1+0.1s

and a nonlinear time-dependent function

σ(e, t) which is assumed to satisfy the sector condition

α ≤
σ(e, t)

e
≤ β . (18)

The problem is to determine, for a fixed value α = 0.2, the

bound β such that the feedback system is absolutely stable.
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Fig. 4. The feedback system studied in Example 3. The nonlinear time-
dependent function σ(e, t) is assumed to satisfy the sector condition (18).

Fig. 5. Polyhedral Lyapunov function for the system in Example 3

In [16] the author shows that the absolute stability of this

system is equivalent to the robust stability of the following

linear uncertain system

ẋ = (p1A1 + p2A2)x , p1, p2 ≥ 0 : p1 + p2 = 1, (19)

with

A1 =





−10 −2 −2
1 0 0
0 1 0



 ,

A2 =





−10 −10β −10β
1 0 0
0 1 0



 ,

and he verifies the robust stability of (19) for β ≤ 1
(while the maximum value applying the circle criterion is

0.5467). With our approach, instead, we manage to prove

that system (19) is robustly stable for β ≤ 1.03 with the

polytope ℘(Q) of 168 vertices (l = 84) shown in Fig. 5. ♦

D. Discussion

Theorem 1 is a necessary and sufficient condition for

polyhedral stability; therefore it is less conservative than

the corresponding necessary and sufficient condition for

quadratic stability (since, as said, polyhedral functions are

universal, while quadratic are not). However the practical

implementation of Theorem 1 through Procedure 1 may

introduce a certain degree of conservatism, as clearly ex-

plained before.

Moreover, the computational burden increases with the

order n of the system, since condition (5) introduces
∑k

i=1 si constraints, where si ≥ n is related to the number

of half-planes associated to the i-th vertex of the polytope

and 2k is the number of polytope vertices. Therefore as the

system order increases, the numbers si increases and, in

order to keep the computational burden low, we have to limit

the number of polytope vertices. Anyway in Examples 1

and 3 above we show that our method performs slightly

better than the method proposed in [15] and [16].

Therefore the approach proposed in this paper is not

always better than the one based on quadratic Lyapunov

functions and should be seen as an alternative to the

classical quadratic stability methodology.

V. CONCLUSIONS

In this paper we have considered the robustness analysis

problem for a linear uncertain system subject to parametric

time-varying uncertainties. To tackle this problem we have

made use of polyhedral Lyapunov functions, which lead

to a condition for robust stability less conservative than

the classical quadratic stability test. On the basis of such

condition, a novel procedure, which enables to construct

a polyhedral Lyapunov function proving robust stability

of a given uncertain system, has been provided. Some

numerical examples have been included to illustrate both the

application and the effectiveness of the proposed approach,

in comparison with other methods.
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