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SUMMARY

The control design problem for finite-time and fixed-time stabilization of linear multi-input system with
nonlinear uncertainties and disturbances is considered. The control design algorithm based on block
decomposition and Implicit Lyapunov Function (ILF) technique is developed. The robustness properties
of the obtained control laws with respect to matched and unmatched uncertainties and disturbances are
studied. Procedures for tuning of control parameters are presented in the form of Linear Matrix Inequalities
(LMI). Aspects of practical implementation of developed algorithms are discussed. Theoretical results are
supported by numerical simulations. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The quality of any control algorithm is always estimated by different performance indexes

such as robustness with respect to disturbances, time optimality of transient motions, energetic

effectiveness, etc. So, theoretically the design of a ”good” control law is a multi-objective

optimization problem. The mentioned criteria frequently contradict to each other. For example, time

optimal (bang-bang) control is not robust and vice versa. From practical point of view, an optimality

criterion can be relaxed or simply replaced with an alternative one. For instance, instead of minimum

time control design the papers [1, 2, 3, 4, 5, 6] study the problem of non-asymptotic stabilization,

when the convergence time is not minimal, but surely bounded by some predefined value.

Finite-time stabilization [1], [4], [7] is important if the transition time of the control system has to

be specified in advance, for example, control of walking robot in between two impacts or the robot

catching a “flying” ball. Control algorithms for finite-time stabilization of a chain of integrators are

presented in different papers [3], [8], [5]. However, the tuning of control parameters of the proposed

algorithms is complicated. This paper develops the methods of robust non-asymptotic (finite-time

and fixed-time) stabilization of linear multi-input systems. One of the advantages of the control

algorithms to be proposed is simplicity of tuning of control parameters using the LMI technique.

Fixed-time stability [6] assumes that convergence time of a finite-time stable system is bounded

by some fixed number independently of the initial condition. The fixed-time approach helps to

design a control law, which prescribes a transition time independently of operation domain. In

practice, when maximum magnitude of the input is bounded, this control guarantees fixed-time

stability property only locally. However, in contrast to other techniques the variation of operation

domain in this case does not require re-tuning of the control parameters in order to preserve the

convergence time. This paper also shows that fixed-time stability provides additional robustness
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properties to the closed-loop system. The property, which is called today by fixed-time stability,

was initially discovered in the context of locally homogeneous systems [9]. The application of this

ideas to fixed-time differentiator design are presented in [10].

Homogeneity is a very useful property for finite-time stability analysis of control systems [11],

[12], [8], [13], [5]. Particularly, if an asymptotically stable system is homogeneous of negative

degree, then it is finite-time stable. However, even if a structure of homogeneous control is defined,

then anyway a procedure for selection of control parameters has to be developed in order to

guarantee, at least, asymptotic stability of a closed-loop system. Tuning of the convergence time

is also very important for practical applications.

Lyapunov function method is the main approach to stability analysis and nonlinear control design.

In this paper Implicit Lyapunov Function (ILF) method [14, 15, 16, 17] is applied for robust finite-

time and fixed-time stabilization of linear multi-input plants. The ILF with ellipsoidal level sets

is introduced using weighted homogeneity approach [18], [19], [20]. The paper develops the new

control algorithms, which guarantee finite-time and fixed-time stabilization of linear MIMO system

and reject bounded matched and ”vanishing” unmatched disturbances of a certain type. The LMI

representation of stability conditions are provided for simplicity of tuning of the control parameters.

Weighted homogeneity and local homogeneity of the closed-loop systems is proven in order to

expand the known Input-to-State Stability (ISS) results [21] to the obtained control systems. The

paper also presents the proofs of theorems on the high-order sliding mode control design using ILF

approach, which were announced in [22].

The sampled-time realization of fixed-time control algorithms can be complicated due to possible

instability of the classical Eurler discretization scheme [23]. The ILF approach allows us to

overcome this difficulty. The implicit Lyapunov function analysis implies an implicit definition of

the control law that requires a special algorithm of practical implementations. By this reason the

paper discusses the sampled-time realization of ILF control for linear system that admits on-line

variation of feedback gains. The robustness of the presented scheme of ILF-control implementation

is proven for an arbitrary sampling step.

The paper is organized as follows. The next section introduces the problem statement and the

basic assumptions. Section III considers some preliminaries such as finite-time stability, weighted

homogeneity and ILF method for finite-time and fixed-time stability analysis. After that the

control design algorithm is presented. It is realized through several steps: decomposition into block

controllability form [24] and finite-time (or fixed-time) ILF control design. Robustness issues of the

developed control scheme are also studied in this section. Section IV discusses aspects of practical

implementation of ILF control algorithms. Finally, simulation results and concluding remarks are

presented.

Notation: R is the set of real numbers; R+ = {x ∈ R : x > 0}; ‖x‖ denotes the Euclidian norm

of the vector x ∈ R
n; range(B) is the column space of the matrix B ∈ R

n×m; diag{λ1, ..., λn} is a

diagonal matrix with elements λi; the order relation P > 0(< 0,≥ 0,≤ 0) for P ∈ R
n×n means that

P is symmetric and positive (negative) definite (semidefinite); if P > 0 then the matrix P 1/2 := B
is such that B2 = P ; λmax(P ) and λmin(P ) denote maximum and minimum eigenvalues of the

symmetric matrix P ∈ R
n×n; a continuous function σ : R+ → R+ belongs to the class K if it is

monotone increasing and σ(s) → +0 as s→ +0; rown(W ) is the number of rows of a matrix W ;

null(W ) denotes the matrix that has the columns defining an orthonormal basis of the null space of

the matrix W .

2. PROBLEM STATEMENT

Consider the control system

ẋ(t) = Ax(t) +Bu(t) + d(t, x(t)), (1)

where x ∈ R
n is the state vector, u ∈ R

m is the vector of control inputs, A ∈ R
n×n is the system

matrix, B ∈ R
n×m is the matrix of control gains and the function d : R×R

n → R
n describes

exogenous disturbances and uncertainties (e.g. uncertain nonlinearities of the system).

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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ROBUST STABILIZATION OF MIMO SYSTEMS IN A FINITE/FIXED TIME 3

It is assumed that the matrices A and B are known, rank(B) = m ≤ n and the pair (A,B) is

controllable; the whole state vector x can be measured and utilized for feedback control design.

In order to include into consideration the case of discontinuous function d, Filippov theory of

differential equations with discontinuous right-hand sides is applied.

The control aim is to stabilize the origin of the system (1) in a finite time or in a fixed time

independently of the initial condition. In addition, the control has to reject disturbances of a certain

type to be specified.

3. PRELIMINARIES

3.1. Asymptotic Stability with Non-Asymptotic Transitions

Consider the system of the form

ẋ = f(t, x), x(0) = x0, (2)

where x ∈ R
n is the state vector, f : R+ ×R

n → R
n is a nonlinear vector field, which can be

discontinuous with respect to the state variable. In this case the solutions x(t, x0) of the system

(2) are understood in the sense of Filippov.

According to Filippov definition [25] an absolutely continuous function x(t, x0) is called a

solution to the Cauchy problem associated to (2) if x(0, x0) = x0 and it satisfies the following

differential inclusion

ẋ ∈ K[f ](t, x) =
⋂

δ>0

⋂

µ(N)=0

co f(t, x+B(δ)\N), (3)

where co(N) defines the convex closure of the set N ⊂ R
n and the equality µ(N) = 0 means that

the set N has measure 0.

Assume that the origin is an equilibrium point of the system (2), i.e. 0 ∈ K[f ](t, 0) for all

t ∈ R. The paper studies strong uniform stability properties of the system (2). The words ”strong

uniform” will be omitted below for shortness and simplicity of the presentation.

Definition 1 ([1], [4], [26])

The origin of system (2) is said to be globally finite-time stable if:

1. Finite-time attractivity: there exists a locally bounded function T : Rn \ {0} → R+, such

that for all x0 ∈ R
n \ {0}, any solution x(t, x0) of the system (2) is defined at least on

[0, T (x0)) and lim
t→T (x0)

x(t, x0) = 0.

2. Lyapunov stability: ∃δ ∈ K such that ‖x(t, x0)‖ ≤ δ(‖x0‖) for all x0 ∈ R
n, t ∈ R+.

The function T is called the settling-time function of the system (2).

Definition 2 ([6])

The origin of system (2) is said to be globally fixed-time stable if it is globally finite-time stable

and the settling-time function T (x0) is bounded, i.e. ∃Tmax ∈ R+ : T (x0) ≤ Tmax, ∀x0 ∈ R
n.

It is worth to stress that the finite-time or fixed-time stability always implies the asymptotic one.

3.2. Homogeneity and Local Homogeneity

Homogeneity [18], [11], [27], [19] is an intrinsic property of an object, which remains consistent

with respect to some scaling: level sets (resp. solutions) are preserved for homogeneous functions

(resp. vector fields).

Let λ > 0, ri > 0, i ∈ {1, . . . , n} then one can define the vector of weights r = (r1, . . . , rn)
T and

the dilation matrix D(λ) = diag{λri}ni=1, where λ ∈ R+. Note that for x = (x1, ..., xn)
T ∈ R

n we

have D(λ)x = (λr1x1, . . . , λ
rixi, . . . , λ

rnxn)
T .

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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Definition 3 ([18])

A function g : Rn → R (resp. a vector field f : Rn → R
n) is said to be r-homogeneous of degree m

iff for all λ > 0 and for all x ∈ R
n we have g(D(λ)x) = λmg(x) (resp. f(D(λ)x) = λmD(λ)f(x)).

Theorem 4 ([12], Theorem 5.8 and Corollary 5.4)

Let f : Rn → R
n be defined on R

n and be a continuous r–homogeneous vector field with a negative

degree. If the origin of the system

ẋ = f(x) (4)

is locally asymptotically stable then it is globally finite-time stable.

This theorem remains true for homogeneous differential inclusions [26, 8, 28].

The r-homogeneity property used in Definition 3 is introduced for some r > 0 and all λ ∈ R+.

Restricting the set of admissible values for λ, the local homogeneity [18], [9], [21] can be

introduced. Let us introduce the following compact set (homogeneous sphere)

Sr = {x ∈ R
n : ‖x‖r = 1}, (5)

where ‖ · ‖r represents the r–homogeneous norm of x ∈ R
n defined by:

‖x‖r = (|x1|
ρ
r1 + . . .+ |xi|

ρ
ri + . . .+ |xn|

ρ
rn )

1
ρ (6)

for some ρ > 0.

Definition 5 ([21])

The function g : Rn → R, g(0) = 0 is called (r,λ0,g0)–homogeneous (r ∈ R
n
+, g0 : Rn → R) if g0

is r–homogeneous and lim
λ→λ0

λ−d0g(D(λ)x) = g0(x) for some d0 ≥ 0 and any x ∈ Sr.

The vector field f : Rn → R
n is called (r,λ0,f0)–homogeneous (r ∈ R

n
+, f0 : Rn → R

n) if f0 is r–
homogeneous and lim

λ→λ0

λ−d0D−1(λ)f(D(λ)x) = f0(x) for some d0 ≥ − min
1≤i≤n

ri and any x ∈ Sr.

The uniform convergence of the above limits is assumed for λ0 ∈ {0,+∞}.

In [9] this definition was introduced for λ0 = 0 and λ0 = +∞ (the function g is called

homogeneous in the bi-limit if it is simultaneously (r0,0,g0)–homogeneous and (r∞,+∞,g∞)–

homogeneous), the case λ0 = 0 has been also treated in [29, 20, 12, 3]. The theorem below

demonstrates the relation between fixed-time stability and homogeneity in bi-limit.

Theorem 6 ([9], Theorem 2.20 and Corollary 2.24)

Let the vector field f : Rn → R
n be (r0, 0, f0)–homogenous with degree d0 < 0 and

(r∞,+∞, f∞)–homogenous with degree d∞ > 0. If the system (4) and the systems ẋ = f0(x), ẋ =
f∞(x) are globally asymptotically stable, then the system (4) is globally fixed-time stable.

In addition to Theorems 4 and 6 the homogeneity theory provides many other advantages to

analysis and design of nonlinear control system. For instance, some results about Input-to-State

Stability of homogeneous systems can be found in [30, 31, 21].

3.3. Implicit Lyapunov Function Method

The next two theorem present recent extensions of the ILF method to finite-time and fixed-time

stability analysis [17].

Theorem 7

If there exists a continuous function Q : R+ ×R
n → R that satisfies the conditions

C1) Q is continuously differentiable in R+ ×R
n\{0};

C2) for any x ∈ R
n\{0} there exist V ∈ R+ such that Q(V, x) = 0;

C3) let Ω = {(V, x) ∈ R+ ×R
n : Q(V, x) = 0} and

lim
x→0

(V,x)∈Ω

V = 0+, lim
V →0+

(V,x)∈Ω

‖x‖ = 0, lim
‖x‖→∞

(V,x)∈Ω

V = +∞;

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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ROBUST STABILIZATION OF MIMO SYSTEMS IN A FINITE/FIXED TIME 5

C4) the inequality
∂Q(V,x)
∂V < 0 holds for all V ∈ R+ and x ∈ R

n\{0};

C5) there exist c ∈ R+ and µ ∈ (0, 1] such that

sup
t∈R+,y∈K[f ](t,x)

∂Q(V, x)

∂x
y ≤ cV 1−µ ∂Q(V, x)

∂V
, (V, x) ∈ Ω;

then the origin of system (2) is globally finite time stable with the following settling time estimate:

T (x0) ≤
V µ
0

cµ , where V0 ∈ R+ : Q(V0, x0) = 0.

Theorem 7 represents the well-known stability result on finite-time stability (see, for example,

[4]) for implicit definition of Lyapunov function. Indeed, the conditions C1), C2) and C4) guarantee

existence and uniqueness of a positive definite function V : Rn → R+ such that Q(V (x), x) = 0 for

all x ∈ R
n. The conditions C3) implies that V (x) → 0 as x→ 0 and V (x) → +∞ as x→ ∞. The

Implicit Function Theorem [32] provides the formula for the partial derivative ∂V
∂x = −

[

∂Q
∂V

]−1 ∂Q
∂x .

Hence, the conditions C4) and C5) give the estimate of the time derivative V̇ (x) ≤ −cV 1−µ

implying the finite-time stability [4].

Theorem 8

Let there exist two functionsQ1 : R+ ×R
n → R andQ2 : R+ ×R

n → R that satisfy the conditions

C1)-C4) of Theorem 7 and

C6) Q1(1, x) = Q2(1, x) for all x ∈ R
n\{0};

C7) there exist c1 ∈ R+ and µ ∈ (0, 1] such that

sup
t∈R+,y∈K[f ](t,x)

∂Q1(V, x)

∂x
y ≤ c1V

1−µ ∂Q1(V, x)

∂V

for all V ∈ (0, 1] and x ∈ R
n\{0} satisfying Q1(V, x) = 0;

C8) there exist c2 ∈ R+ and ν ∈ R+ such that

sup
t∈R+,y∈K[f ](t,x)

∂Q2(V, x)

∂x
y ≤ c2V

1+ν ∂Q2(V, x)

∂V

for all V ≥ 1 and x ∈ R
n\{0} satisfying Q2(V, x) = 0;

Then the equilibrium point x = 0 of the system (2) is globally fixed-time stable with the global

estimate of the settling time: T (x0) ≤
1
c1µ

+ 1
c2ν

.

Below we use these theorems for the finite-time and fixed-time stabilizing feedbacks design.

4. CONTROL DESIGN USING IMPLICIT LYAPUNOV FUNCTION METHOD

4.1. Block Decomposition

Let us initially decompose the original multi-input system (1) to a block form [24]. Below we use

the known block decomposition procedure discussed in [6, 22]. Due to this reason many details are

skipped for simplicity of the presentation.

Let the orthogonal matrices Ti be defined by the following two step algorithm:

Initialization : A0 = A, B0 = B, T0 = In, k = 0.

Loop: While rank(Bk) < rown(Ak) do

Ak+1 = B⊥
k Ak

(

B⊥
k

)T
, Bk+1 = B⊥

k AkB̂k, Tk+1 =

(

B⊥
k

B̂k

)

, k = k + 1,

where B⊥
k :=

(

null(BTk )
)T

, B̂k :=
(

null
(

B⊥
k

))T
.

In the paper [6] it was proven that the orthogonal matrix

G=

(

Tk 0
0 Iwk

)(

Tk−1 0
0 Iwk−1

)

...

(

T2 0
0 Iw2

)

T1,

where wi := n− rown(Ti)
(7)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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provides

GAGT=











A11 A12 0 ... 0
A21 A22 A23 ... 0
... ... ... ... ...

Ak-1 1 Ak-1 2 ... Ak-1 k-1 Ak-1 k

Ak1 Ak2 ... Akk−1 Akk











,

GB =
(

0 0 ... 0 ATk k+1

)T
,

(8)

where Ak k+1 = B̂0B0, Aij ∈ R
ni×nj , ni := rank(Bk−i), i, j = 1, 2, ..., k and rank(Ai i+1) = ni.

Recall that the B has full column rank (rank(B) = m). Consequently, Ak k+1 is square and

nonsingular. Since rank(Ai i+1) = ni = rown(Ai i+1) then Ai i+1A
T
i i+1 is invertible and A+

i i+1 =

ATi i+1(Ai i+1A
T
i i+1)

−1 is the right inverse matrix of Ai i+1. Introduce the linear coordinate

transformation s = Φy, s = (s1, ..., sk)
T , si ∈ R

ni , y = (y1, ..., yk)
T , yi ∈ R

ni by the formulas:

si = yi + ϕi, i = 1, 2, ..., k,

ϕ1 = 0, ϕi+1 = A+
i i+1

(

i
∑

j=1

Aijyj +
i
∑

r=1

∂ϕi

∂yr

r+1
∑

j=1

Arjyj

)

.
(9)

The presented coordinate transformation is linear and nonsingular. The inverse transformation

y = Φ−1s is defined as follows:

yi = si + ψi, i = 1, 2, ..., k,

ψ1 = 0, ψi+1 = A+
ii+1

(

i
∑

k=1

∂ψi

∂sk
Aii+1sk+1 −

i
∑

j=1

Aij(sj + ψj)

)

.

For example, if k = 3 then the matrix Φ has the form

Φ=





In1 0 0
A+

12A11 In2
0

A+
23(A21 +A+

12A
2
11) A+

23(A22 +A+
12A11A12) In3



 .

In general case, the transformation Φ can be calculated numerically in MATLAB.

Applying the transformation s = ΦGx to the system (1) we obtain

ṡ =













0 A12 0 ... 0
0 0 A23 ... 0
... ... ... ... ...
0 0 ... 0 Ak−1 k

Ãk1 Ãk2 ... Ãkk−1 Ãkk













s+B′u+ d̃,

where the block Ãki has the same size as Aki, B
′ = ΦGB =

(

0 0 ... 0 ATk k+1

)T
and

d̃ := d̃(t, s) = ΦGd(t, GTΦ−1s). (10)

Let us select the control law in the form

u = A+
k k+1 (ũ−Klins) , (11)

where Klin =
(

Ãk1 Ãk2 ... Ãkk−1 Ãkk
)

and ũ ∈ R
nk is a nonlinear part of feedback,

which has to be designed in order to guarantee finite-time stability of the origin of the system:

ṡ = Ãs+ B̃ũ+ d̃(t, s), (12)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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ROBUST STABILIZATION OF MIMO SYSTEMS IN A FINITE/FIXED TIME 7

where

Ã =











0 A12 0 ... 0
0 0 A23 ... 0
... ... ... ... ...
0 ... ... 0 Ak−1 k

0 ... ... 0 0











, B̃ =
(

0 0 ... 0 Ink

)T
∈ R

n×nk . (13)

Remark 9

Feedback linearizable nonlinear systems ẋ = f(x) +G(x)u can also be transformed into the form

(12) (see, for example, [33]).

4.2. Finite-time Stabilization

Introduce the ILF function

Q(V, s) := sTDr(V
−1)PDr(V

−1)s− 1, (14)

where s = (s1, ..., sk)
T , si ∈ R

ni , V ∈ R
+, Dr(λ) is the dilation matrix of the form

Dr(λ) =







λr1In1
0 ... 0

0 λr2In2
... 0

... ... ... ...
0 ... 0 λrkInk






, λ ∈ R+, (15)

ri = 1 + (k − i)µ, i = 1, 2, .., k,

0 < µ ≤ 1 and P ∈ R
n×n is a symmetric positive definite matrix, i.e. P = PT > 0. Denote Hµ :=

diag{riIni
}ki=1.

Theorem 10 (On finite-time stabilization without perturbations)

If d̃(t, s) ≡ 0 and the system of matrix inequalities:

{

ÃX +XÃT + B̃Y + Y T B̃T +HµX +XHµ = 0
XHµ +HµX > 0, X > 0

, (16)

is feasible for some µ ∈ (0, 1] and X ∈ R
n×n, Y ∈ R

nk×n then the control of the form (11) with

ũ = ũ(V, s) = V 1−µKDr(V
−1)s, (17)

where K := Y X−1, V ∈ R+ satisfies Q(V, s) = 0 and Q is defined by (14) with P := X−1,

stabilizes the origin of the system (1) in a finite time and the settling-time function is defined by

T (x0) =
V µ0
µ
, (18)

where V0 ∈ R+ : Q(V0,ΦGx0) = 0.

Proof

The function Q(V, s) defined by (14) satisfies the conditions C1)-C3) of Theorem 7. Indeed, it is

continuously differentiable for all V ∈ R+ and ∀s ∈ R
n. Since P > 0 then the following chain of

inequalities
λmin(P )‖s‖2

max{V 2+2(k−1)µ,V 2}
≤ Q(V, s) + 1 ≤ λmax(P )‖s‖2

min{V 2+2(k−1)µ,V 2}

implies that for any s ∈ R
n\{0} there exist V − ∈ R+ and V + ∈ R+ : Q(V −, s) < 0 < Q(V +, s).

Moreover, if Q(V, s) = 0 then the same chain of inequalities gives

min{V 2+2(k−1)µ,V 2}
λmax(P ) ≤ ‖s‖2 ≤ max{V 2+2(k−1)µ,V 2}

λmin(P ) .
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8 A. POLYAKOV, D. EFIMOV, W. PERRUQUETTI

It follows that the condition C3) of Theorem 7 holds.

Since
∂Q

∂V
= −V −1sTDr(V

−1)(HµP + PHµ)Dr(V
−1)s,

then (16) and P := X−1 implies HµP + PHµ > 0 and ∂Q
∂V < 0 for ∀V ∈ R+ and s ∈ R

n\{0}. So

the condition C4) of Theorem 7 also holds. In this case we have

∂Q

∂s
(Ãs+ B̃ũ) = 2sTDr(V

−1)PDr(V
−1)(Ãs+ B̃ũ).

Taking into account that Dr(V
−1)ÃD−1

r (V −1) = V −µÃ and Dr(V
−1)B̃ũ = V −µB̃KDr(V

−1)s
we obtain

∂Q

∂s
(Ãs+ B̃ũ)) = V −µsTDr(V

−1)
(

P (Ã+ B̃K) + (Ã+ B̃K)TP
)

Dr(V
−1)s.

Therefore,

V̇ = −

[

∂Q

∂V

]−1
∂Q

∂s
(Ãs+ B̃ũ) =

sTDr(V
−1)(P (Ã+B̃K)+(Ã+B̃K)TP)Dr(V

−1)s

sTDr(V −1)(HµP+PHµ)Dr(V −1)s
V 1−µ =

zT (P (Ã+B̃K)+(Ã+B̃K)TP)z
zT (HµP+PHµ)z

V 1−µ = −V 1−µ,

where z := z(V, s) = Dr(V
−1)s and the equality from (16) was used on the last step.

Remark 11

The practical implementation of the control (17) requires solving of the equation Q(V, s) = 0 in

order to obtain V (s). In some cases (for example, k = 2, µ = 1), the function V (s) can be found

analytically. In other cases this equation can be solved numerically and on-line during digital

implementation of a control law. A more detailed study of the practical implementation of the ILF

control algorithm is presented in Section 5.

The system of matrix inequalities (16) can be easily solved using LMI toolbox of MATLAB or,

for example, SeDuMi solver. The solution of (16) also can be constructed analytically using the

proof of the next proposition.

Proposition 12

The system of matrix inequalities (16) is feasible for any µ ∈ R+.

Proof

Let us represent the matrices X , Y in the block form

X =











X1 1 X1 2 ... X1 k−1 X1 k

XT
1 2 X2 2 ... X2 k−1 X2 k−1

... ... ... ... ...
XT

1 k−1 XT
2 k−1 ... Xk−1 k−1 Xk−1 k

XT
1 k XT

1 k−1 ... XT
k−1 k Xk k











, Xi j ∈ R
ni×nj , i, j = 1, 2, ..., k;

Y =
(

Y1 Y2 ... Yk−1 Yk
)

, Yi ∈ R
nk×ni , i = 1, 2, ..., k.

The algebraic equation from (16) can be equivalently rewritten in the block form

Ai i+1X
T
i i+1 +Xi i+1A

T
i i+1 + 2[1 + µ(k − i)]Xi i = 0, i = 1, 2, ..., k − 1, (19)

Ai i+1Xi+1 j +Xi j+1A
T
j j+1 + [2 + µ(2k − i− j)]Xi j = 0, j > i = 1, 2, ..., k − 1, (20)

Ai i+1Xi+1 k + [2 + µ(k − i)]Xi k + Y Ti = 0, i = 1, 2, ..., k − 1, (21)

2Xk k + Y Tk + Yk = 0. (22)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
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Let X(i1:i2; j1:j2) be the block matrix consisting of the blocks Xij with i = i1, i1 + 1, ..., i2 and

j = j1, j1 + 1, ..., j2, where i1 ≤ i2 and j1 ≤ j2. Denote Hi = diag{(1 + µk − µ)In1 , (1 + µk −
2µ)In2

, ..., (1 + µk − iµ)Ini
} and Z = XHµ +HµX . Let Z(i1:i2; j1:j2) be the block matrix of the

same structure like X(i1:i2; j1:j2) but constructed for the matrix Z. Evidently, we have

Z(1:1; 1:1) = 2[1 + µ(k − 1)]X(1:1; 1:1), Z(1:i; 1:i) =

(

Z(1:i−1; 1:i−1) X(1:i−1; i:i)Hi

X
T
(1:i−1; i:i)Hi 2[1 + µ(k − i)]Xi i

)

.

Let us construct by induction the solution of the system (19)-(22) such that X > 0 and Z > 0. The

next considerations use the property rank(Ai i+1) = ni.
Induction base. Select X1 1 = α1In1

, where α1 > 0 is an arbitrary positive number. In this case

the equation (19) gives X1 2 = −α1[1 + µ(k − 1)]X1 1A
+
1 2A1 2. Since X1 1 = X(1:1; 1:1) > 0 and

Z(1:1; 1:1) > 0 then selectingX2 2 = α2In2 we have X(1:2; 1:2) > 0 and Z(1:2; 1:2) > 0 for sufficiently

large α2 > 0.

Induction step. Let for some k̃ < k the matrices X(1:k̃; 1:k̃) > 0 and Z(1:k̃; 1:k̃) > 0 be

constructed such that Xii = αiIni
, αi ∈ R+. The equation (19) gives Xk̃ k̃+1 = −αk̃[1 + µ(k −

k̃)]A+

k̃ k̃+1
Ak̃ k̃+1 and the equation (20) implies

Xi k̃+1 = −(Ai i+1Xi+1 k̃)A
+

k̃ k̃+1
Ak̃ k̃+1, i = 1, 2..., k̃.

Since X(1:k̃; 1:k̃) > 0 and Z(1:k̃; 1:k̃) > 0 then selecting Xk̃+1 k̃+1 = αk̃+1Ink̃+1
we will have

X(1:k̃+1; 1:k̃+1) > 0 and Z(1:k̃+1; 1:k̃+1) > 0 for sufficiently large αk̃+1 > 0.

The presented algorithm constructsX > 0 such that Z > 0 and the equations (19), (20) holds. On

the last step (when k̃ = k), selecting Yk = Xk k and

Yi = −(Ai i+1Xi+1 k + [2 + µ(k − i)]Xi k)
T , i = 1, 2, ..., k − 1,

we obtain X > 0 and Y satisfying (19)-(22) and the inequality XHµ +HµX > 0.

Note that the formula (18) provides the exact value of the settling-time.

Remark 13

For µ ∈ (0, 1) the control of the form (17) is continuous function of the state x. If µ = 1 then

the control function ũ is continuous outside the origin and bounded for all x ∈ R
n. Indeed, since

sTDr(V
−1)PDr(V

−1)s = 1 ⇒ ‖Dr(V
−1)s‖2 ≤ 1

λmin(P ) then for µ = 1 we have

ũ2 ≤ ‖K‖2 · ‖Dr(V
−1)s‖2 ≤

‖K‖2

λmin(P )
.

Hence, it is easy to see that for µ = 1 in order to restrict the control magnitude by ‖ũ‖ ≤ u0 the

following matrix inequality
(

X Y T

Y u20Im

)

≥ 0 (23)

can be added to (16).

The control law (17) is Implicit Lyapunov Function-based control or shortly ILF control [17].

Corollary 14

If d̃ ≡ 0 then the system (12), (17) is r-homogeneous of degree −µ with r = (1 + (k − 1)µ, 1 +
(k − 2)µ, ..., 1). The Implicit Lyapunov Function V (x) is r-homogeneous of degree 1.

Proof

Obviously, we have Q(V,Dr(λ)s) = Q(λ−1V, s), i.e. V (Dr(λ)s) = λV (s). Now, we derive

ũ(Dr(λ)s) = V 1−µ(Dr(λ)s)KDr(V
−1(Dr(λ)s))Dr(λ)s

= λ1−µV 1−µ(s)KDr(λ
−1V −1(s))Dr(λ)s = λ1−µũ(x)

and ÃDr(λ)s+ B̃ũ(Dr(λ)s) = λ−µDr(λ)(Ãs+ B̃ũ(s)).
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10 A. POLYAKOV, D. EFIMOV, W. PERRUQUETTI

The proven corollary transfers all qualitative robustness properties of homogeneous systems (like

Input-to-State Stability) to the system (12), (17) (see, for example, [30, 31, 21]). In the same time,

the control practice is mainly interested in quantitative analysis of robustness. The next theorem

presents the modification of ILF control scheme rejecting some additive disturbances.

Theorem 15 (On finite-time robust stabilization)

If µ ∈ (0, 1] and the system of linear matrix inequalities
{

ÃX +XÃT + B̃Y + Y T B̃T +HµX +XHµ +R ≤ 0,
XHµ +HµX > 0, X > 0, X ∈ R

n×n, Y ∈ R
nk×n,

(24)

is feasible for some fixed R ∈ R
n×n, R > 0 and the control ũ = ũ(V, s) has the form (17) with

P := X−1 andK = Y X−1, then for any continuous disturbance function d̃ satisfying the inequality

d̃TDr(V
−1)R−1Dr(V

−1)d̃ ≤ βV −2µsTDr(V
−1)(HµP + PHµ)Dr(V

−1)s,
with V ∈ R+ : Q(V, s) = 0 and β ∈ (0, 1)

(25)

the closed-loop system (1), (11) is globally finite-time stable and the settling-time function estimate

has the form

T (x0) ≤
V µ0

(1− β)µ
(26)

where V0 ∈ R+ : Q(V0,ΦGx0) = 0 and Q is defined by (14).

Proof

Taking into account the disturbances we obtain

∂Q

∂s

(

Ãs+ B̃ũ+ d̃
)

= V −µsTDr(V
−1)
(

P (Ã+ B̃K) + (Ã+ B̃K)TP
)

Dr(V
−1)s+

sTDr(V
−1)PDr(V

−1)d̃+ d̃TDr(V
−1)PDr(V

−1)s =

(

Dr(V
−1)s

Dr(V
−1)d̃

)T

W

(

Dr(V
−1)s

Dr(V
−1)d̃

)

+

V µd̃TDr(V
−1)R−1Dr(V

−1)d̃− V −µsTDr(V
−1)(HµP + PHµ)Dr(V

−1)s,

where

W :=

(

V −µ(P (Ã+ B̃K) + (Ã+ B̃K)TP +HµP + PHµ) P
P −V µR−1

)

is negative semidefinite. Indeed, multiplying the first inequality from (24) by V −µ and applying the

Schur complement, we obtain the LMI of the form
(

V −µ(ÃX +XÃT + B̃Y + Y T B̃T +HµX +XHµ) I
I −V µR−1

)

≤ 0,

which is equivalent to W ≤ 0, since X = P−1 and K = Y X−1. The inequality (25) implies V̇ =

−
[

∂Q
∂V

]-1 ∂Q
∂s (Ãs+ B̃ũ+ d̃) ≤

[

∂Q
∂V

]-1 (1−β)sTDr(V
−1)(HµP+PHµ)Dr(V

−1)s
V µ = − (1− β)V 1-µ.

The feasibility of the LMI (24) can be proven by analogy with Proposition 12.

The inequality (25), that restricts the system disturbances in the last theorem, has an implicit

form, which is not appropriate for practice. Therefore, it is important to present such restriction to

disturbance functions d̃ that can be easily analyzed.

Let the matrices Ei, i = 1, 2, ..k be introduced by the formula

Ei =











0n1
... 0n1×ni

... 0n1×nk

... ... ... ... ...
0ni×n1

... Ini
... 0ni×nk

... ... ... ... ...
0nk×n1 ... 0nk×ni

... 0nk











. (27)

It can be shown that if Eid̃ ≡ 0 for some i = i1, i2, ..., ip then Theorem 15 stays true even when the

term R in the LMI (16) is replaced with Eip ...Ei2Ei1REi1Ei2 ...Eip .
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Proposition 16

Let X ∈ R
n×n be a solution of the LMI system (24) with R = In and P = X−1. If

d̃TEid̃ ≤ βiγ

{

(

λmin(P )s
T s
)1+(k−i−1)µ

if sTPs ≤ 1,
(

λmin(P )s
T s
)

1+(k−i−1)µ
1+(k−1)µ if sTPs > 1,

(28)

for some βi ∈ R+ : β = β1 + ...+ βk < 1 and γ := λmin(P
1/2HµP

−1/2 + P−1/2HµP
1/2) then

the inequality (25) of Theorem 15 holds.

Proof

The definition of the number γ implies γIn ≤ P 1/2HµP
−1/2 + P−1/2HµP

1/2 or equivalently

γP ≤ PHµ +HµP . Hence, the definition of the implicit Lyapunov function gives

γ = γsTDr(V
−1)PDr(V

−1)s ≤ sTDr(V
−1)(PHµ +HµP )Dr(V

−1)s,

where (V, s) ∈ R+ ×R
n such that Q(V, s) = 0. On the other hand, we have

1 = sTDr(V
−1)PDr(V

−1)s ≥

{

λmin(P )V
−2sT s for sTPs ≤ 1,

λmin(P )V
−2−2(k−1)µsT s for sTPs > 1.

Hence, we derive d̃TDr(V
−1)R−1Dr(V

−1)d̃ =
k
∑

i=1

V −2−2(k−i)µd̃TEid̃ ≤ γ
V 2µ (β1 + ...+ βk) ≤

βV −2µsTDr(V
−1)(PHµ +HµP )Dr(V

−1)s, i.e. the inequality (25) holds.

Note that the condition (28) may be fulfilled only if the so-called unmatched disturbances are

”vanishing” at the origin, i.e. d̃T (t, s)Eid̃(t, s) → 0 as s→ 0 for i = 1, 2, ..., k − 1. If µ = 1 then

restriction to the so-called matched part of disturbances becomes d̃TEkd̃ ≤ βkγ, i.e. the ILF control

rejects bounded matched disturbances.

4.3. Fixed-Time Stabilization

In order to design fixed-time ILF control we consider two implicit Lyapunov functions defined by

Q1(V, s) := sTDrµ(V
−1)PDrµ(V

−1)s− 1,
Q2(V, s) := sTDrν (V

−1)PDrν (V
−1)s− 1,

(29)

where P ∈ R
n×n, P > 0 andDrµ(λ) =

{

λ1+(k−i)µIni

}k

i=1
andDrν (λ) =

{

λ1+(i−1)νIni

}k

i=1
with

λ ∈ R+. Denote Hµ = diag{(1 + (k − i)µ)Ini
}ki=1 and Hν = diag{(1 + (i− 1)ν)Ini

}ki=1.

Theorem 17 (On fixed-time robust stabilization)

If 1) the system of linear matrix inequalities

ÃX +XÃT + B̃Y + Y T B̃T + αµ(XHµ +HµX) +Rµ ≤ 0,

ÃX +XÃT + B̃Y + Y T B̃T + αν(XHν +HνX) +Rν ≤ 0,
XHµ +HµX > 0, XHν +HνX > 0, X > 0, X ∈ R

n×n, Y ∈ R
nk×n,

(30)

is feasible for some fixed numbers µ ∈ (0, 1], ν, αµ, αν ∈ R+ and some fixed matrices Rν , Rµ ∈
R
n×n, Rµ > 0, Rν > 0,

2) the control law u has the form (11) with

ũ = ũ(V, s) =

{

V 1−µKDrµ(V
−1)s for sTPs < 1,

V 1+kνKDrν (V
−1)s for sTPs ≥ 1,

(31)

where K = Y X−1, P = X−1 and V defined by

V ∈ R+ :

{

Q1(V, s) = 0 for sTPs < 1,
Q2(V, s) = 0 for sTPs ≥ 1,

(32)
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3) the disturbance function d̃ satisfies

d̃TDrµ(V
−1)R−1

µ Drµ(V
−1)d̃ ≤ βµV

−2µsTDrµ(HµP + PHµ)Drµs if sTPs ≤ 1

d̃TDrν (V
−1)R−1

ν Drν (V
−1)d̃ ≤ βνV

2νsTDrν (HνP + PHν)Drνs if sTPs ≥ 1
(33)

for some βµ ∈ [0, αµ) and βν ∈ [0, αν), then the closed-loop system (1) is globally fixed-time stable

with the following estimate of the settling time function:

T (x0) ≤
1

(αµ − βµ)µ
+

1

(αν − βν)ν
. (34)

Proof

Following the proof of Theorem 10 we can show that Q1(V, s) and Q2(V, s) satisfy the conditions

C1)-C4) of Theorem 7. Obviously, Q1(1, s) = Q2(1, s) and the condition C6) of Theorem 8 holds.

In this case the formula (32) implicitly defines the Lyapunov function candidate V : Rn → R+,

which can be prolonged by continuity to the origin V (0) = 0. Remark that sTPs ≤ 1 ⇒ V (s) ≤ 1
and sTPs ≥ 1 ⇒ V (s) ≥ 1.

Similarly to the proof of Theorem 10 it can be shown

−

[

∂Q1

∂V

]−1
∂Q1

∂s
(Ãs+ B̃ũ+ d̃) ≤ −(αµ − βµ)V

1−µ for V (s) ≤ 1.

For the function Q2(V, s) we have ∂Q2

∂V = −V −1sTDrν (V
−1)(HνP + PHν)Drν (V

−1)s and
∂Q2

∂s (Ãs+ B̃ũ+ d̃) = 2sTDrν (V
−1)PDrν (V

−1)(Ãs+ B̃ũ+ d̃). Taking into account that

Drν (V
−1)ÃD−1

rν (V −1) = V νÃ and Drν (V
−1)B̃ũ = V νB̃KDrν (V

−1)s for sTPs ≥ 1 we obtain

∂Q2

∂s (Ãs+ B̃ũ+ d̃) = V νsTDrν (V
−1)
(

P (Ã+ B̃K) + (Ã+ B̃K)TP
)

Drν (V
−1)s+

2sTDrν (V
−1)PDrν (V

−1)d̃ =

(

Drν (V
−1)s

Drν (V
−1)d̃

)T

W2

(

Drν (V
−1)x

Drν (V
−1)d̃

)

+

ανV
νsTDrν (V

−1)(HνP + PHν)Drν (V
−1)s+ V −ν d̃TDrν (V

−1)R−1
ν Drν (V

−1)d̃,

where

W2 =

(

V ν
(

P (Ã+ B̃K) + (Ã+ B̃K)TP + αν [HνP + PHν ]
)

P
P −V −νR−1

ν

)

≤ 0.

Hence

V̇ = −

[

∂Q2

∂V

]−1
∂Q2

∂s
(ÃS + B̃ũ+ d̃) ≤ −(αν − βν)V

1+ν for V (s) ≥ 1.

Therefore, all conditions of Theorem 8 hold.

The parameters αµ and αν are introduced to the LMI system (30) for tuning of the convergence

time of the closed-loop system.

Similarly to the finite-time case it is easy to check that the disturbance-free system (12), (31)

is homogeneous in the locally homogeneous with negative degree −µ at 0-limit and locally

homogeneous with positive degree ν in ∞-limit. The Input-to-State Stability analysis of the systems

that is homogeneous in the bi-limit can be found in [9], [21]. The feasibility of the LMI (30) can be

proven analogously to Proposition 12.

Proposition 18

Let X ∈ R
n×n be a solution of the LMI system (30) with Rµ = Rν = In and P = X−1. If for

i = 1, 2, ..., k

d̃TEid̃ ≤

{

βiµγµ
(

λmin(P )s
T s
)1+(k−i−1)µ

if sTPs ≤ 1,

βiνγν
(

λmin(P )s
T s
)

1+iν
1+(k−1)ν if sTPs > 1,

i = 1, 2, ..., k, (35)
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where βiµ ∈ R+ and βiν ∈ R+, βµ = β1
µ + ...+ βkµ < αµ and βν = β1

ν + ...+ βkν < αν , γµ =

λmin(P
1/2HµP

−1/2 + P−1/2HµP
1/2) and γν = λmin(P

1/2HνP
−1/2 + P−1/2HνP

1/2), then the

condition 3) of Theorem 17 holds.

Proof

The case sTPs ≤ 1 can be studied similarly to the proof of proposition 16. Consider the case

sTPs > 1 in this case the implicit Lyapunov function V = V (s) is defined by the equation

Q2(V, s) = 0 and 1 = sTDrν (V
−1)PDrν (V

−1)s ≥ λmin(P )V
−2−2(k−1)νsT s. ForRν = I we have

d̃TDrν (V
−1)R−1

ν Drν (V
−1)d̃ =

k
∑

i=1

d̃TEid̃
V 2+2(i-1)ν ≤ βνV

2νsTDrν (V
−1)(HνP+PHµ)Drν (V

−1)s.

The fixed-time ILF control algorithm may reject a wider class of disturbances comparing with

the finite-time one. For example, the linear disturbance function d̃ = ∆s,∆ ∈ R
n×n never satisfies

the condition (28), but, obviously, the condition (35) will be fulfilled for sufficiently small ‖∆‖ and

k ≤ 2. It is also worth to stress that the conditions (25), (28), (33), (35) can be considered locally if

the operation domain is known a-priori.

Remark 19

The theorems 15 and 17 have been proven for continuous disturbance function d̃. They can be easily

extended to the class of piecewise continuous (with respect to state variable) functions. In this case,

the conditions of the theorems must hold for any selector d̃′ ∈ D̃, where D̃ is the set-valued mapping

defined by Filippov regularization procedure as follows

D̃(t, s) =
⋂

δ>0

⋂

N :µ(N)=0

co d̃(t, s+B(δ)\N),

where co(N) defines the convex closure of the set N ⊂ R
n and the equality µ(N) = 0 means that

the set N has measure 0.

5. ON PRACTICAL IMPLEMENTATION OF THE CONTROL ALGORITHM

5.1. Sampled-Time ILF Control

In order to realize the control algorithm (17) in practice we need to know V (s). In some

cases the function V (s) can be calculated analytically, for example, for n = 2,m = 1. However,

even for the second order case this representation is very cumbersome. The function V (s) can

also be approximated numerically on a grid, which is constructed in some operation domain (a

neighborhood of the origin). Moreover, the ILF control can be easily implemented to linear control

systems that admit the on-line variation of the feedback gains. Indeed, for any fixed V0 the control

ũ(V0, s) defined by (17) or (31) becomes linear feedback. Denote

Πµ(V, P ) := {z ∈ R
n : zTDµ(V

−1)PDµ(V
−1)z ≤ 1}. (36)

Theorem 20

Let the conditions of Theorem 15 hold and the disturbance function d̃ satisfies the condition (25).

If the control ũ = ũ(V0, s) is defined by (17) with an arbitrary fixed positive number V0 ∈ R+

then the ellipsoid Πµ(V0, X
−1) is positively invariant set of the closed-loop system (1), (11), i.e

s(t′) ∈ Πµ(V0, X
−1) ⇒ s(t) ∈ Πµ(V0, X

−1) for all t > t′.

Proof

I. Rewrite the matrix inequality (24) with X = P−1 and k = yX−1 in the form:

(Ã+Hµ)
TP + P (Ã+Hµ) + PB̃K +KT B̃TP + PRP ≤ 0.

Hence, we have

Dr(V
−1
0 )((Ã+Hµ)

TP + P (Ã+Hµ) + PB̃K +KT B̃TP + PRP )Dr(V
−1
0 ) ≤ 0.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2014)
Prepared using rncauth.cls DOI: 10.1002/rnc



14 A. POLYAKOV, D. EFIMOV, W. PERRUQUETTI

Denoting P0 := Dr(V
−1
0 )PDr(V

−1
0 ) > 0 and taking into account D−1

r (V −1
0 )ÃDr(V

−1
0 ) = V µ0 Ã,

D−1
r (V −1

0 )HµDr(V
−1
0 ) = Hµ and D−1

r (V −1
0 )B̃ = V0B̃ we derive

P0Ã+ ÃTP0 + P0B̃K0 +KT
0 B̃

TP0 +
1

V µ0
(HµP0 + P0Hµ + P0Dµ(V0)RDµ(V0)P0) ≤ 0,

where K0 = V 1−µ
0 kDr(V

−1
0 ).

II. Consider the following Lyapunov function candidate Ṽ (s) = sTP0s. Since ũ0(s) = ũ(V0, s) =
K0s then

dṼ

dt

∣

∣

∣

∣

(1)

=

(

s

d̃

)T

W0

(

s

d̃

)

− V −µ
0 sT (P0Hµ +HµP0)s+ V µ0 d̃

TDµ(V
−1
0 )R−1Dµ(V

−1
0 )d̃

where

W0 =

(

P0Ã+ÃTP0+P0B̃K0+KT
0 B̃

TP0+ 1
V µ
0
(HµP0+P0Hµ) P0

P0 −V µ0 [Dµ(V0)RDµ(V0)]
−1

)

.

The Schur complement implies W0 ≤ 0 and taking into account the condition (25) we obtain

dṼ

dt

∣

∣

∣

∣

(12)

≤ −
1− β

V µ0
sT (P0Hµ +HµP0)s ∀s ∈ R

n : Q(V0, s) = 0 (i.e. sTP0s = 1),

where β ∈ (0, 1). Therefore, the ellipsoid Πµ(V0, P ) is strictly positively invariant set of the closed-

loop system (1) with the control ũ := ũ(V0, s).

Now we assume that the value V can be changed only in some sampled time instances and let us

show the robustness of the sampled-time implementation of the ILF control algorithm.

Corollary 21 (On sampled-time ILF control realization)

If

1) the conditions of Theorem 15 hold and the disturbance function d̃ satisfies the condition (25);

2) {ti}
+∞
i=0 is an arbitrary sequence of time instances such that

0 = t0 < t1 < t2 < ... and lim
i→+∞

ti = +∞;

3) the control has the form (11) with ũ = ũ(Vi, s) on each time interval [ti, ti+1), where ũ(V, s)
is defined by (17) and Vi ∈ R+ : Q(Vi, s(ti)) = 0;

then the closed-loop system (1) is globally asymptotically stable.

Proof

Let V (s) be a positive definite function implicitly defined by the equation Q(V, s) = 0. In this case

we have Vi = V (s(ti)).
I. Let us prove that the sequence {Vi}

+∞
i=1 is monotone decreasing. Consider the time interval

t ∈ [ti, ti+1) and the quadratic function Ṽi(s) := sTPis, where Pi := Dr(V
−1
i )PDr(V

−1
i ) > 0 and

P = X−1 defined by (24).

The switching control ũ(s) on this interval takes the form ũi(s) = ũ(Vi, s) = Kis, where Ki :=

V 1−µ
i KDr(V

−1
i ). Repeating the proof of Theorem 20 we derive dṼi

dt

∣

∣

∣

(12)
≤ − 1−β

V µ

i

sT (PiHµ +

HµPi)s for s ∈ R
n : Q(Vi, s) = 0 and t ∈ [ti, ti+1), where β ∈ (0, 1). Hence,

dṼi(s(ti))
dt

∣

∣

∣

(12)
< 0 and

Ṽi(s(t)) < Ṽi(s(ti)) for all (ti, ti+1]. In this case we have

Q(Vi, s(t)) = sT (t)Dr(V
−1
i )PDr(V

−1
i )s(t)− 1 =

Ṽi(s(t))− 1 < Ṽi(s(ti))− 1 = Q(Vi, s(ti)) =
0 = Q(V (s(t)), s(t)), ∀t ∈ (ti, ti+1].
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For any given s ∈ R
n\{0} the function Q(V, s) is monotone decreasing for all V ∈ R

+ (see

Condition C4) of Theorem 7). Then the obtained inequality implies V (s(t)) < V (s(ti)), ∀t ∈
(ti, ti+1], i.e. the sequence {Vi}

+∞
i=1 is monotone decreasing and s(t) ∈ Πµ(Vi, P ) for t ≥ ti.

Moreover, V (s(t)) ≤ V (s(0)) for all t ≥ 0, i.e. the origin of the system (1) is Lyapunov stable.

II. Since the function V (s) is positive definite then the monotone decreasing sequence

{V (s(ti))}
∞
i=1 converge to some limit. Let us show now that this limit is zero. Suppose the contrary,

i.e. lim
i→∞

V (s(ti)) = V∗ > 0 or equivalently ∀ε > 0 ∃N = N(ε) : V∗ ≤ Vi < V∗ + ε, ∀i ≥ N .

The control function u(V, s) is continuous ∀s ∈ R
n\{0} and ∀V ∈ R+. Then we have

‖u(Vi, s)− u(V∗, s)‖ = ‖V 1−µ
i kDr(V

−1
i )s− (V∗)

1−µkDr(V
−1
∗ )s‖ ≤ σ(ε)‖s‖, ∀i ≥ N,

where σ(·) ∈ K. This means that for t > tN the closed-loop system (1) can be presented in the form

ṡ = Ãs+ B̃(K∗ +∆(t, ε))s+ d̃, (37)

where K∗ = V 1−µ
∗ KDr(V

−1
∗ ) and ∆(t, ε) ∈ R

m×n : ‖∆‖ ≤ σ(ε).
Consider the quadratic Lyapunov function candidate Ṽ∗(s) = sTP∗s, where P∗ =

Dr(V
−1
∗ )PDr(V

−1
∗ ). For t > tN we have

dṼ∗

dt

∣

∣

∣

(12)
≤ −V −µ

∗ sT (P∗Hµ +HµP∗)s+ sT (P∗B̃∆+∆T B̃TP∗)s+ V µ∗ d̃
TDµ(V

−1
∗ )RDµ(V

−1
∗ )d̃.

Introduce the set

Ω(ε) =
⋃

δ∈(−ε,ε)

{

z ∈ R
n : zTDµ((V∗ + δ)−1)PDµ((V∗ + δ)−1)z = 1

}

.

The condition (25) implies that for sufficiently small ε ∈ R+ and ∀s ∈ Ω(ε) we have

V µ∗ d̃
TDµ(V

−1
∗ )RDµ(V

−1
∗ )d̃ ≤ β∗V

−µ
∗ sT (HµP∗ + P∗Hµ)s,

where 0 ≤ β ≤ β∗(ε) < 1.

Hence, for t > tN we derive

dṼ∗

dt

∣

∣

∣

(12)
≤ − 1−β∗(ε)

V µ
∗

sT (P∗Hµ +HµP∗)s+ sT (P∗B̃∆+∆T B̃TP∗)s ≤ −
(

1−β∗(ε)
V µ
∗

γ∗ − γ(ε)
)

Ṽ ∗,

where γ∗=λmin(P
1/2
∗ HµP

−1/2
∗ +P

−1/2
∗ HµP

1/2
∗ ), γ(ε)=λmax(P

1/2
∗ B̃∆P

−1/2
∗ +P

−1/2
∗ ∆T B̃TP

1/2
∗ )

and γ(ε) ∈ K. Therefore, for sufficiently small ε the Lyapunov function Ṽ∗(t) is exponentially

decreasing for all t > tN and there exists t∗ ≥ tN such that Ṽ∗(t∗) = V∗ and Ṽ∗(t) < V∗ for

t > t∗. This contradicts with our assumption and means limi→∞ Vi = 0 implying that the closed-

loop system (1) with sampled-time implementation of the ILF control algorithm is globally

asymptotically stabile.

The proven corollary guarantees that the sampled-time ILF control provides robust asymptotic

stabilization of the closed-loop system (1) independently on the length of the sampling

interval. Such property is rather unusual for sampled and switched control systems with additive

disturbances.

Theorem 20 and Corollary 21 can be easily extended to the case of fixed-time ILF control

application.

5.2. Digital Implementation

The ILF control implementation requires solving the equation Q(V, s) = 0 numerically and on-line

in order to find an appropriate value of Vi at the time instant ti. Fortunately, for practical reasons

rather simple numerical procedures can be utilized.

Denote as before Vi := V (ti) and si := s(ti) and suppose that the control ũ has the form ũ(Vi, s)
on the time interval [ti, ti+1), where 0 = t0 < t1 < t2 < ... and lim ti = +∞.

The scheme for selection of the switching parameter Vi is presented by the next algorithm [17].
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Algorithm 22 ([17])

INITIALIZATION: V0 = 1; a = Vmin; b = 1;
STEP :

If sTi Dr(b
−1)PDr(b

−1)si > 1 then a = b; b = 2b;
elseif sTi Dr(a

−1)PDr(a
−1)si < 1 then b = a; a = max{a2 , Vmin};

else

c = a+b
2 ;

If sTi Dr(c
−1)PDr(c

−1)si < 1 then b = c;
else a = max{Vmin, c};

endif;

endif;

Vi = b;

If si ∈ R
n is some given vector and STEP of the presented algorithm is applied recurrently many

times to the same si then Algorithm 22 realizes:

1) a localization of the unique positive root of the equation Q(V, si) = 0, i.e. Vi ∈ [a, b];
2) improvement of the obtained localization by means of the bisection method, i.e. (b− a) → 0.

Such an application of Algorithm 22 allows us to calculate Vi with rather high precision but

it requests a high computational capability of a control device. If the computational power is

very restricted, then STEP of Algorithm 22 may be realized just once at each sampled instant of

time. Theorem 20 implies practical stability of the closed-loop system (1), (11) with sampled-time

realization of ILF control and on-line calculation of the parameter Vi by Algorithm 22. Indeed,

Theorem 20 proves that Πµ(Vi, s) is an invariant set of the closed-loop system (1), (11) with

ũ = ũ(Vi, P ). When the root of the equation Q(V, si) = 0 is localized, Algorithm 22 always selects

the upper estimate of Vi providing that s(ti) ∈ Πµ(Vi, s), i.e. Vi do not increase in time even when

si = s(ti) varies in time.

The parameter Vmin defines lower admissible value of V . In practice, this parameter cannot be

selected arbitrary small due to finite numerical precision of digital devices and measurement errors,

which may imply s(ti) /∈ Πµ(Vi, P ). Therefore, the real-life realization of the ILF control provides

the practical stabilization of the system with the attractive set Πµ(Vmin, P ).
The sampled-time realization of ILF control transforms the originally nonlinear closed-loop

system to a switched linear system. This essentially simplifies the stability analysis of discretized

fixed-time control algorithms.

A more detailed elaboration of sampled-time and discrete-time ILF control algorithms goes out

of the scope of this paper. It can be done, for example, using the ideas of the paper [34].

6. EXAMPLE: STABILIZATION OF DOUBLE INVERTED PENDULUM

6.1. Model Description

Consider the mechanical system consisting of two connected inverted pendulums as it is shown on

Figure 1. The dynamics of this mechanical system is described by the equation [35]

H(q)q̈ + F (q, q̇) = u+ d(t), (38)

where q = (q1, q2)
T ∈ R

n - inclination angles of the links, u ∈ R
2 is the vector of control inputs,

the function d ∈ R+ → R
2 describes the bounded exogenous disturbances,

H =

[

J1+I1+m1l
2
1+m2L

2
1 m2L1l2 cos(q1 − q2)

m2L1l2 cos(q1 − q2) m2l
2
2 + I2 + J2

]

, F =

[

Mq̇22 − g(m1l1+m2L1) sin q1
−Mq̇21 −m2gl2 sin q2

]

,

M = m2L1l2 sin(q1 − q2), Ji is inertia of the rotor of the electric drive controlling i-th link, mi, Ii
are mass and inertia of each link, Li is the total length of link and li is the distance from the center

mass of each link to its pivot point, g = 9.8.
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Figure 1: Double inverted pendulum

The inertia matrix H(q) is always positive definite and consequently invertible. Denoting x =
(x1, x2, x3, x4)

T = (q1, q2, q̇1, q̇2)
T ∈ R

4 let us rewrite the system (38) in the form

ẋ =

(

0 I2
0 0

)

x+

(

0
S

)

ũ+ d̃,

where d̃=
[

H−1(x1, x2)− S
]

u+H−1(x1, x2) (d− F (x)), S=diag
{

1
J1+I1+m1l21+m2L2

1
, 1
J2+I2+m2l22

}

.

In order to demonstrate the robustness of the ILF control we will consider d̃ as an unknown function.

6.2. Simulation Results

The following parameters of the double inverted pendulum have been used for simulations:

m1 = 0.132,m2 = 0.088, L1 = 0.3032, L2 = 0.3545, l1 = 0.1274,
l2 = 0.1209, I1 = 0.0562, I2 = 0.0314, J1 = 6 · 10−6, J2 = 3 · 10−6.

Solving the system of matrix inequalities (24) for µ = 1 and R = diag{0, 0, 1, 1} together with

(23) for u0 = 5 we obtain

P =







0.0099 0.0000 0.0043 0.0000
0.0000 0.0024 0.0000 0.0010
0.0043 0.0000 0.0022 0.0000
0.0000 0.0010 0.0000 0.0005






,K = −

(

0.3064 0.0000 0.1994 0.0000
0.0000 0.1507 0.0000 0.0981

)

.

We suppose that the magnitudes of control inputs are bounded: |u1| ≤ 3 and |u2| ≤ 2. The

exogenous disturbances are selected as follows d(t) = 0.5[sin(6t), cos(6t)]T . For simulations it was

assumed that the system states can be measured with a noise. The measurement noise was generated

as a sequence of pseudorandom values drawn from the uniform distribution on the open interval

(−δ, δ). We select δ = 0.001 for the noised measurements of the angles and δ = 0.01 for angular

velocities. Algorithm 22 has been used for ILF control application with Vmin = 0.05 and ti = 0.1i
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for i = 0, 1, 2, .... Numerical simulations have been done using explicit Euler method with the step

h = 10−3 and the following initial conditions q1(0) = π, q2(0) = −π/2, q̇1(0) = q̇2(0) = 0, V0 = 1.
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(a) Angular positions of the links.
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(b) Angular velocities of the links.

Figure 2: Evolution of the system states
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Figure 3: Evolution of the control

Figures 2(a) and 2(b) show the evolution of the angles and angular velocities of the links for

the ILF controlled double inverted pendulum. The control inputs are depicted on Figure 3(a). The

sampled values of implicit Lyapunov function calculated by Algorithm 22 are presented on Figure

3(b). The simulation results approve good performances of the ILF control.

The settling-time function (18) obtained for the disturbance-free case provides T (x0) = 0.5675.

The sampled-time realization of ILF control definitely brakes the finite-time convergence property to

the origin, so the theoretical settling-time can be compared only with an estimate of the convergence

time to some zone. Let us use for this comparison the convergence time of the ILF value to its

minimal value Vmin. For the sampling period considered above the corresponding time is 0.9. In

order to obtain more precise estimate of the settling-time, the simulations of the disturbed system

have been also done for the smaller sampling period 0.001 provided the estimate 0.671.

7. CONCLUSION

The paper presents control algorithms for robust stabilization of linear plants provided non-

asymptotic transitions. The control design procedures utilize the ILF method. This approach allows
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us to design the control together with the Lyapunov function and to provide constructive procedures

for tuning of control parameters, which are presented in the form of LMIs. The scheme of the

sampled-time ILF control implementation is developed. The robustness of the presented scheme

is proven for arbitrary sampling period. The effectiveness of the ILF control for stabilization of

disturbed double inverted pendulum is demonstrated on numerical simulations.
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