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Abstract— A robust, stabilizing output feedback controller
for systems in the normal form, which could potentially include
systems with unstable zero dynamics, is presented. The control
scheme adopted herein incorporates “smoothed” sliding mode
control–chosen for its robustness properties as well as its ability
to prescribe or constrain the motion of trajectories in the sliding
phase–and an extended high gain observer to estimate one of
the unknown functions. Stabilization in the case of an unknown
control coefficient and uncertain constant parameters is shown.

I. INTRODUCTION

The problem of stabilizing nonlinear systems via output

feedback has drawn much attention in recent years. On the

basis of certain assumptions made about the system structure,

various control schemes have achieved global and semi-

global results. A common assumption in many of these

results, however, calls for the zero dynamics of the system

under consideration to be either input-to-state stable, or

globally asymptotically stable. While stabilization results

for various classes of minimum phase nonlinear systems

abound, there have been a few notable developments in the

case of non-minimum phase systems in recent times, as

well. Some examples include the work by Karagiannis et

al [7], which uses a reduced order observer in conjunction

with backstepping and the small-gain theorem; Marino and

Tomei [10], which provides a stability result on a class of

systems that is required to be minimum phase with respect to

some linear combination of its states, though it may be non-

minimum phase with respect to its output; and also a result

by Isidori [3] that guarantees robust, semiglobal practical

stability for a significantly large class of nonlinear systems

that could be non-minimum phase. This work is particularly

noteworthy because it provides a simple and very useful

design tool for a broad class of nonlinear systems. The basic

idea of an auxiliary system, derived from the original system

to help solve the stabilization problem, forms the basis of this

paper, and was set forth in [3].

In most applications, the full system state is not available

for feedback, and an observer is required to estimate the

states from output measurements. Furthermore, observers are

often employed to estimate disturbances or uncertainties and

to design a controller to reject these disturbances. High-gain

observers are desirable in these scenarios because they are

often simpler designs compared to other kinds of observers.

In the presence of uncertainties, it is also often possible to

incorporate an extended high-gain observer that estimates an

extra derivative of the output and then use this additional

information to cancel disturbances or uncertain parameters

in the system, or to estimate a Lyapunov function derivative,

etc. For this reason, an extended high-gain observer is

utilized in this paper and the analysis of the output feedback

system shares many similarities with Freidovich and Khalil

[2]. Extended high-gain observers were also utilized in [8].

Furthermore, the output feedback system under consideration

in this paper has properties very similar to that of systems

addressed in Atassi and Khalil [1], and consequently, all the

results from that work pertaining to the separation of con-

troller and observer designs, and of asymptotic performance

recovery when utilizing observers with “high enough” gains,

are also applicable here.

II. PROBLEM STATEMENT

A single-input, single-output system with relative degree

ρ, under a suitable diffeomorphism, can be expressed in the

following normal form.

η̇ = φ(η, ξ, θ), (1)

ξ̇i = ξi+1, 1 ≤ i ≤ ρ − 1, (2)

ξ̇ρ = b(η, ξ, θ) + a(η, ξ, θ)u, (3)

y = ξ1, (4)

where η ∈ Dη ⊂ R
n−ρ, ξ ∈ Dξ ⊂ R

ρ and θ ∈ Θ ⊂ R
p is

a vector of constant parameters. We have the following as-

sumptions about the (possibly uncertain) functions a(·), b(·)
and φ(·).

Assumption 1: The functions a(·) and b(·) are continu-

ously differentiable with locally Lipschitz derivatives, and

φ(·) is locally Lipschitz. In addition, a(0, 0, θ) 6= 0,

b(0, 0, θ) = 0 and φ(0, 0, θ) = 0.

In this paper, the objective is to find a robust, stabilizing

output feedback controller for systems of the form (1)–(3),

which could potentially include systems with unstable zero

dynamics. A similar problem was investigated by Isidori [3],

[9], without considering the possibility of an uncertainty in

the control coefficient a(·). In the technique developed by

Isidori, the stabilization problem can be solved, provided an

auxiliary system–defined below–can be globally stabilized
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by a dynamic feedback controller. The auxiliary system is

defined by ([3], [9]),

η̇ = φ(η, ξ1, . . . , ξρ−1, ua, θ), (5)

ξ̇i = ξi+1, 1 ≤ i ≤ ρ − 2, (6)

ξ̇ρ−1 = ua, (7)

ya = b(η, ξ1, . . . , ξρ−1, ua, θ). (8)

Equations (5)–(7) come from (1)–(2) by viewing ξρ as the

control input ua, while the term b(η, ξ, θ) on the right-hand

side of (3) is taken as the measured output.

This auxiliary problem is assumed to have a stabilizing

dynamic controller of the form

ż = L(z, ξ1, . . . , ξρ−1) + M(z, ξ1, . . . , ξρ−1)ya, (9)

ua = N(z, ξ1, . . . , ξρ−1), (10)

where z ∈ Dz ⊂ R
r. Under this assumption, it was shown

by Isidori that a dynamic feedback law exists, which can

robustly stabilize the original system [3, equation (27)], [9].

In this paper, a combination of a “smoothed” sliding mode

control and an extended high gain observer is utilized to

stabilize the original system using only measurement of the

output y. The sliding mode control is designed to force the

system trajectories to a manifold within a finite time, along

which the system response coincides with a perturbed version

of the auxiliary system, and hence the performance of the

auxiliary system may be recovered under certain conditions

and constraints on the model uncertainties.

Following [9], new variables are defined to help make the

equations more compact. Let

ξ =











ξ1

ξ2

...

ξρ











, xa =















η
ξ1

...

ξρ−2

ξρ−1















, ζ =

(

xa

z

)

,

fa(xa, ua, θ) =















φ(η, ξ1, . . . , ξρ−1, ua, θ)
ξ2

...

ξρ−1

ua















,

ha(xa, ua, θ) = b(η, ξ1, . . . , ξρ−1, ua, θ), (11)

F (ζ, ξρ, θ) =

(

fa(xa, ξρ, θ)
L(·) + M(·)b(·)

)

. (12)

We can now write the state equation (1)–(3) as

ẋa = fa(xa, ξρ, θ), (13)

ξ̇ρ = ha(xa, ξρ, θ) + a(η, ξ, θ)u, (14)

while the auxiliary system now looks like

ẋa = fa(xa, ua, θ), (15)

ya = ha(xa, ua, θ). (16)

Thus, upon feeding back the output of the stabilizing dy-

namic controller to the system input, the resulting closed

loop auxiliary system can be written as

ζ̇ = F (ζ,N(·), θ), (17)

wherein ξρ = N(z, ξ1, . . . , ξρ−1).

III. CONTROLLER DESIGN FOR THE STATE FEEDBACK

SYSTEM

The controller to be designed utilizes “smoothed” sliding

mode control. To motivate this choice, we consider the

auxiliary system, and equations (7) and (10) in particular.

Since ua replaced ξρ in going from the original problem to

the auxiliary system, it stands to reason that if we are able

to force the state ξρ to the function N(·), then equations (1)

and (2) will match the auxiliary system (17) precisely. Thus,

the sliding manifold is taken as

s = ξρ − N(z, ξ1, . . . , ξρ−1), (18)

and the controller for this system is now taken to be

ż = L(·) + M(·)(b + ∆al(ξ, z)), (19)

u = −
β(ξ, z)

â(ξ)
sat

(

ξρ − N(z, ξ1, . . . , ξρ−1)

µ

)

(20)

, l(ξ, z),

where sat(·) is the standard saturation function, â(ξ) is a

known function used in lieu of a(η, ξ, θ), ∆a = a(·)− â(·),
and β(ξ, z) is to be determined. We note that a(·) 6= 0
and â(·) 6= 0 in the set Dξ. We also have the following

assumption about a(·).
Assumption 2: Suppose that a(η, ξ, θ)/â(ξ) ≥ k0 > 0,

for all (η, ξ) ∈ Dη × Dξ and θ ∈ Θ. Moreover, â(ξ) is

locally Lipschitz in ξ over the domain of interest and globally

bounded in ξ.

The term b+∆al in (19) is based on the anticipation that,

with the extended high-gain observer, we will be able to

estimate this term arbitrarily closely. Roughly speaking, this

can be seen from (3) as follows. If the derivative ξ̇ρ = y(ρ)

and a(·) were available, we could calculate b from the

expression b = ξ̇ρ − au. If only an estimate â(·) were

available for the uncertain term a(·), we would use b̂ =
ξ̇ρ − âu, which results in the error b̂− b = (a− â)u = ∆au.

By requiring â to depend only on ξ, we have set up the

problem such that the variables that need to be estimated are

the derivatives of the output y up to the ρth order, which will

be the role of the extended high-gain observer. Note that if

a(·) were a known function of ξ, we could take â = a and

drop ∆a from (19).

Any dynamic feedback law of the form (19)–(20) is

allowable to stabilize this system, provided it satisfies the

following properties.

Assumption 3:

1) L(·), M(·) and β(·) are locally Lipschitz func-

tions in their arguments over the domain of inter-

est, L(0, 0, . . . , 0, 0) = 0, M(0, 0, . . . , 0, 0) = 0 and

β(0, 0) = 0.
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2) L(·), M(·) and β(·) are globally bounded functions of ξ.

3) The origin (η = 0, ξ1 = 0, . . . , ξρ−1 = 0, z = 0) is an

asymptotically stable equilibrium point of the closed-loop

auxiliary system (17).

IV. ANALYSIS OF THE STATE FEEDBACK SYSTEM

The closed loop system is obtained by combining (13),

(14), (19) and (20), and can now be written as

ζ̇ = F̃ (ζ, s + N(·), θ), (21)

ξ̇ρ = ha(xa, ξρ, θ)

−
a(η, ξ, θ)

â(ξ)
β(ζ, ξρ) sat

(

s

µ

)

, (22)

In the equations above, F̃ (ζ, ξρ, θ) is a perturbation of

F (ζ, ξρ, θ), in that the function b(·) from the latter has been

replaced with b + ∆al(ξ, z) in the former. The derivative of

s = ξρ − N(z, ξ1, . . . , ξρ−1) is given by

ṡ = ha(xa, ξρ, θ) −
∂N

∂ζ
F̃ (ζ, ξρ, θ)

−
a(η, ξ, θ)

â(ξ)
β(ζ, ξρ) sat

(

s

µ

)

. (23)

We choose the function β(·) such that
∣

∣

∣

∣

∣

ha(·) − ∂N
∂ζ

F̃ (·)

a(·)/â(·)

∣

∣

∣

∣

∣

≤ β(ξ, z) − β0, (24)

for some β0 > 0. We now consider the Lyapunov function

V0(s) = s2/2. Outside the boundary layer, i.e. when |s| > µ,

we have

V̇0 = sṡ =

(

ha(·) −
∂N

∂ζ
F̃ (·)

)

s −
a(·)

â(·)
β(·) |s|

≤ −β0a(·)/â(·) |s| ≤ −β0k0 |s| . (25)

Hence, whenever |s(0)| > µ, |s(t)| will decrease until it

reaches the set {|s| < µ} in finite time and will remain

inside that set thereafter.

We would now like to study the behavior of the remaining

states. We write the equations for these states as follows.

ζ̇ = F (ζ, s + N(·), θ) + G(ζ, s + N(·), θ), (26)

where

G(·) = F̃ (·) − F (·) =

(

0
M(·)

)

∆a(·)l(·).

Equation (26) can be regarded as a perturbation of the

following system.

ζ̇ = F (ζ, s + N(·), θ). (27)

In order to proceed with the analysis, we require the follow-

ing assumption that calls for the existence of a Lyapunov

function for the above system.

Assumption 4: There exists a continuously differentiable

Lyapunov function V (ζ, θ) such that

α11(‖ζ‖) ≤ V (ζ, θ) ≤ α12(‖ζ‖), (28)

∂V

∂ζ
F (ζ, s + N(·), θ) ≤ −α13(‖ζ‖), (29)

∀ ‖ζ‖ ≥ γ(‖s‖),

for all (ζ, s) ∈ D ⊂ R
n+r, where α11(·), α12(·), α13(·) and

γ(·) are class K functions.

Remark 1: Inequality (29) is equivalent to regional input-

to-state stability of the system (27) with s viewed as an input.

Let us now consider the set

Ω , {V (ζ, θ) ≤ c0} × {|s| ≤ c}, (30)

where c > µ and c0 ≥ α12(γ(c)). As shown in the

development preceding [5, Theorem 14.1 (§14.1.2)], Ω is a

positively invariant set for the system (27) when ∆a = 0.

Now, to study the effect of ∆a, we have, due to Assumption

3,

‖G(·)‖ ≤ k1 |∆al(·)| ≤ k1

∣

∣

∣

∣

a − â

â

∣

∣

∣

∣

β,

∀(ζ, s) ∈ Ω. The derivative of V along the trajectories of

(26) is given by

V̇ =
∂V

∂ζ
F (ζ, s + N(·), θ) +

∂V

∂ζ
G(ζ, s + N(·), θ).

On the boundary V = c0, we have

∂V

∂ζ
F (ζ, s + N(·), θ) ≤ −α13(‖ζ‖) ≤ α13(α

−1
12 (c0)).

We note that ∂V/∂ζ and β are both bounded on Ω. Hence,
∥

∥

∥

∂V
∂ζ

G(·)
∥

∥

∥ ≤ k2

∣

∣

a−â
â

∣

∣. Thus on V = c0,

V̇ ≤ −α13(α
−1
12 (c0)) + k2

∣

∣

∣

∣

a − â

â

∣

∣

∣

∣

.

Assuming that the inequality
∣

∣

∣

∣

a − â

â

∣

∣

∣

∣

≤ ka ≤
1

k2
α13(α

−1
12 (c0)) (31)

holds over the set Ω, we see that

V̇ < 0 on V = c0.

Hence, Ω is a positively invariant set for the system (26).

We note that k2 is dependent on c0.

As a consequence of the preceding analysis, all trajectories

starting in Ω, stay in Ω and reach the boundary layer

{|s| ≤ µ} in finite time. Inside the boundary layer, we have

V̇ ≤ −α13(‖ζ‖) + k2

∣

∣

∣

∣

a − â

â

∣

∣

∣

∣

, ∀ ‖ζ‖ ≥ γ(µ)

≤ −α13(‖ζ‖) + k2ka

≤ −
1

2
α13(‖ζ‖), ∀ ‖ζ‖ ≥ max

{

γ(µ), α−1
13 (2k2ka)

}

.

The inverse function α−1
13 (2k2ka) is well-defined when ka

is small enough, except when α13(‖ζ‖) is class K∞. In the

latter case, the inverse is defined for any k2ka.

The above analysis shows that the trajectories reach the

positively invariant set

Ωµ =
{

V (ζ, θ) ≤ α12

(

max
{

γ(µ), α−1
13 (2k2ka)

})}

×{|s| ≤ µ},

in finite time. Inside the set Ωµ, we can use singular

perturbation analysis to show that the origin of (21), (23)

is asymptotically stable for sufficiently small µ and |∆a|.
Some additional regularity assumptions will be needed. The

details are omitted due to space limitations.
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V. OUTPUT FEEDBACK DESIGN USING AN EXTENDED

HIGH-GAIN OBSERVER

The output feedback design relies upon the estimates of

the states and of b(η, ξ, θ) that are obtained using an extended

high gain observer for the system (1)–(3), which is taken as

˙̂
ξi = ξ̂i+1 + (αi/εi)(ξ1 − ξ̂1), 1 ≤ i ≤ ρ − 1, (32)

˙̂
ξρ = σ̂ + â(ξ̂)u + (αρ/ερ)(ξ1 − ξ̂1), (33)

˙̂σ = (αρ+1/ερ+1)(ξ1 − ξ̂1), (34)

where ε is a positive constant to be specified, and the

positive constants αi are chosen such that the roots of

sρ+1 + α1s
ρ + . . . + αρs + αρ+1 = 0 are in the open left-

half plane. It is apparent from (32)–(34) that the ξ̂1, . . . , ξ̂ρ

are used to estimate the output and its first ρ derivatives,

while σ̂ is intended to provide an estimate for b(·). With the

aid of these estimates, the output feedback controller for the

original system can be taken as

ż = L(z, ξ̂1, . . . , ξ̂ρ−1, σ̂), (35)

u = −
β(ξ̂, z)

â(ξ̂)
sat

(

ξ̂ρ − N(z, ξ̂1, . . . , ξ̂ρ−1)

µ

)

. (36)

In order to protect the system from peaking during the

observer’s transient response, we saturate the control outside

the compact set of interest as given in (30). Now, let

K > max
(ζ,s)∈Ω

∣

∣

∣

∣

β(ξ, z)

â(ξ)

∣

∣

∣

∣

. (37)

Saturating the control at ±K, we obtain the output feedback

controller

u = K sat(l(ξ̂, z)/K). (38)

The closed loop system under output feedback can now be

expressed as

η̇ = φ(η, ξ, θ), (39)

ξ̇ = Aξ + B[b(η, ξ, θ)

+a(η, ξ, θ)K sat(l(ξ̂, z)/K)], (40)

ż = L(z, ξ̂1, . . . , ξ̂ρ−1)

+M(z, ξ̂1, . . . , ξ̂ρ−1)σ̂, (41)

˙̂
ξ = Aξ̂ + B

[

σ̂ + â(ξ̂)K sat(l(ξ̂, z)/K)
]

+H(ε)(y − Cξ̂), (42)

˙̂σ = (αρ+1/ερ+1)(y − Cξ̂), (43)

y = Cξ, (44)

where A, B and C describe a chain of integrators, H(ε) =
(

α1/ε α2/ε2 . . . αρ/ερ
)T

and α1, . . . , αρ, αρ+1 are

real scalars such that the polynomial sρ+1+α1s
ρ+. . .+αρ+1

is Hurwitz.

We now introduce a change of variables [2],

χi , (ξi − ξ̂i)/ερ+1−i, for 1 ≤ i ≤ ρ, (45)

χρ+1 , b(η, ξ, θ) − σ̂

+∆a(ε, η, ξ, χ, θ)Kgε(l(ξ, z)/K), (46)

where ∆a(ε, η, ξ, χ, θ) = a(η, ξ, θ) − â(ξ̂), and gε(·) is an

odd function defined by

gε(y) =







y, 0 ≤ y ≤ 1,
y + (y − 1)/ε − 0.5(y2 − 1)/ε, 1 < y < 1 + ε,
1 + 0.5ε, y ≥ 1 + ε.

The function gε(·) is nondecreasing, continuously differen-

tiable with a locally Lipschitz derivative, bounded uniformly

in ε on any bounded interval of ε, and satisfies |g′ε| ≤ 1
and |gε(y) − sat(y)| ≤ ε/2 for all y ∈ R. The closed loop

system can now be expressed in terms of (39)–(41), (44) and

εχ̇ = Λχ+ε[B̄1∆1(ξ, η, χ, θ, ε)+B̄2∆2(ξ, η, χ, θ, ε)], (47)

where Λ is a Hurwitz matrix, and the functions ∆1 and ∆2

are locally Lipschitz in their arguments and bounded from

above by affine-in-‖η‖ functions, uniformly in ε. We can use

(45) and the definition of gε to show that ∆0/ε is locally

Lipschitz [2]. The slow dynamics can be written as

˙̄ζ =

(

ζ̇
ṡ

)

= fr(ζ̄, χ, ε, θ), (48)

where ζ̄ ,

(

ζ
s

)

and

fr(ζ̄ , χ, ε, θ) ,




















φ(η, ξ, θ)
ξ2

...

ξρ

L(z, ξ̂1, . . . , ξ̂ρ−1) + M(z, ξ̂1, . . . , ξ̂ρ−1)σ̂

b(·) − ∂N
∂ζ

F̃ (ζ, s + N(·), θ) + a(·)K sat
(

l(ξ̂,z)
K

)





















.

Then, the reduced system is given by

˙̄ζ = fr(ζ̄ , 0, 0, θ) =

=





F̃ (ζ, s + N(·), θ)
{

b(η, ξ, θ) − ∂N
∂ζ

F̃ (ζ, s + N(·), θ)

+a(η, ξ, θ)K sat(l(ξ, z)/K)



 , (49)

where, as before, F̃ (ζ, s + N(·), θ) is a perturbation of

F (ζ, s+N(·), θ), in that the function b(·) has been replaced

with the quantity σ̂ = b + ∆a(·)K sat(l(ξ̂, z)/K). We note

that the reduced system (49) is identical to the closed-loop

system (21), (23).

The boundary layer system is given by

∂χ

∂τ
= Λχ. (50)

In the subsections below, we state some results pertaining

to the recovery of the performance of the system (21), (23) in

the case of output feedback with sufficiently small ε. These

results follow quite directly from the work of Atassi and

Khalil [1] because equations (39)–(41) and (47) are precisely

of the same form as equations (10)–(13) in [1]. It should also

be noted that while the structure of system (39)–(41), (47)

is very similar to that of the closed-loop system studied by

Freidovich and Khalil [2], a key difference between this work
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and the former is the fact that both the nonlinear terms in

the fast dynamics (47) are O(ε) in this paper, while there is

one term in [2] that is not so. The reason for such a term to

appear in [2] was the fact that the estimate σ̂ was used in

the control law, while this quantity is not utilized directly in

the control, in this paper. We can see this by examining (38)

and (41)—σ̂ appears in the compensator dynamics, but u is

not explicitly dependent upon the former.

A. Boundedness, Ultimate Boundedness and Trajectory Con-

vergence

Let (ζ̄(t, ε), χ(t, ε)) denote the trajectory of the system

(48), (47) starting from (ζ̄(0), χ(0)). Also, let ζ̄r(t) be the

solution of (49) starting from ζ̄(0). Suppose the system (21),

(23) has an asymptotically stable equilibrium point at the

origin, and let R be its region of attraction. Let S be a

compact set in the interior of R and Q be a compact subset

of R
ρ+1. The recovery of boundedness of the trajectories, the

fact that they will be ultimately bounded, and the fact that

ζ̄(t, ε) converges to ζ̄r(t) as ε → 0, uniformly in t, for all

t ≥ 0, is established by the following theorem [1, Theorems

1, 2 and 3], provided ζ̄(0) ∈ S and ξ̂(0) ∈ Q.

Theorem 1: Let Assumptions 1 through 4 hold, and sup-

pose that the origin of (21), (23) is asymptotically stable.

Moreover, let ζ̄(0) ∈ S and ξ̂(0) ∈ Q. Then,

1) there exists ε∗1 > 0 such that, for every 0 < ε ≤ ε∗1,

the trajectories (ζ̄ , χ) of the system (48), (47), starting in

S ×Q, are bounded for all t ≥ 0.

2) given any δ > 0, there exist ε∗2 = ε∗2(δ) > 0 and T1 =
T1(δ) such that, for every 0 < ε ≤ ε∗2, we have

∥

∥ζ̄(t, ε)
∥

∥+ ‖χ(t, ε)‖ ≤ δ, ∀t ≥ T1. (51)

3) given any δ > 0, there exists ε∗3 > 0 such that, for every

0 < ε ≤ ε∗3, we have
∥

∥ζ̄(t, ε) − ζ̄r(t)
∥

∥ ≤ δ, ∀t ≥ 0. (52)

B. Recovery of Exponential Stability of the Origin

We consider the case where the origin of (49) is exponen-

tially stable. We then have the following result, due to [1,

Theorem 5]. We note that the Lipschitz conditions imposed

by Assumptions 1, 3 and the assumption of exponential sta-

bility of the state feedback system are the key requirements

for this result.

Theorem 2: Let Assumptions 1 through 4 hold, and sup-

pose the vector field fr(ζ̄, 0, 0, θ) is continuously differen-

tiable around the origin. Furthermore, assume the origin of

the full closed-loop system (21) and (23) is exponentially

stable. Then, there exists ε∗5 > 0 such that, for every

0 < ε ≤ ε∗5, the origin of system (48), (47) is exponentially

stable.

VI. AN EXAMPLE

Consider the system

ẋ1 = tanx1 + x2, (53)

ẋ2 = x1 + u, (54)

y = x2. (55)

We note that this system has relative degree one, and is

already in the normal form. The auxiliary system is

ẋ1 = tanx1 + ua, (56)

ya = x1. (57)

The design of the stabilizing controller is now carried out

by first considering the auxiliary system and proceeding in

a step-by-step fashion, as shown in sections 3 and 5.

A. Design of the Stabilizing Controller

A dynamic compensator for the auxiliary system (56), (57)

is designed using a low-pass filter and feedback linearization.

This gives the controller

ż = (ya − z)/εa, (58)

ua = − tan z − z. (59)

Now, based on our knowledge of the stabilizing dynamic

controller (58), (59) for the auxiliary system (56), (57), we

choose our sliding manifold for the partial state feedback

system, and the resulting control as

s = x2 + z + tan z, (60)

ż = (x2 − z)/εa, (61)

u = −
β(z, x2)

â
sat

(

s

µ

)

, (62)

where β(z, x2) satisfies the inequality (24) in a compact set

of interest, and â is a nominal value of the control coefficient

a = 1 in the original plant.

To stabilize the system using only output feedback and an

estimate of b(x), we have the following extended high-gain

observer.

˙̂x2 = σ̂ + âu + (α1/ε)(y − x̂2) (63)

˙̂σ = (α2/ε)(y − x̂2). (64)

Hence, the output feedback controller is given by

ż = (σ̂ − z)/εa, (65)

u = −
β(z, x2)

â
sat

(

y + z + tan z

µ

)

. (66)

B. Numerical Simulations

The step-by-step tuning procedure leading to performance

recovery is illustrated by Figures 1 and 2. β was chosen

to be 55. The compensator parameter εa was fixed at 0.1

and the width of the boundary layer was reduced in the

partial state feedback system from µ = 1 down to 0.01,

and Figure 1 shows the recovery of the auxiliary system

performance. Next, µ was fixed at 0.01 and the extended

high-gain observer parameter ε was reduced from ε = 10−3

to 10−4, and Figure 2 shows the recovery of the performance

of the state feedback system.
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Fig. 2. Recovery of the Partial State Feedback System

performance by decreasing ε.

VII. CONCLUSION

A robust, stabilizing output feedback controller for sys-

tems in the normal form, which could potentially include

systems with unstable zero dynamics, was presented. The

control scheme adopted herein incorporated “smoothed”

sliding mode control and an extended high gain observer

to estimate one of the unknown functions. Stabilization in

the case of an unknown control coefficient and uncertain

constant parameters was shown. The main result in the

output feedback case was practical stabilization of the system

and closeness of trajectories, while exponential stability is

achievable provided the auxiliary problem is also exponen-

tially stable.
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