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Abstract

This paper focuses on standard error estimation in FE models if there is serial
correlation in the error process. Applied researchers have often ignored the problem,
probably because major statistical packages do not estimate robust standard errors
in FE models. Not surprisingly, this can lead to severe bias in the standard error
estimates, both in hypothetical and real-life situations. The paper gives a systematic
overview of the differnt standard error estimators and the assumptions under which
they are consistent (in the usual large N , small T asymptotics). One of the possible
reasons why the robust estimators are not used often is a fear of their bad finite
sample properties. The most important results of the paper, based on an extensive
Monte Carlo study, show that those fears are in general unwarranted. I also present
evidence that it is the abolute size of the cross-sectional sample that primarily affects
the finite-sample behavior, not the relaitve size compared to the time-series dimension.
That indicates good small-sample behavior even when N ≈ T . I introduce a simple
direct test analogous to that of White (1980) for the restrictive assumptions behind
the estimators. Its finite sample properties are fine except for low power in very small
samples.

This paper focuses on Fixed-Effects panel models (FE) with exogenous regressors on
pooled cross sectional and time series data with relatively few within-individual observations.
Empirical studies that estimate this kind of FE models are abundant, and they routinely
estimate standard errors under the assumption of no serial error correlation within individual
units. In the past three years, the top three economics journals with a focus on applied
empirical research published 42 papers that estimated linear FE models with time series
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within individual units.1 Out of the 42, only 6 took serial correlation into account when
estimated the standard errors.2

Serial correlation in the error process affects standard errors in FE models with more than
two observations per individual unit, unless all right-hand side variables are serially uncorre-
lated. The effect is larger the stronger the correlation and the longer the time horizon. Serial
correlation consistent standard error estimators for panel models without fixed effects are
covered by most econometrics textbooks. Same is not true, however for FE. Similar estima-
tors were developed explicitly for FE models by Kiefer (1980), Bhargava et al. (1982), and
Arellano (1987), but they have been overlooked by practitioners. It seems that worries about
finite sample properties are responsible for this fact. Major statistical computer packages
do not allow for any robust standard error estimation in FE models. StataTM , for example,
calculates standard errors that are robust to serial correlation for all linear models but FE
(and random effects). It does so for an analogous model but it explicitly cautions against
using robust methods in samples with long time-series within individual units.3 As we will
see, however, even this warning is unwarranted.
In this paper I give a systematic overview of standard error estimation in FE models,

together with the assumptions under which the estimators are consistent. I also introduce
a very simple test for the assumptions in question (it is analogous to White’s 1980 direct
test for heteroskedasticity). The asymptotic results consider the case when T is fixed and
N → ∞, and they are straightforward applications of White’s (1984) general results. The
novelty in this paper is a thorough examination of the finite-sample properties of the esti-
mators and tests. The Monte-Carlo study considers various combinations of the time-series
and cross-sectional sample size, and the degree of serial correlation and cross-sectional het-
eroskedasticity.
The most important result is that the general robust standard error estimator, known

in other models as the ”cluster” estimator (introduced to FE by Arellano, 1987) is not only
consistent in general but it behaves well in finite samples. The Monte Carlo experiments
reveal that the cluster estimator is unbiased in samples of usual size although it is slightly
biased downward if the cross-sectional sample is very small. The results suggest that it is the
cross-sectional dimension itself that matters, not its relative size to the time-series dimension
(N and not N/T ). The variance of the estimator naturally increases as the sample gets
small but stays moderate at usual sample sizes. Kiefer’s (1980) estimator is consistent under
the assumption of conditional homoskedasticity across individuals. Quite naturally, when
consistent, it is superior to the robust estimator in terms of both variance and small-sample
bias. The bias of the estimators that assume no serial correlation is substantial when the

1The examined journal issues were the following: American Economic Review 88(4) to 91(3); Journal
of Political Economy 106(4) to 109(3); and Quarterly Journal of Economics 103(3) to 106(2). Only papers
that estimated linear FE models on panel data with time-series (T > 2) within the individual units were
considered.

2Two did that by a parametric specification of the error process, one by using the cluster estimator (see
later). The other three did not specify the standard error estimator they used.

3”Why is it dangerous to use the robust cluster() option on areg (areg estimates the same fixed-effects
model as xtreg, fe)?” http://www.stata.com/support/faqs/stat/aregclust.html. I thank John Bound for this
note.
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assumption is not met, and it is larger than the finite-sample bias of the robust estimators
at any sample size. The bias is a function of serial correlation both in the right-hand-side
variables and the error term. The test that looks at the restrictive assumtpions delivers the
desirable size and power properties in relatively large samples. Its power, however, is quite
low in small samples unless the serial correlation is very strong.
Bertrand, Duflo, and Mullainathan (2001) have drawn attention to robust standard error

estimation in the context of a special FE model, the ”Difference-in-Differences” (DD) model.
Typically, DD models estimate effects of binary treatments on different individual units by
comparing before and after treatment outcomes. Serial correlation in the error process has
especially large effect on standard errors in these models because the main right-hand-side
variable is highly correlated through time (the binary treatment variable changes only once
in most cases). The problem is irrelevant if only two points in time are compared but it can
lead to a severe bias to conventional standard error estimates in longer series. Bertrand et al.
report simulation results on frequently used data (yearly earnings for US states) that show
45 to 65 percent rejection rates of a t-test on ”placebo” binary treatments instead of the
nominal size of 5%. This size distortion is probably due to downward biased standard errors.
Bertrand et al. suggest an intuitively appealing simulation-based method to overcome the
problem. Apart from being a little complicated for applied research, their method is specific
to binary treatment effects. The alternative solutions I present here are more conventional,
easier to implement, and general to all FE models. They also behave well in finite samples.
The asymptotic results are stated in the main text. To keep things simple, I consider a

data generating process that is i.i.d. in the individual units. This simplification is justified
because our main concern is about the process within the individual units. The usual T fixed,
N →∞ asymptotics is considered for the results. The proofs are straightforward applications
of standard i.i.d. results (see White, 1984, for example). They are not presented in the paper
for this reason. Exceptions are the simplified versions of the asymptotic covariance matrix
of the FE estimator under the appropriate assumptions. They are derived in the main text
because of their importance.
The remainder of the paper is organized the following way. The first section introduces

the assumptions underlying the data generating process, the model, and the fixed-effects
estimator. The second part presents the sampling covariance matrix of the FE estimator and
its simplified versions under restrictive assumptions, and it introduces the estimators. The
third part examines the finite sample properties of the four proposed estimators. The fourth
part introduces a direct test for the restrictions and examines its finite sample properties,
and the last part concludes.

1 Setup

1.1 Data generating process

Assume that a T dimensional random vector yi and a T × K dimensional random matrix
xi are generated by an independent and identically distributed process. More formally, we
assume that the T × (K + 1) dimensional random process {yi, xi}i∈N on {Ω,F , P}is i.i.d.,
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with finite fourth moments. Note that there is no restriction in the time series dimension.
In particular, nonconstant variance, unit roots, an unequal spells are allowed. We can do
so because of the T fixed assumption. All asymptotic results well be driven by the cross-
sectional properties of the process.
The intuition behind the data generating process (DGP) assumption is that each i is an

individual observation that is drawn from a population in a random fashion. The assumption
implies that there is one E [yi] and one E [xi], which are the population means. The goal of
the exercise is to reveal the relationship between y and x in the population.

1.2 Model

For estimating this relationship, consider a linear panel model with exogenous regressors and
individual-specific constants (”fixed effects”). The panel has a cross-sectional dimension i
and a time-series dimension t.

yit = x
0
itβ + εit = αi + x

0
itβ + uit, (1)

or, in vector notation,

yi = αi`+ xiβ + ui (2)

where yi = [yi1,..., yiT ]
0 is T × 1, xi =

£
x0i1,..., x

0
iT

¤0
is T × K, εit = αi + uit, αi is a

scalar, ` = [1, .., 1]0 is T × 1, and ui = [ui1,..., uiT ]
0 is T × 1. i = 1....N, and t = 1...T .

For future reference, let xik be the T × 1 vector of the k-th right-hand side variable so that
xi = [xi1, ..., xiK]
The intuition behind the model is the following. We would like to uncover something

about the conditional mean of y given x, which may be different across individuals. (2)
models the conditional mean of y given x in a linear fashion. There is an i-specific intercept
denoted by αi. It is interpreted as the conditional mean of yi given xi = 0. The model is
restrictive in that apart from the intercept this conditional mean is the same across both
the i and the t dimension. One interpretation of β is that it is a population average of
the relationship after countering for the i-specific intercept. The model does not put any
restriction on the covariance of xi and αi, the latter treated as a random variable itself.
Formally, we assume that all relevant moments exist and that E [xiku

0
i] = 0 for k = 1...K.

On the other hand, we allow for E [αixi] 6= 0.
We want a consistent estimator for β and its asymptotic covariance matrix. We can take

the limit in both the cross-sectional and the time-series dimension, so it is important to be
explicit what we mean by consistency and an asymptotic distribution. In this paper, the
N →∞, T fixed asymptotics will be considered. In that case, it is the limiting distribution
of
√
N
³
β̂ − β

´
that we are interested in.

The N → ∞, T fixed asymptotics is a natural setup for household or individual panels
like the PSID (the Panel Study of Income Dynamics of the University of Michigan). It is also
a natural approximation for country or regional panels if the time series is relatively short
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(N > T ). The simulation results suggest, however, that the proposed estimators behave well
also in the finite N < T setup.

1.3 The fixed-effects estimator

OLS with N constants for capturing each of the αi is a natural candidate for estimation. This
estimator is often called the ”least-squares dummy-variables” estimator or LSDV in order
to distinguish it from OLS with only one constant. For computational reasons, however,
it is common to use the fixed-effects (FE, also known as Within-) estimator instead. FE
is OLS on mean-differenced variables, which are defined as ỹi

T×1
≡ [yi1 − ȳi, ..., yiT − ȳi]0,

x̃i
T×K

≡ [x0i1 − x̄0i, ..., x0iT − x̄0i]0, and ũi
T×1
≡ [ui1 − ūi, ..., uiT − ūi]0, where ȳi = 1

T

PT
t=1 yit etc.

To simplify notation, let M
T×T
≡ IT− 1

T
`T `

0
T . Note thatM is idempotent. Then, ỹi =Myi, x̃i =

Mxi,and ũi = Mui. The mean-differenced equation to estimate is ỹi = x̃iβ + ũi, and the
fixed-effect estimator for β is defined as

β̂FE ≡
Ã

NX
i=1

x̃0ix̃i

!−1Ã NX
i=1

x̃0iỹi

!
= S̃−1xx S̃xy. (3)

S̃xx ≡ 1
N

PN
i=1 x̃

0
ix̃i, and S̃xy ≡ 1

N

PN
i=1 x̃

0
iỹi.A standard result is that FE and the LSDV

estimator for β on levels are computationally equivalent.
Recall that we assume that the data generating process is i.i.d. in the cross-sectional

dimension, and therefore the (ỹi, x̃i) are i.i.d., too. β̂FE is consistent for β in the N → ∞ ,
T fixed asymptotics without further assumptions about the time-series dimension. The con-
ditional covariance matrix of ũi affects the asymptotic covariance of β̂FE. Serial correlation
and heteroskedasticity of any kind would also make β̂FE inefficient. The rest of the paper
focuses on consistent estimation of the sampling covariance of β̂FE. Efficient estimation of
β is not addressed here.4

2 Asymptotic Distribution of the Fixed-Effects Esti-

mator

The covariance matrix of bβFE is easy to derive because of cross-sectional independence and
the linearity of the model.

4Some of the introduced covariance matrix estimators could be used in efficient estimation (feasible GLS)
of the parameters. Although that seems like a natural extension of my analysis, it would introduce other
problems that should be dealt with. It could aggravate bias from measurement error or misspecification of
the timing of binary variables or lagged effects.
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β̂FE =

Ã
NX
i=1

x̃0ix̃i

!−1Ã NX
i=1

x̃0iỹi

!
=

Ã
NX
i=1

x̃0ix̃i

!−1Ã NX
i=1

x̃0i (x̃iβ + ũi)

!

= β + S̃−1xx

Ã
1

N

NX
i=1

x̃0iũi

!
.

Proposition 1 Suppose that {yi, xi}i∈N is i.i.d. with finite second moments. Consider the

fixed-effect (FE) panel model (1-??) and assume that E [x̃0ix̃i] and S̃xx ≡ 1
N

PN
i=1 x̃

0
ix̃i are

positive definite. The FE estimator defined by (3) is consistent and asymptotically normal
with covariance matrix D defined below (5-6):

β̂FE = S̃−1xx S̃xy → β prob− P as N →∞, and
D−1/2

√
N
³
β̂FE − β

´ A
˜N (0, I) , where (4)

D ≡ E [x̃0ix̃i]
−1
V E [x̃0ix̃i]

−1
and (5)

V ≡ E [x̃0iũiũ
0
ix̃i] . (6)

The standard errors of the elements in β̂FE are therefore the square root of the diagonal
elements of D divided by N , or with some abuse of notation,

β̂FE
A

˜N

µ
β,
1

N
D

¶
The proof is a straightforward application of Theorems 3.5 and 5.3 in White (1984). Note

that the time-series properties of {ũit} or {x̃it} are not restricted in any way. Among other
things, serial correlation and time-series heteroskedasticity of any kind are allowed, and so
are unit roots and unequal spacing. All asymptotic results follow from the fixed length of
the time series and the cross-sectional i.i.d. assumption.
The next few subsections will consider simplified versions of V = E [x̃0iũiũ

0
ix̃i] under

restrictive assumptions.

2.1 Cross-sectional homoskedasticity

Under conditional homoskedasticity in the cross-sectional dimension but no restriction in the
time series dimension, we have that E [uiu

0
i|xi] = E [uiu

0
i] ≡ Ω. Since M is nonstochastic,

E [ũiũ
0
i|x̃i] =ME [uiu0i|xi]M , and so

Ω̃ ≡ E [ũiũ0i] = E [ũiũ0i|x̃i] =MΩM.

This implies that

V = E [x̃0iũiũ
0
ix̃i] = E [x̃

0
iE [ũiũ

0
i|x̃i] x̃i] = E

h
x̃0iΩ̃x̃i

i
.
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Here, again, no time-series restrictions are used.5 Notice thatE [x̃0iũiũ
0
ix̃i] = E [x

0
iMMuiu

0
iMMxi] =

E [x0iMuiu
0
iMxi]. Using this fact, we can simplify V further to get V = E [x0iMΩMxi] =

E [x̃0iΩx̃
0
i]. This result is not used for the present estimator because we naturally want ev-

erything to be a function of the mean-differenced variables. The result is important in itself
nevertheless. It means that using the levels error covariance matrix or mean-differenced error
covariance matrix are equivalent.

2.2 No serial correlation

In the absence of serial correlation in the error process {uit}t, we have that E [uituis] = 0
∀s 6= t, and therefore Ωi ≡ E [uiu0i|xi] = hωitiT×T , a diagonal matrix, with elements ωit =
E [u2it|xi]. Therefore,

V = E [x0iMuiu
0
iMxi] = E [x̃

0
iΩix̃i]

= E

"
TX
t=1

ωitx̃itx̃
0
it

#
= E

"
TX
t=1

u2itx̃itx̃
0
it

#
,

We would like to express this in terms of the conditional variance of the mean-differenced
errors, because we estimate the model on mean-differenced data. One can show that
E [ũ2itx̃itx̃

0
it] =

T−1
T
E [u2itx̃itx̃

0
it], and therefore

V = E

"
TX
t=1

u2itx̃itx̃
0
it

#
=

T

T − 1E
"

TX
t=1

ũ2itx̃itx̃
0
it

#
.

The same result is implied by zero serial correlation in the right-hand-side variables, that
is if E [xitx

0
is] = 0 ∀t 6= s. Let Ω̃i ≡ E [ũiũ0i|xi] and write

V = E [x0iMuiu
0
iMxi] = E [x

0
iE [ũ

0
iũi|xi] xi] = E

h
x0iΩ̃ixi

i
= E

"
TX
t=1

ω̃itxitx
0
it

#
= E

"
TX
t=1

ũ2itxitx
0
it

#
=

T

T − 1E
"

TX
t=1

ũ2itx̃itx̃
0
it

#
,

where we used the fact that E [x0itxis] = 0 ∀s 6= t and E
hPT

t=1 xitx
0
it

i
= E [x0ixi], both

implied by E [xitx
0
is] = 0. The last equality makes use the fact that E [x̃

0
ix̃i] =

T−1
T
E [x0ixi] .

The assumption we use is zero serial correlation in the error process or in (and across)
the right-hand-side variables. The error process may be heteroskedastic in any dimension.
This sampling covariance matrix is in fact a T

T−1-scaled version of the one that is behind
the original White heteroskedasticity-consistent estimator, applied to the mean-differenced
data.

5V is basically a seemengly unrelated regressions (SUR) covariance matrix, with T equations and the β
constrained to be the same. Kiefer (1980) has introduced this estimator in the FE context.
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Note that it is the error terms or the right-hand-side variables in levels (as opposed to
mean-differences) that are assumed to be serially uncorrelated. In the fixed T setup we focus
on, mean-differencing induces serial correlation in the first-differenced errors, because all ũit
are correlated with ūit. Assuming no serial correlation in the mean-differenced error terms
would deliver a similar result without the T

T−1 factor. We think that that assumption has
no intuitive appeal. The model is set up in levels, while mean-differencing is only a way to
get around the correlation of αi and xi.
We can already see that the unscaled White estimator is going to be inconsistent in

the fixed-T framework. This is an example if the incidental parameter problem (Lancaster,
2000), since the White estimator is an ML estimator in the i.i.d. setup (Huber, 1967). The
adjustment is analogous to ”degrees of freedom” corrections for the αi parameters when the
model is estimated in levels.

2.3 Homoskedasticity and no serially correlation

If there is no serial correlation and the conditional variance of uit is the same at every t, that
is E [u2it|xit] = Ωi = Ω = σ2IT , we get back the appropriately scaled i.i.d. OLS estimator for
V .

V = E [x̃0iΩx̃i] = σ2E [x̃0ix̃i] , where
σ2 = E

£
u2it
¤
.

D simplifies in this case to D = σ2E [x̃0ix̃i]
−1 . We would like to have an expression in

terms of the mean-differenced error term. Analogously to the relationship of the conditional
level and mean-differenced variances, we have that σ2 = E [u2it] =

T
T−1E [ũ

2
it] .

Homoskedastic errors and serially independent right-hand side variables imply the same
covariance of β̂FE Assume that E [uiu

0
i|xi] = Ω with ωtt = σ2 , and E [xitx

0
is] = 0 ∀s 6= t.

Recall that no serial correlation across and within right-hand side variables implies that
E [ex0iexi] = T−1

T
E [x0ixi] . Therefore,

V = E [x0iMΩMxi] = E
h
x0iΩ̃xi

i
= E

"
TX
t=1

TX
s=1

ω̃stx
0
itxis

#
=

TX
t=1

ω̃ttE [x
0
itxit] ,

where the last equality holds because E
hPT

t=1

PT
s=1 x

0
itxis

i
= 0 if s 6= t. Using ω̃tt =

E [ũit] =
T−1
T

σ2, we get the same result as before.
The asymptotic variance of the fixed-effect estimator is the T−1

T
-scaled asymptotic vari-

ance of the OLS estimator on the mean-differenced data. Just like before, the zero serial
correlation is assumed about uit or xit and not their mean-differenced counterparts. And
again, conventional OLS standard errors based on the FE residuals are going to be incon-
sistent because of the incidental parameter problem, with the same bias as in the White
estimator.
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2.4 Estimation

We have considered four cases for V . (0) the general case, (1) cross-sectional conditional
homoskedasticity but no restriction in the time dimension, (2) no serial correlation, and (3)
cross-sectional and time-series conditional homoskedasticity and no serial correlation. The
four asymptotic covariance matrices are, respectively,

D0 ≡ E [x̃0ix̃i]
−1
E [x̃iũiũ

0
ix̃i]E [x̃

0
ix̃i]

−1
(7)

D1 ≡ E [x̃0ix̃i]
−1
E [x̃0iΩx̃i]E [x̃

0
ix̃i]

−1
(8)

D2 ≡ T

T − 1E [x̃
0
ix̃i]

−1
E

"
TX
t=1

ũ2itx̃itx̃
0
it

#
E [x̃0ix̃i]

−1
(9)

D3 ≡ σ2E [x̃0ix̃i]
−1

(10)

Let ǔ denote the FE residuals. By the analogy principle, the proposed estimators for D0
through D3 are, respectively,

D̂0 ≡
Ã
1

N

NX
i=1

x̃0ix̃i

!−1Ã
1

N

NX
i=1

x̃0iǔiǔ
0
ix̃i

!Ã
1

N

NX
i=1

x̃0ix̃i

!−1
, where (11)

ǔi ≡ ỹi − x̃iβ̂FE (12)

D̂1 ≡
Ã
1

N

NX
i=1

x̃0ix̃i

!−1Ã
1

N

NX
i=1

x̃0iΩ̌x̃i

!Ã
1

N

NX
i=1

x̃0ix̃i

!−1
, where (13)

Ω̌ ≡ 1

N

NX
i=1

ǔiǔ
0
i, (14)

D̂2 ≡ T

T − 1

Ã
1

N

NX
i=1

x̃0ix̃i

!−1Ã
1

N

NX
i=1

TX
t=1it

ǔ2itx̃itx̃
0
it

!Ã
1

N

NX
i=1

x̃0ix̃i

!−1
, (15)

D̂3 ≡ σ̂2

Ã
1

N

NX
i=1

x̃0ix̃i

!−1
, where (16)

σ̂2 ≡ 1

N (T − 1)
NX
i=1

TX
t=1

ǔ2it. (17)

Under our cross-sectional i.i.d. assumption it is straightforward to show that the D̂j are
consistent for the corresponding Dj (j = 0, 1, 2, 3) if T is fixed and N → ∞. The proofs
are straightforward application of Theorem 5.3 (v) in White (1984). One should note that
the estimators don’t correct for degrees of freedom decreased by the dimension of x̃i. That
is only for keeping things as simple as possible. Not surprisingly, the simulation results
presented in the next section suggest that such corrections would slightly improve upon the
finite-sample bias of the consistent estimators.
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D̂0 is known as the ”clustered” covariance estimator, and was introduced by Arellano
(1987). It is always consistent in our setup. D̂1, introduced by Kiefer (1980), makes use of
the covariance matrix of the FE residuals, Ω̌. It is consistent under any time-series behavior
as long as the error term is homoskedastic in the cross-sectional dimension. D̂2 is the original
heteroskedasticity-consistent estimator of White (1980) scaled by T

T−1 . It is consistent if the
error term or the right-hand-side variables are serially uncorrelated. D̂3 is the scaled version
of the homoskedasticity-consistent OLS estimator. It is the conventional sampling covariance
estimator of β̂FE, calculated as the default by all software packages. It is consistent only
under cross-sectional and time-series homoskedasticity and if either the error term or the
right-hand-side variables are serially uncorrelated and have the same variance.

3 Finite-sample properties

In this section Monte Carlo simulation results are presented. To keep things simple, the
analysis was restricted to a one-dimensional x variable. The data generating process involved
the possibility of serial correlation in both xit and uit. In particular, stationary AR(1)
processes were considered with autoregressive parameters 0, 0.1, 0.3, 0.5, 0.7, and 0.9 for
each process (all 36 combinations were analyzed). Two separate sets were examined. In one,
u was homoskedastic in the cross-sectional dimension, in the other it was heteroskedastic
conditional on x. The two data generating processes were the following.
DGP(1)

xit = ρxxi(t−1) + vxit , xit˜N (0, 1) ,

uit = ρui(t−1) + vuit, uit˜N (0, 1) ,

DGP(2)

same as DGP(1), plus

vuit =
p
hitwit, wit˜iidN (0, 1)

hit = a0 + a1x
2
it, a0 = a1 = 0.5.

10,000 Monte Carlo simulations were conducted for each of the 2×36 parameter settings.
I have estimated the sampling distribution of the β̂FE and compared its standard deviation

to the mean of the 10,000 estimated standard error estimates (SEj =
q

1
M

PM
m=1 SEmj ,

j = 0, 1, 2, 3). These means were then used to calculate the relative bias

µ
SEj−std(β̂SE)
std(β̂SE)

¶
. In

addition to the relative bias, I also present the standard deviation of the SEj. Several com-
binations of (N, T ) were considered. The (500, 10) case establishes large-sample properties
while the (50, 10) case looks at what happens in relatively small-N samples. The (50, 50),
case illustrates what happens when N = T in relatively small samples, and the (10, 50) case
is an illustration of what happens in a small-sample N < T setup. Finally, a (10, 10) example
illustrates extreme small sample behavior. The results are contained in Tables 1 and 2.
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In order to assess the results, note that in the first set (Table 1), SE0 and SE1 are
always consistent for the true SE, and SE2 and SE3 are consistent if ρuρx = 0 (either of
the two is zero). In the second set (Table 2), SE0 is always consistent for the true SE, SE2
is consistent if ρuρx = 0, but SE1 and SE3 are never consistent because of cross-sectional
heteroskedasticity.
Tables 1.1 and 2.1 present the large-sample results. Bias of the consistent estimators

is virtually zero. The bias of the inconsistent estimators increases as ρu and ρx increase.
Unbiasedness of SE2 and SE3 when they are consistent indicates that the unscaled White
and OLS estimators are biased in small samples as well. In the heteroskedastic setup, the
bias of SE1 and SE3 is dominated by heteroskedasticity in the small-ρ setups, and serial
correlation takes over as ρu and ρx increase. The variance of the estimators behave the
predictable way, with the more restrictive ones having smaller variation. These differences,
however, are very small for practical purposes.
Smaller-N samples (Table 1.2 and 2.2) basically deliver the large-sample results in terms

of the bias. SE0 shows a small-sample bias that is larger than other consistent estimators,
but it is still negligible. Differences in the variance are magnified, as expected, but they are
not extremely large, either. Both the small-sample bias and the variance of the consistent
estimators increases as ρu and ρx increase. This reflects the fact that higher serial correlation
decreases the variation in the variables if the overall error and RHS variance is fixed, as were
throughout the simulation.
Bias due to serial correlation is greater as T increases. Small-sample bias of SE0 stays

small in the (50, 50) setup but becomes a significant negative 8-16 percent when in theN = 10
setups. The results indicate that it is the overall sample size, and especially N, the size of the
cross-sectional sample that determines the small-sample bias. Reluctance of using the cluster
estimator (SE0) when T is large is unjustified. The variance disadvantage of SE0 is larger in
the (50, 50) case than the (50, 10) case, as expected, but the differences remain modest. The
small-sample properties of SE1, the more restrictive serial correlation consistent estimator,
are significantly better when it is consistent. Its small sample bias stays close to zero even in
the (10, 10) sample, and its standard deviation is below 25 percent larger than that of SE3
when N = 10, T = 10 and 50 per cent when N = 10, T = 50.
The good small-sample behavior may seem somewhat surprising. But they may simply

reflect that the standard error estimators take an average over all NT observations. In this
light, even the (10.10) sample is not small: it consists of 100 observations altogether.
The results have the following practical implications. In large samples, SE0 is just as

good for applied work as the restricted estimators even when the latter are also consistent.
In smaller samples, there is some advantage SE1 (the Omega-estimator) if that is consistent
for the true SE. The conventional estimator (SE3) has no substantial advantage over SE1
other than computational simplicity. The simulation results suggest that properties of the
estimators don’t depend much on the relative size of T and N but rather on the total sample
size NT and especially N itself. At the same time, an increasing T increases the bias due
to serial correlation. Cautioning against using the ”clustered” estimator (SE0) when the
time-series is long is therefore not simply unnecessary but quite misleading.
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4 A Direct Test for Homoskedasticity and No Serial

Correlation

In this section I propose a direct test for the restrictive assumptions under which the al-
ternative (less robust) estimators are consistent. D̂3 is easier to compute and has the best
properties if consistent. D̂1 performs significantly better in terms of variance than D̂0 when
both are consistent, especially in smaller samples. Moreover, the properties of D̂1 match
closely those of D̂3 if both are consistent. If we can test for the restrictions that make D̂1,
D̂2, or D̂3 consistent we can always choose the best consistent estimator. In this section I
develop such a test.
Let me introduce the following notation. Recall that the alternative standard error

estimators differ only in how they estimate V = E [x̃0iũiũ
0
ix̃i] . The assumptions behind the

restricted estimators can therefore be tested by comparing the corresponding V estimates to
one that is always consistent. Define

V̂0 ≡ 1

N

NX
i=1

x̃0iǔiǔ
0
ix̃i (18)

V̂1 ≡ 1

N

NX
i=1

x̃0iΩ̌x̃i, Ω̌ =
1

N

NX
i=1

ǔiǔ
0
i (19)

V̂2 ≡ 1

N

T

T − 1
NX
i=1

TX
t=1it

ǔ2itx̃itx̃
0
it (20)

V̂3 ≡ σ̂2

N

NX
i=1

x̃0ix̃i, σ̂2 =
1

N (T − 1)
NX
i=1

TX
t=1

ǔ2it (21)

V̂0 is always consistent for V. V̂1 is consistent under cross-sectional homoskedasticity. V̂2
is consistent under no serial correlation in the (levels) error or the (levels) right-hand-side
variables. V̂3 is consistent if both V̂1 and V̂2 is consistent and time-series homoskedasticity
also holds. A direct way to test whether the more restrictive assumptions hold is to check
whether V1 = V , V2 = V, or V3 = V. In order to formulate the linear hypotheses, let’s use the
vech operator that stacks columnwise the diagonal and sub-diagonal elements of a symmetric
matrix.6

6Suppose that K = 3, and A is symmetric:

A =

 a11 a21 a31
a21 a22 a32
a31 a32 a33


Then, vech (A) , (a11, a21, a31, a22, a32, a33)0. See Magnus and Neudecker (1988), e.g., for more discussion.
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vj ≡ vech (Vj) , (22)

v̂j ≡ vech
³
V̂j
´
j = 0, 1, 2, 3 (23)

The hypotheses are

H0 : vj − v0 = 0, j = 1, 2, 3

H1 : vj − v0 6= 0 j = 1, 2, 3.

The test I propose is analogous to White’s (1980) test for heteroskedasticity. Since v̂0 is
always consistent and the v̂j are consistent only under the appropriate H0, their distance is
an intuitive test statistic. If they are close enough, the restrictions probably hold. If they
are very far, they probably do not hold.

Proposition 2 Suppose that {yi, xi}i∈N is i.i.d. with finite fourth moments. Consider the

fixed-effect (FE) panel model (1-??) and assume that E [x̃0ix̃i] and S̃xx ≡ 1
N

PN
i=1 x̃

0
ix̃i are

positive definite. The test-statistic hj defined below using (18-23) are distributed chi-squared
under H0. Their asymptotic power is 1. That is,

hj ≡ N (v̂j − v̂0)0 Ĉ−1j (v̂j − v̂0) ∼ χ2
µ
K (K + 1)

2
+ 1

¶
under H0 (j = 1, 2, 3) , and

lim
N→∞

Pr (hj > c) = 1 (j = 1, 2, 3) for any c ∈ R otherwise.

Ĉ1 ≡ 1

N

NX
i=1

¡
x̃0iǔiǔ

0
ix̃i − x̃0iΩ̌x̃i

¢ ¡
x̃0iǔiǔ

0
ix̃i − x̃0iΩ̌x̃i

¢0
,

Ĉ2 ≡ 1

N

NX
i=1

Ã
x̃0iǔiǔ

0
ix̃i −

TX
t=1

ǔ2itx̃itx̃
0
it

!Ã
x̃0iǔiǔ

0
ix̃i −

TX
t=1

ǔ2itx̃itx̃
0
it

!0
,

Ĉ3 ≡ 1

N

NX
i=1

¡
x̃0iǔiǔ

0
ix̃i − σ̂2x̃0ix̃i

¢ ¡
x̃0iǔiǔ

0
ix̃i − σ̂2x̃0ix̃i

¢0
, where

Ω̌ ≡ 1

N

NX
i=1

ǔiǔ
0
i and

σ̂2 ≡ 1

N (T − 1)
NX
i=1

TX
t=1

ǔ2it

The proof is straightforward provided the simplifications to V derived earlier and the
consistency of the estimators V̂j for the appropriate Vj. It is therefore skipped here and is
available upon request.
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4.1 Finite-sample properties

Tables 3 and 4 report simulated rejection rates for the three tests in the data generating
processes identical to Tables 1-2, respectively, based on 10,000 Monte Carlo trials. Results
for the (500, 10) and (50, 10) setups are presented only but all setups from Tables 1-2 were
examined. The unpublished results indicate that given N, the size does not change but the
power increases with T , and the test loses almost all of its power extremely small-N samples.
The results in general reflect the finite-sample properties of the estimators. The tests

deliver their asymptotic properties in the N = 500, T = 10 setup. The notable exceptions
are h2 and h3 under conditional homoskedasticity and very weak serial correlation (ρu < 0.3,
ρx < 0.3, Table 3.1), and h1 under conditional heteroskedasticity and very strong serial
correlation (Table 4.1). The former are quite natural while the latter reflects that strong
serial correlation dominates heteroskedasticity in the conditional variance (see Table 2.1).
The size is about right in moderate size samples. It is slightly biased upward, which

makes the test a little too conservative (the actual size varies between 0.06 and 0.09 com-
pared to a nominal size of 0.05). The power varies considerably with the alternatives. In
the homoskedastic setup, the power, quite naturally, is a positive function of the serial cor-
relation in u and x. The heteroskedastic setup yields the same result except against V1, the
heteroskedasticity-inconsistent but serial correlation consistent estimator.

5 Conclusion

The paper examined linear FE models with short time series within individual units. Serial
correlation in the error process and the right-hand-side variables was shown to induce severe
bias in the conventional standard error estimates. At the same time, the paper has shown
that well-known robust (”clustered”) estimator applied to the mean-differenced data is not
only consistent but also behaves well in finite samples. Applied researchers should, therefore,
routinely estimate the robust estimator in moderate-sized and large samples, the same way
they already routinely estimate the heteroskedasticity-consistent estimator in cross-sectional
models. The robust estimator does not get biased or significantly more disperse as the time-
series dimension increases. At the same time, however, the serial correlation bias of the
inconsistent estimators increases with the time-series dimension. Therefore, contrary to the
intuition of many applied researchers, the advantages of the robust estimator increase as the
time series get longer. It is the cross-sectional size of the sample that primarily affects the
finite-sample behavior of the estimator.
In small samples and under cross-sectional homoskedasticity, there is some advantage of

using the alternative serial correlation consistent estimator, the ”Omega”-estimator. The
conventional FE standard error estimator (the scaled version of the conventional OLS esti-
mator on the mean-differenced data) has no significant advantage over the Omega-estimator
even if both are consistent. In small samples, therefore, the Omega-estimator should be used
unless there is evidence for cross-sectional heteroskedasticity.
The paper has also introduced a simple direct test for the assumptions under which the

restrictive estimators are consistent. The test delivers the appropriate size properties. Its
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power is quite small in small samples but good enough to detect strong serial correlation.
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Table 1. Relative Bias (“bias”: mean estimated SE over the standard deviation of the simulated 
distribution of βFE) and Coefficient of Variation (“CV”: standard error of the estimated SE 
distribution over its mean) of the four different SE estimators. Homoskedastic errors. In each 
cell, the first row corresponds to the general estimator (SE0), the second row to the Omega-
estimator (SE1 consistent under cros-sectional homoskedasticity), the third row to the scaled 
version of the original White estimator (SE2, consistent under no serial correlation) , and the 
fourht row to the scaled version of conventional estimator (SE3 consistent under 
homoskedasticity and no serial correlation). Results from 10,000 Monte Carlo experiments. 
 
Table 1.1. N = 500,  T = 10. Homoskedastic errors. 
 
  rho(x)       
rho(u)  0.0  0.3  0.5  0.9  

  bias CV bias CV bias CV bias CV 
          

0.0 SE0 -0.01 0.03 0.00 0.04 -0.01 0.04 -0.01 0.04 
 SE1 -0.01 0.01 0.00 0.02 -0.01 0.02 0.00 0.03 
 SE2 -0.02 0.02 0.00 0.02 0.00 0.02 0.00 0.03 

 SE3 -0.01 0.01 0.00 0.02 -0.01 0.02 0.00 0.02 
          

0.3 SE0 0.00 0.03 0.00 0.04 0.00 0.04 0.00 0.04 

 SE1 0.00 0.02 0.01 0.02 0.00 0.02 0.00 0.03 
 SE2 0.00 0.02 -0.06 0.02 -0.10 0.02 -0.16 0.03 
 SE3 0.00 0.02 -0.06 0.02 -0.10 0.02 -0.17 0.02 

          
0.5 SE0 0.01 0.04 -0.01 0.04 0.01 0.04 -0.01 0.05 

 SE1 0.01 0.02 -0.01 0.02 0.01 0.02 -0.01 0.03 

 SE2 0.01 0.02 -0.11 0.02 -0.16 0.02 -0.26 0.03 
 SE3 0.01 0.02 -0.11 0.02 -0.16 0.02 -0.27 0.02 
          

0.9 SE0 0.00 0.049 -0.01 0.049 0.00 0.049 0.00 0.051 
 SE1 0.00 0.026 -0.01 0.027 0.00 0.027 0.00 0.030 
 SE2 0.00 0.026 -0.17 0.027 -0.25 0.028 -0.39 0.034 

 SE3 0.00 0.021 -0.17 0.021 -0.27 0.022 -0.42 0.026 

          
 



 

 

Table 1.2. N = 50,  T = 10. Homoskedastic errors. 
 
  rho(x)       
rho(u)  0.0  0.3  0.5  0.9  

  bias CV bias CV bias CV bias CV 
          

0.0 SE0 -0.02 0.12 -0.02 0.12 -0.02 0.12 -0.04 0.14 
 SE1 0.00 0.05 0.00 0.05 0.00 0.06 -0.02 0.08 

 SE2 0.00 0.07 0.00 0.07 -0.01 0.07 -0.02 0.08 
 SE3 0.00 0.05 0.00 0.05 0.00 0.05 -0.01 0.07 
          

0.3 SE0 -0.02 0.12 -0.02 0.12 -0.02 0.12 -0.01 0.14 
 SE1 0.00 0.05 0.00 0.06 0.00 0.06 0.01 0.08 
 SE2 -0.01 0.07 -0.07 0.07 -0.11 0.07 -0.16 0.08 

 SE3 0.00 0.05 -0.06 0.05 -0.10 0.05 -0.16 0.07 
          

0.5 SE0 -0.01 0.12 -0.03 0.13 -0.02 0.13 -0.04 0.15 

 SE1 0.01 0.06 -0.01 0.06 0.00 0.07 -0.02 0.09 
 SE2 0.00 0.07 -0.12 0.07 -0.17 0.07 -0.27 0.09 
 SE3 0.01 0.05 -0.11 0.05 -0.17 0.06 -0.27 0.07 

          
0.9 SE0 -0.02 0.141 -0.02 0.145 0.00 0.147 -0.04 0.159 

 SE1 0.00 0.085 0.00 0.083 0.02 0.085 -0.02 0.097 

 SE2 0.00 0.082 -0.17 0.086 -0.24 0.088 -0.40 0.107 
 SE3 0.00 0.066 -0.17 0.067 -0.25 0.070 -0.43 0.082 

 



 

 

Table 1.3. N = 50,  T = 50. Homoskedastic errors. 
 
  rho(x)       
rho(u)  0.0  0.3  0.5  0.9  

  bias CV bias CV bias CV bias CV 
          

0.0 SE0 -0.02 0.11 0.00 0.10 -0.01 0.11 -0.01 0.12 
 SE1 -0.01 0.02 0.01 0.02 0.00 0.03 0.00 0.06 

 SE2 -0.01 0.03 0.01 0.03 0.00 0.03 0.01 0.05 
 SE3 -0.01 0.02 0.01 0.02 0.00 0.02 0.01 0.04 
          

0.3 SE0 -0.01 0.11 0.00 0.11 0.00 0.11 -0.02 0.12 
 SE1 0.01 0.03 0.01 0.03 0.01 0.03 -0.01 0.06 
 SE2 0.01 0.03 -0.07 0.03 -0.13 0.03 -0.23 0.05 

 SE3 0.01 0.02 -0.07 0.02 -0.12 0.02 -0.23 0.04 
          

0.5 SE0 -0.02 0.11 -0.01 0.11 -0.02 0.11 -0.01 0.12 

 SE1 -0.01 0.03 0.00 0.03 -0.01 0.03 0.00 0.06 
 SE2 -0.01 0.03 -0.13 0.03 -0.22 0.04 -0.36 0.05 
 SE3 -0.01 0.03 -0.13 0.03 -0.22 0.02 -0.36 0.04 

          
0.9 SE0 -0.02 0.120 -0.01 0.123 -0.02 0.123 -0.03 0.135 

 SE1 -0.01 0.059 0.00 0.059 0.00 0.059 -0.01 0.071 

 SE2 0.00 0.048 -0.23 0.047 -0.37 0.047 -0.63 0.065 
 SE3 0.00 0.041 -0.23 0.041 -0.37 0.040 -0.64 0.054 

 
 



 

 

Table 1.4. N = 10,  T = 50. Homoskedastic errors. 
 
  rho(x)       
rho(u)  0.0  0.3  0.5  0.9  

  bias CV bias CV bias CV bias CV 
          

0.0 SE0 -0.08 0.24 -0.08 0.25 -0.07 0.25 -0.09 0.27 
 SE1 -0.01 0.08 -0.01 0.09 0.00 0.09 -0.02 0.14 

 SE2 -0.01 0.06 -0.01 0.06 0.00 0.07 0.00 0.10 
 SE3 0.00 0.04 0.00 0.05 0.01 0.05 0.00 0.09 
          

0.3 SE0 -0.08 0.25 -0.09 0.25 -0.08 0.25 -0.09 0.28 
 SE1 -0.02 0.09 -0.01 0.09 -0.02 0.09 -0.02 0.14 
 SE2 -0.01 0.07 -0.09 0.07 -0.14 0.07 -0.23 0.10 

 SE3 -0.01 0.05 -0.09 0.05 -0.14 0.05 -0.23 0.09 
          

0.5 SE0 -0.08 0.25 -0.08 0.25 -0.08 0.25 -0.10 0.28 

 SE1 -0.01 0.09 -0.01 0.09 -0.01 0.10 -0.02 0.14 
 SE2 -0.01 0.07 -0.14 0.07 -0.22 0.07 -0.37 0.11 
 SE3 0.00 0.05 -0.13 0.05 -0.22 0.06 -0.37 0.10 

          
0.9 SE0 -0.10 0.275 -0.09 0.273 -0.09 0.273 -0.11 0.296 

 SE1 -0.02 0.141 -0.02 0.143 -0.02 0.145 -0.03 0.167 

 SE2 -0.02 0.104 -0.24 0.104 -0.37 0.108 -0.64 0.147 
 SE3 -0.01 0.092 -0.23 0.094 -0.37 0.096 -0.63 0.124 

 
 



 

 

Table 1.5. N = 10,  T = 10. Homoskedastic errors. 
 
  rho(x)       
rho(u)  0.0  0.3  0.5  0.9  

  bias CV bias CV bias CV bias CV 
          

0.0 SE0 -0.10 0.27 -0.09 0.27 -0.11 0.28 -0.13 0.31 
 SE1 -0.03 0.13 -0.02 0.13 -0.02 0.15 -0.04 0.20 

 SE2 -0.03 0.14 -0.03 0.15 -0.02 0.15 -0.04 0.18 
 SE3 -0.01 0.11 -0.01 0.11 -0.01 0.12 -0.02 0.15 
          

0.3 SE0 -0.08 0.27 -0.11 0.27 -0.10 0.28 -0.13 0.31 
 SE1 -0.01 0.14 -0.03 0.14 -0.03 0.15 -0.04 0.19 
 SE2 -0.02 0.14 -0.10 0.15 -0.13 0.15 -0.19 0.19 

 SE3 0.00 0.11 -0.08 0.11 -0.11 0.12 -0.17 0.15 
          

0.5 SE0 -0.10 0.27 -0.09 0.28 -0.11 0.29 -0.13 0.32 

 SE1 -0.02 0.14 -0.01 0.15 -0.03 0.16 -0.04 0.20 
 SE2 -0.03 0.15 -0.13 0.16 -0.18 0.16 -0.27 0.19 
 SE3 -0.01 0.12 -0.10 0.12 -0.17 0.13 -0.26 0.16 

          
0.9 SE0 -0.09 0.311 -0.11 0.310 -0.11 0.314 -0.14 0.331 

 SE1 -0.02 0.193 -0.04 0.193 -0.03 0.195 -0.05 0.217 

 SE2 -0.02 0.180 -0.19 0.185 -0.28 0.188 -0.42 0.222 
 SE3 0.00 0.150 -0.18 0.154 -0.26 0.155 -0.42 0.185 

 
 



 

 

Table 2. Relative Bias (“bias”: mean estimated SE over the standard deviation of the simulated 
distribution of βFE) and Coefficient of Variation (“CV”: standard error of the estimated SE 
distribution over its mean) of the four different SE estimators. Conditoinal heteroskedasticity 
in the cross-sectional dimension. In each cell, the first row corresponds to the general estimator 
(SE0), the second row to the Omega-estimator (SE1 consistent under cros-sectional 
homoskedasticity), the third row to the scaled version of the original White estimator (SE2, 
consistent under no serial correlation) , and the fourht row to the scaled version of conventional 
estimator (SE3 consistent under homoskedasticity and no serial correlation). Results from 10,000 
Monte Carlo experiments. 
 
Table 2.1. N = 500,  T = 10. Cross-sectional conditional heteroskedasticity. 
 
  rho(x)        
rho(u)  0.0  0.3  0.5  0.9  

  bias CV bias CV bias CV bias CV 
          

0.0 SE0 -0.01 0.04 0.01 0.04 0.00 0.05 -0.02 0.05 
 SE1 -0.28 0.01 -0.25 0.01 -0.24 0.02 -0.13 0.03 
 SE2 -0.03 0.02 -0.01 0.02 -0.02 0.02 -0.02 0.02 

 SE3 -0.28 0.01 -0.25 0.01 -0.24 0.02 -0.13 0.02 
          

0.3 SE0 0.00 0.04 0.00 0.05 0.00 0.05 -0.01 0.06 

 SE1 -0.26 0.01 -0.24 0.02 -0.23 0.02 -0.12 0.03 
 SE2 -0.02 0.02 -0.08 0.02 -0.12 0.02 -0.18 0.02 
 SE3 -0.26 0.01 -0.29 0.02 -0.31 0.02 -0.27 0.02 

          
0.5 SE0 0.00 0.05 0.00 0.04 0.00 0.05 -0.01 0.06 

 SE1 -0.23 0.01 -0.22 0.02 -0.20 0.02 -0.11 0.03 

 SE2 -0.02 0.02 -0.12 0.02 -0.18 0.02 -0.27 0.03 
 SE3 -0.23 0.02 -0.31 0.02 -0.34 0.02 -0.35 0.02 
          

0.9 SE0 -0.02 0.05 -0.02 0.05 0.00 0.06 0.00 0.06 
 SE1 -0.14 0.02 -0.12 0.03 -0.10 0.02 -0.05 0.03 
 SE2 -0.02 0.02 -0.17 0.02 -0.25 0.03 -0.38 0.03 

 SE3 -0.14 0.02 -0.26 0.02 -0.34 0.02 -0.45 0.03 



 

 

Table 2.2. N = 50,  T = 10. Cross-sectional conditional heteroskedasticity. 
 
  rho(x)        
rho(u)  0.0  0.3  0.5  0.9  

  bias CV bias CV bias CV bias CV 
          

0.0 SE0 -0.02 0.13 -0.03 0.14 -0.03 0.14 -0.03 0.16 
 SE1 -0.27 0.05 -0.26 0.05 -0.24 0.06 -0.11 0.09 

 SE2 -0.03 0.09 -0.04 0.09 -0.03 0.09 -0.01 0.10 
 SE3 -0.27 0.04 -0.26 0.05 -0.24 0.05 -0.11 0.07 
          

0.3 SE0 -0.02 0.14 -0.02 0.14 -0.02 0.15 -0.03 0.16 
 SE1 -0.25 0.05 -0.24 0.06 -0.22 0.06 -0.12 0.09 
 SE2 -0.03 0.09 -0.09 0.09 -0.12 0.09 -0.18 0.10 

 SE3 -0.26 0.05 -0.29 0.05 -0.31 0.05 -0.26 0.07 
          

0.5 SE0 -0.02 0.14 -0.03 0.14 -0.02 0.15 -0.03 0.17 

 SE1 -0.23 0.06 -0.22 0.06 -0.20 0.07 -0.10 0.10 
 SE2 -0.03 0.09 -0.13 0.09 -0.18 0.09 -0.26 0.10 
 SE3 -0.23 0.05 -0.31 0.05 -0.34 0.06 -0.34 0.08 

          
0.9 SE0 -0.02 0.15 -0.03 0.16 -0.03 0.17 -0.05 0.19 

 SE1 -0.12 0.08 -0.11 0.08 -0.10 0.09 -0.07 0.11 

 SE2 -0.01 0.09 -0.17 0.09 -0.26 0.10 -0.40 0.12 
 SE3 -0.12 0.07 -0.26 0.07 -0.34 0.07 -0.46 0.09 

 
 



 

 

Table 2.3. N = 50,  T = 50. Cross-sectional conditional heteroskedasticity. 
 
  rho(x)        
rho(u)  0.0  0.3  0.5  0.9  

  bias CV bias CV bias CV bias CV 
          

0.0 SE0 -0.03 0.11 -0.01 0.11 -0.02 0.11 -0.03 0.13 
 SE1 -0.29 0.02 -0.28 0.02 -0.28 0.03 -0.23 0.05 

 SE2 -0.02 0.04 0.00 0.04 -0.01 0.04 -0.01 0.05 
 SE3 -0.30 0.02 -0.28 0.02 -0.28 0.02 -0.23 0.03 
          

0.3 SE0 -0.01 0.11 -0.01 0.11 -0.01 0.11 -0.03 0.14 
 SE1 -0.27 0.02 -0.26 0.03 -0.26 0.03 -0.23 0.05 
 SE2 0.00 0.04 -0.08 0.04 -0.13 0.04 -0.24 0.05 

 SE3 -0.27 0.02 -0.32 0.02 -0.36 0.02 -0.41 0.03 
          

0.5 SE0 -0.01 0.11 -0.02 0.11 -0.03 0.12 -0.03 0.14 

 SE1 -0.23 0.03 -0.24 0.03 -0.24 0.03 -0.22 0.06 
 SE2 0.00 0.04 -0.14 0.04 -0.23 0.05 -0.38 0.05 
 SE3 -0.24 0.02 -0.34 0.03 -0.41 0.02 -0.51 0.04 

          
0.9 SE0 -0.02 0.13 -0.02 0.13 -0.02 0.13 -0.03 0.16 

 SE1 -0.09 0.06 -0.09 0.06 -0.10 0.06 -0.13 0.07 

 SE2 -0.01 0.05 -0.23 0.05 -0.36 0.05 -0.63 0.07 
 SE3 -0.09 0.04 -0.30 0.04 -0.43 0.04 -0.68 0.05 

 
 



 

 

Table 2.4. N = 10,  T = 50. Cross-sectional conditional heteroskedasticity. 
 
  rho(x)        
rho(u)  0.0  0.3  0.5  0.9  

  bias CV bias CV bias CV bias CV 
          

0.0 SE0 -0.09 0.25 -0.09 0.25 -0.08 0.26 -0.12 0.29 
 SE1 -0.27 0.09 -0.27 0.09 -0.26 0.09 -0.23 0.14 

 SE2 -0.02 0.09 -0.02 0.09 -0.01 0.09 -0.02 0.10 
 SE3 -0.29 0.04 -0.29 0.04 -0.28 0.05 -0.23 0.08 
          

0.3 SE0 -0.08 0.25 -0.09 0.26 -0.09 0.26 -0.10 0.29 
 SE1 -0.25 0.09 -0.25 0.09 -0.25 0.10 -0.21 0.14 
 SE2 -0.02 0.09 -0.10 0.09 -0.15 0.09 -0.23 0.10 

 SE3 -0.27 0.04 -0.33 0.04 -0.37 0.05 -0.39 0.08 
          

0.5 SE0 -0.07 0.26 -0.09 0.26 -0.09 0.26 -0.12 0.30 

 SE1 -0.22 0.09 -0.22 0.10 -0.23 0.10 -0.21 0.15 
 SE2 0.00 0.09 -0.14 0.09 -0.23 0.09 -0.38 0.11 
 SE3 -0.23 0.05 -0.34 0.05 -0.41 0.05 -0.50 0.08 

          
0.9 SE0 -0.10 0.28 -0.10 0.28 -0.11 0.29 -0.12 0.33 

 SE1 -0.11 0.14 -0.10 0.14 -0.11 0.15 -0.13 0.18 

 SE2 -0.02 0.11 -0.24 0.11 -0.37 0.11 -0.63 0.15 
 SE3 -0.10 0.09 -0.30 0.09 -0.43 0.09 -0.67 0.12 

 
 



 

 

Table 2.5. N = 10,  T = 10. Cross-sectional conditional heteroskedasticity. 
 
  rho(x)        
rho(u)  0.0  0.3  0.5  0.9  

  bias CV bias CV bias CV bias CV 
          

0.0 SE0 -0.11 0.29 -0.12 0.29 -0.13 0.30 -0.14 0.33 
 SE1 -0.26 0.13 -0.25 0.14 -0.24 0.14 -0.14 0.21 

 SE2 -0.07 0.19 -0.07 0.19 -0.07 0.18 -0.05 0.20 
 SE3 -0.27 0.10 -0.26 0.10 -0.25 0.11 -0.12 0.17 
          

0.3 SE0 -0.11 0.29 -0.13 0.30 -0.13 0.30 -0.14 0.34 
 SE1 -0.24 0.13 -0.25 0.14 -0.23 0.15 -0.13 0.21 
 SE2 -0.06 0.18 -0.14 0.18 -0.16 0.18 -0.20 0.21 

 SE3 -0.26 0.10 -0.30 0.11 -0.31 0.11 -0.25 0.17 
          

0.5 SE0 -0.12 0.30 -0.12 0.30 -0.12 0.31 -0.14 0.34 

 SE1 -0.24 0.14 -0.22 0.15 -0.20 0.16 -0.13 0.22 
 SE2 -0.07 0.18 -0.16 0.19 -0.21 0.19 -0.29 0.21 
 SE3 -0.24 0.11 -0.30 0.11 -0.33 0.12 -0.33 0.17 

          
0.9 SE0 -0.12 0.32 -0.13 0.33 -0.13 0.34 -0.16 0.36 

 SE1 -0.14 0.19 -0.13 0.19 -0.13 0.20 -0.11 0.24 

 SE2 -0.05 0.19 -0.20 0.20 -0.28 0.20 -0.43 0.24 
 SE3 -0.13 0.14 -0.26 0.15 -0.34 0.15 -0.45 0.20 

 
 
 



 

 

Table 3. Rejection rates of h1 (H0: V1 = V0), h2 (H0: V2 = V0) and h3 (H0: V3 = V0). Nominal 
size=0.05. Homoskedastic errors. V1 and V0 are asymptotically equivalent always; V2 and V0, 
and V3 and V0 are asymptotically equivalent if rho(x)=0 or rho(u)=0. Results from 10,000 Monte 
Carlo experiments. 
 
Table 3.1. N = 500,  T = 10. Homoskedastic errors. 
 
  rho(x)    
rho(u)  0.0 0.3 0.5 0.9 

      
0.0 h1 0.05 0.05 0.04 0.04 

 h2 0.04 0.06 0.04 0.06 
 h3 0.05 0.05 0.05 0.05 
      

0.3 h1 0.04 0.04 0.04 0.04 
 h2 0.05 0.56 0.92 1.00 

 h3 0.05 0.36 0.79 0.99 
      

0.5 h1 0.04 0.04 0.04 0.04 
 h2 0.06 0.90 1.00 1.00 

 h3 0.05 0.79 0.99 1.00 
      

0.9 h1 0.04 0.04 0.04 0.03 
 h2 0.06 1.00 1.00 1.00 

 h3 0.05 0.99 1.00 1.00 
 



 

 

Table 3.2. N = 50,  T = 10. Homoskedastic errors. 
 
  rho(x)    
rho(u)  0.0 0.3 0.5 0.9 

      
0.0 h1 0.09 0.08 0.08 0.08 

 h2 0.08 0.08 0.08 0.09 
 h3 0.09 0.09 0.09 0.10 
      

0.3 h1 0.09 0.08 0.08 0.07 
 h2 0.08 0.05 0.07 0.14 

 h3 0.09 0.04 0.04 0.06 
      

0.5 h1 0.08 0.08 0.08 0.07 
 h2 0.08 0.06 0.18 0.46 

 h3 0.09 0.04 0.09 0.26 
      

0.9 h1 0.08 0.07 0.07 0.06 
 h2 0.09 0.14 0.44 0.86 

 h3 0.10 0.08 0.29 0.74 



 

 

Table 4. Rejection rates of h1 (H0: V1 = V0), h2 (H0: V2 = V0) and h3 (H0: V3 = V0). Nominal 
size=0.05. Conditional cross-sectional heteroskedasticity in the errors. V1 and V0, and V3 and 
V0 are never asymptotically equivalent; V2 and V0 are asymptotically equivalent if rho(x)=0 or 
rho(u)=0. Results from 10,000 Monte Carlo experiments. 
 
 
Table 4.1. N = 500,  T = 10. Cross-sectional conditional heteroskedasticity. 
 
  rho(x)    
rho(u)  0.0 0.3 0.5 0.9 

      
0.0 h1 1.00 1.00 1.00 0.77 

 h2 0.10 0.07 0.06 0.06 
 h3 1.00 1.00 1.00 0.71 
      

0.3 h1 1.00 1.00 1.00 0.53 
 h2 0.08 0.73 0.96 0.99 

 h3 1.00 1.00 1.00 1.00 
      

0.5 h1 1.00 1.00 1.00 0.37 
 h2 0.05 0.96 1.00 1.00 

 h3 1.00 1.00 1.00 1.00 
      

0.9 h1 0.60 0.48 0.34 0.04 
 h2 0.04 0.99 1.00 1.00 

 h3 0.58 1.00 1.00 1.00 
 



 

 

Table 4.2. N = 50,  T = 10. Cross-sectional conditional heteroskedasticity. 
 
  rho(x)    
rho(u)  0.0 0.3 0.5 0.9 

      
0.0 h1 0.36 0.30 0.19 0.03 

 h2 0.05 0.05 0.05 0.08 
 h3 0.36 0.29 0.18 0.03 
      

0.3 h1 0.28 0.21 0.12 0.03 
 h2 0.05 0.05 0.07 0.11 

 h3 0.28 0.39 0.38 0.15 
      

0.5 h1 0.19 0.14 0.08 0.03 
 h2 0.06 0.07 0.18 0.32 

 h3 0.20 0.40 0.48 0.36 
      

0.9 h1 0.03 0.03 0.03 0.04 
 h2 0.08 0.11 0.35 0.74 

 h3 0.04 0.16 0.36 0.65 
 
 
 
 
 


