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Abstract

Recent discussions within the mathematical psychology community have focused on how Open Science practices may

apply to cognitive modelling. Lee et al. (2019) sketched an initial approach for adapting Open Science practices that have

been developed for experimental psychology research to the unique needs of cognitive modelling. While we welcome the

general proposal of Lee et al. (2019), we believe a more fine-grained view is necessary to accommodate the adoption of Open

Science practices in the diverse areas of cognitive modelling. Firstly, we suggest a categorization for the diverse types of

cognitive modelling, which we argue will allow researchers to more clearly adapt Open Science practices to different types

of cognitive modelling. Secondly, we consider the feasibility and usefulness of preregistration and lab notebooks for each

of these categories and address potential objections to preregistration in cognitive modelling. Finally, we separate several

cognitive modelling concepts that we believe Lee et al. (2019) conflated, which should allow for greater consistency and

transparency in the modelling process. At a general level, we propose a framework that emphasizes local consistency in

approaches while allowing for global diversity in modelling practices.

Keywords Cognitive modelling · Reproducibility · Open Science · Preregistration · Transparency

Introduction

Psychology and related fields have been gripped by the

so-called “replication crisis” over the past several years

(Pashler and Wagenmakers 2012), though discussions of

the underlying problems date back several decades (cf. e.g.,

Sterling 1959; Cohen 1965; Meehl 1967). The continuing

misuse of statistical methods has led to a substantial por-

tion of the literature being unreplicable and most likely

untenable (Ioannidis 2005; Open Science Collaboration

2015), which has led to a reform movement around “Open
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Berlin, Germany

Science,” where an increasing number of scientists have

focused on improving the use and development of statistics

and methodology within psychology. This movement has

led to the development of a variety of Open Science prac-

tices, such as data sharing (Klein et al. 2018), preregistration

(Wagenmakers et al. 2012), and preregistration’s more rigor-

ous sister Registered Reports (RRs; Chambers et al. 2014),

with the goal of creating transparent and accessible psy-

chological research (Nuijten 2018; Crüwell et al. 2018).

Importantly, transparent scientific practices can counter-

act the effect of cognitive biases and other pressures that

may affect the reproducibility of scientific findings (Munafò

et al. 2017). Our article largely focuses on preregistration,

a practice where researchers specify their research design,

hypotheses, and analysis plan prior to the data collection

(Nosek and Lindsey 2018).

Recent discussions within the mathematical psychology

community have focused on how these Open Science prac-

tices may apply to cognitive modelling (see Wagenmakers

and Evans 2018; Lewandowsky 2019, for reviews of the

recent discussions on social media). Specifically, there are

many instances in cognitive modelling where a lack of prac-

tical constraints (i.e., an abundance of “modeller’s degrees

of freedom,” Dutilh et al. 2018) can lead to inconsistent and

untransparent modelling approaches, which can affect inter-

pretations of model success and failure (McClelland 2009;
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Roberts and Pashler 2000), and prevent the reuse of exist-

ing models (e.g., Addyman and French 2012). Importantly,

Open Science practices have been developed to counter-

act similar problems in experimental psychology, showing a

clear value for similar practices within cognitive modelling,

where they may lead to less biased modelling practices

and broader reuse and refinement of existing models. How-

ever, there has been opposition to Open Science practices

within mathematical psychology, with criticisms suggest-

ing that Open Science practices can be inflexible and are

poorly adapted to the needs of cognitive modelling (see

Wagenmakers and Evans 2018, for a discussion).

Lee et al. (2019) sketched an initial approach for incor-

porating and adapting Open Science practices into cognitive

modelling. Specifically, Lee et al. (2019) suggested sev-

eral “good practices” within cognitive modelling, where

studies should (1) preregister the models and evaluation

criteria, (2) consider the full spectrum of models and evalua-

tion criteria available, (3) ensure the robustness of findings,

and (4) provide a distinction between confirmatory and

exploratory analyses, with “postregistration”—in the form

of a lab notebook—being an option for exploratory analy-

ses. We welcome Lee et al.’s (2019) introduction of Open

Science practices to cognitive modelling, as we believe that

they will aid the consistency and transparency of research in

cognitive modelling. However, we believe that a more fine-

grained view is necessary to accommodate the adoption of

Open Science practices in the diverse range of studies that

fall under the “cognitive modelling” umbrella, where differ-

ent types of cognitive modelling may have different specific

requirements. Specifically, we believe that a lack of distinc-

tion between the diverse areas of cognitive modelling has

led to overly polarized standpoints regarding Open Science

practices, in particular preregistration, within the mathemat-

ical psychology community (see Wagenmakers and Evans

2018; Lewandowsky 2019). More separation and directive

guidance is required to aid the adoption of Open Science

practices in cognitive modelling.

Our article focuses on three key topics that we believe

will aid the adoption of Open Science practices in cognitive

modelling. Firstly, we provide a categorization for the

diverse types of cognitive modelling, which we believe will

aid the development of directive guidance for Open Science

practices in different categories of cognitive modelling.

Secondly, we address several potential objections to

preregistration within cognitive modelling, discuss the

categories of cognitive modelling that are best suited to

preregistration, and suggest how preregistration may need

to be adapted to suit the specific needs of each category. We

also discuss the concept of “postregistration” and the use of

lab notebooks, and the need for standards and consistency

in post-hoc registration practices. Lastly, we attempt to

separate several cognitive modelling concepts that we

believe Lee et al. (2019) conflated, as their conflation may

lead to inconsistent practices with misleading results within

cognitive modelling.

OneMan’s Meat is Another Man’s Poison

“Cognitive modelling” is an umbrella term commonly used

to describe a diverse range of studies that implement

formalized models to better understand cognitive processes.

These studies can range from purely confirmatory research,

such as a direct comparison between two competing

cognitive theories represented as formalized models (e.g.,

Evans et al. 2017a, 2019a, b; Palestro et al. 2018; Voskuilen

et al. 2016; Evans and Hawkins 2019; Teodorescu and

Usher 2013), to purely exploratory research, such as the

initial development of a model for a novel experimental

paradigm (e.g., Nosofsky 1986; Shiffrin and Steyvers 1997;

Ratcliff 1978; Dougherty et al. 1999; Jones and Mewhort

2007; Vickers and Lee 2000). However, this diversity has

been largely ignored within the recent discussions on how

Open Science practices may apply to cognitive modelling,

leaving the discussion open to potential misunderstandings

about which Open Science practices are applicable to

which types of cognitive modelling. We argue that the

overly generic view of cognitive modelling may be the

underlying reason for much of the opposition to Open

Science practices within mathematical psychology. For

example, in the context of the exploratory development of

a model, a researcher might be horrified at the idea of

“preregistration in cognitive modelling”, and rightfully so,

as preregistration is most useful for confirmatory research.

There are other Open Science practices that are useful for

increasing the transparency of exploratory research such

as sharing your data, materials, and code (Klein et al.

2018), or prioritizing open access publishing (Tennant et al.

2016). We believe that the opposition to Open Science

practices in cognitive modelling might be alleviated by a

more specific categorization of different types of cognitive

modelling, and a discussion of where specific Open Science

practices are most applicable. Specifically, we propose

that it may be useful to split cognitive modelling into

the following four categories: model application, model

comparison, model evaluation, and model development.

Each of these different categories involves different research

goals, uses different methods of assessment, and might

differ in how well they are suited to different Open

Science practices, particularly preregistration. Table 1 lists

each of these different modelling categories, as well as

some important factors that researchers should consider

before implementing each of these categories of cognitive

modelling, some of which we discuss in more detail

throughout the remainder of our article. Importantly, we
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believe that these considerations may be viewed as potential

“researcher degrees of freedom,” which may form the

basis for future preregistration templates and documentation

standards in cognitive modelling.

Model application consists of studies where an existing

cognitive model, which is assumed to provide an ade-

quate representation of the underlying cognitive process, is

applied to empirical data to provide insight into how the

cognitive process operates in that paradigm (e.g., Weigard

and Huang-Pollock 2017; Ratcliff et al. 2001; Janczyk and

Lerche 2019; Lerche et al. 2019; Wagenmakers et al. 2008;

Ratcliff and Rouder 2000; Evans et al. 2018a, c). These

applications often involve experimental studies with differ-

ent groups and/or conditions, with researchers interested

in how the cognitive process changes across these factors,

measured by changes in the values of the model parameters.

Model application is similar to the concept of “measure-

ment models” discussed by Lee et al. (2019, p. 10), though

we wish to distinguish our definition from their definition,

as we believe that measurement is rarely the sole purpose

of a model and that a single model can be used for both

measurement and theory representation. For example, the

diffusion model of decision-making (Ratcliff 1978) is often

used for measurement in model application (e.g., Weigard

and Huang-Pollock 2017; Ratcliff et al. 2001; Janczyk and

Lerche 2019; Lerche et al. 2019; Wagenmakers et al. 2008;

Ratcliff and Rouder 2000; Evans et al. 2018a), though it

has also been used as a cognitive theory in model compar-

ison (e.g., Voskuilen et al. 2016; Voss et al. 2019; Evans

and Hawkins 2019; Evans et al. 2017a, 2019b), model eval-

uation (e.g., Ratcliff and Rouder 1998; Teodorescu and

Usher 2013; Evans et al. 2019a; Cisek et al. 2009; Thura

et al. 2012), and model development (e.g., Ratcliff 1978;

Ratcliff and Rouder 1998; Ratcliff and Tuerlinckx 2002).

Model application typically involves confirmatory research

questions that are similar to those in traditional experi-

mental research—with a cognitive model in place of a

statistical model (i.e., a t test, ANOVA)—where a set of

conflicting a priori hypotheses about how the parameters

should vary over groups and/or conditions are assessed.

Therefore, Open Science practices that have been devel-

oped for confirmatory experimental research—particularly

preregistration—are clearly and readily applicable to the

model application category, and existing preregistration

templates could be adapted for model application with only

minor amendments.

Model comparison consists of studies where multiple

existing cognitive models are compared on their ability

to account for empirical data, typically either based on

their ability to provide an accurate explanation of the

underlying process, or to predict future data in the same

context (e.g., Voskuilen et al. 2016; Voss et al. 2019;

Evans and Hawkins 2019; Evans et al. 2017a, 2019b).

These assessments are usually made through quantitative

model selection methods, which penalize models based

on either their a priori flexibility (e.g., Kass and Raftery

1995; Evans and Brown 2018; Myung et al. 2006; Annis

et al. 2019; Evans and Annis 2019; Gronau et al. 2017;

Schwarz 1978) or their overfitting to the noise in samples

of data (e.g., Spiegelhalter et al. 2002; Vehtari et al. 2017;

Browne 2000; Akaike 1974). Importantly, models that are

more flexible a priori will have an unfair advantage in

accurately explaining the data than simpler models (Roberts

and Pashler 2000; Myung and Pitt 1997; Evans et al.

2017b), and models that over-fit to a sample of data

will predict future data more poorly than those that only

capture the robust trends (Myung 2000). Although model

comparison is less similar to confirmatory experimental

research than model application, model comparison still

typically involves confirmatory research questions about

which models will be superior to others, making it well

suited to preregistration. However, several additional factors

need to be considered for the preregistration of model

comparison beyond the factors in model application, such

as the models to be compared (discussed by Lee et al. as

“the players in the game,” p.3) and the model selection

methods for the comparison (discussed the Lee et al. as “the

rules of the game.” p.3). Furthermore, model comparison

can often involve the use of existing data sets, meaning that

researchers need to consider the scope of their comparison

(i.e., the empirical contexts included in the comparison), and

any potential preregistration template for model comparison

would need to consider secondary data preregistration (see

Mertens and Krypotos 2019; Weston et al. 2018).

Model evaluation consists of studies where one or

multiple existing cognitive models are evaluated on their

ability to account for specific patterns in empirical data

(e.g., Ratcliff and Rouder 1998; Teodorescu and Usher

2013; Evans et al. 2019a; Cisek et al. 2009; Thura et al.

2012). These assessments are usually made through visual

assessments of qualitative trends that can be plotted from

the data, which are contrasted to the predictions that the

model can make for these aspects of the data. It should

be noted that model evaluation contains no correction

for model flexibility and, therefore, should not be used

to answer confirmatory research questions about which

models are superior to others, as these comparisons will

be biased towards more flexible models (see Roberts and

Pashler 2000; Evans 2019b, for more detailed discussions).

However, model evaluation is ideal for answering research

questions about why certain models are found to be

superior to others in model comparison and what further

development may be required to create a better explanation

of the underlying process, meaning that it is often used in

combination with model development. Model evaluation can

be used in a confirmatory manner when researchers have a
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specific model, or models, that they wish to evaluate on a

specific trend, or trends, and in these cases model evaluation

requires a similar consideration to model comparison

for preregistration. However, when model evaluation is

combined with model development, model evaluation can

become an iterative, exploratory process, which is less

applicable to preregistration and related Open Science

practices.

Model development consists of all instances where

models are altered in some way to create a new model

and can be viewed as the preceding work required for all

other categories of cognitive modelling (e.g., Brown and

Heathcote 2005, 2008; Usher and McClelland 2001; Evans

et al. 2018b; Nosofsky 1986; Shiffrin and Steyvers 1997;

Ratcliff 1978; Dougherty et al. 1999; Jones and Mewhort

2007; Vickers and Lee 2000; Ratcliff and Rouder 1998;

Ratcliff and Tuerlinckx 2002). The alterations can range

from minor tweaks to an existing model (e.g., Brown and

Heathcote 2008; Evans et al. 2018b; Ratcliff and Rouder

1998; Ratcliff and Tuerlinckx 2002), to constructing a

novel model of a novel paradigm (e.g., Nosofsky 1986;

Shiffrin and Steyvers 1997; Ratcliff 1978). The goal of the

development process could be to create a simple model

well suited to model application, a new explanation of the

underlying process that will be compared with other models

in model comparison, or a general model that provides a

functional form capable of meeting a range of qualitative

benchmarks in model evaluation. Model development is a

broad category that encompasses many cognitive modelling

studies and is often necessary to adapt an existing model

to a new paradigm, even when development is not the

focus of the study (Navarro 2019). In many of these

cases, model development can be an iterative, exploratory

process, meaning that Open Science practices designed for

confirmatory experimental research, such as preregistration,

have limited applicability. However, we believe that model

development is the most crucial category of cognitive

modelling, and therefore, future research should investigate

how the process of model development can be made as

transparent as possible, without restricting the iterative,

exploratory process. The considerations in Table 1 may

provide a valuable starting point for these investigations.

Note that our categorization of cognitive modelling might

not be ideal for all purposes. Many researchers work with

more than one category of cognitive modelling, and existing

studies often combine these different categories. However,

we believe that this categorization provides a useful tool

for discussing the applicability of Open Science practices to

Table 1 Transparency considerations in different categories of cognitive modelling

Category Important considerations for transparency

Model applicationa Selecting a model to assume as the underlying process

Creating a match between model parameters and application domain theory

Deciding upon the method of parameter estimation (e.g., maximum likelihood)

Choosing a method of statistical inference on parameters (e.g., Bayes factors)

Model comparisona Selecting a subset of precisely defined models to be compared

Selecting a suitable data set (or data sets) for the comparison

Deciding upon the goal of the comparison (e.g., explanation or prediction)

Deciding upon a comparison criterion that matches the goal (e.g., cross validation for prediction)

Deciding upon the strength of evidence required for confidently selecting one model over another

Deciding upon robustness checks to account for ancillary assumptions

Model evaluationa Selecting the data trends or benchmarks of interest

Deciding upon clear criteria for evaluation (e.g., directional, goodness-of-fit, visual)

Defining the criteria for adequacy (e.g., when the model is seen to be descriptively accurate)

Defining all a priori theoretically justifiable functional forms of the model

Clearly separating confirmatory and exploratory aspects (e.g., data-driven changes to the model)

Model developmentb Providing a clear and transparent documentation of the model exploration process

Discussing existing theoretical justification for model components and functional form

Distinguishing between theory-driven development and data-driven development

Deciding which components of the model are core and which are ancillary

Deciding upon the purpose of the model (e.g., tool for application, formalization of theory, both)

Deciding upon evaluation criteria that will drive the model development (e.g., data trends, parameter identifiability)

aConsiderations should be made before the modelling process

bConsiderations can be made during any point of the exploratory process
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cognitive modelling and determining where these practices

may need to be adapted for the specific needs of different

types of cognitive modelling.

The Devil Is in the Details

Lee et al. (2019) made an important contribution by sug-

gesting several “good practices” within cognitive modelling.

Here, we discuss two of these specific practices, which

were intended as an initial approach for incorporating and

adapting Open Science practices into cognitive modelling:

“registered modelling reports” and “postregistration.” The

registered modelling reports format was proposed as an

extension of the registered reports format used in confirma-

tory experimental research, where an article can receive an

in-principle acceptance for publication after the first round

of thorough reviews on a detailed research proposal and is

then published after a second round of reviews when the

study has been conducted (Chambers et al. 2015). Postreg-

istration was proposed as a process of recording every detail

of an exploratory modelling process in the form of a lab

notebook, as an attempt to increase transparency in non-

confirmatory settings. While we welcome the attempt to

introduce practices that increase the consistency and trans-

parency of modelling approaches, Lee et al. (2019) did not

provide specific guidelines on how these practices should

be implemented. As discussed above, there are many differ-

ent types of cognitive modelling, ranging from the purely

confirmatory to the purely exploratory, which each also dif-

fers in how Open Science practices would be best suited to

their usage. Therefore, we argue that the current proposals

of Lee et al. (2019) might be of limited value to mathe-

matical psychology researchers and that some researchers

may still object to registered modelling reports—and more

generally, preregistration—as it is currently unclear which

types of cognitive modelling they are most applicable to.

Here, we use our proposed categorization to discuss the role

of preregistration within cognitive modelling and address

potential objections that researchers may have to preregis-

tration in cognitive modelling. We also discuss Lee et al.’s

proposal of “postregistration” in more detail, in what cases it

is likely to be most applicable, and how it could be adapted

to better ensure consistent and transparent research practices

in cognitive modelling.

Preregistration

An important underlying focus of preregistration and regis-

tered reports is to highlight the difference between explo-

ration (data dependent) and confirmation (data independent)

in quantitative experimental research. The idea here is that

so-called questionable research practices (QRPs)—such as

hypothesizing after results are known (HARKing; Kerr

1998), p-hacking (Simmons et al. 2011; de Groot 2014),

and other researcher degrees of freedom (Simmons et al.

2011)—may affect a study in ways which render the seem-

ingly confirmatory results uninterpretable (Wagenmakers

et al. 2012). Preregistrations or registered reports can help to

counteract QRPs and unchecked researcher degrees of free-

dom by pre-specifying the hypotheses and analysis plans.

Importantly, the underlying strength of preregistration

and registered reports are in their specificity: clearly speci-

fied research plans can prevent QRPs and create greater con-

sistency and transparency in scientific findings. Although

we agree with Lee et al. (2019) that registered reports could

be a valuable tool in cognitive modelling studies, we do not

believe that they provided adequate specificity to constrain

researcher degrees of freedom and help prevent QRPs in

cognitive modelling studies. Crucially, Lee et al. (2019) did

not provide specific guidelines for how to implement these

registered modelling reports, with their proposal limited to

a general description that mirrors regular registered reports.

However, different categories of cognitive modelling range

from confirmatory to exploratory, which establishes the

need for distinct implementation guidelines for preregis-

trations and registered reports in different categories, and

possibly even the creation of new procedures that can

increase transparency in a similar way. We argue that there

cannot be a “one-size-fits-all” solution for preregistration

or registered reports in cognitive modelling, as proposed by

Lee et al. (2019). Instead, category-specific templates—or

a flexible general registered report template with appropri-

ate sub-templates—should be developed. Moreover, these

category-specific templates need to be sufficiently detailed

and actionable to allow researchers to implement registered

modelling reports in a consistent manner. Creating these

templates should be the goal of future research aiming to

integrate Open Science practices into cognitive modelling.

Moreover, as we argue below, while preregistration seems

applicable to the largely confirmatory nature of model appli-

cation, model comparison, and model evaluation, preregis-

tration is less applicable to the largely exploratory nature of

model development, meaning that other practices should be

developed to increase transparency in model development.

Furthermore, we believe that Lee et al. (2019) did little

to quell the past and potential objections to preregistration

in cognitive modelling. We believe that many previously

voiced objections against preregistration and Open Science

practices in cognitive modelling (see Lewandowsky 2019)

stem from overly general proposals being applied to

category-specific challenges. Here, we use our proposed

categorization to address four key potential objections

to preregistration in cognitive modelling: objections that

have been previously voiced by mathematical psychology

researchers (see Lewandowsky 2019; Wagenmakers and
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Evans 2018, for discussions) or are legitimate objections

that we believe researchers may have.

Objection 1: “We cannot apply preregistration to cogni-

tive modelling.”

Given our categorization, this objection should be divided

into four different possible objections: one for each cate-

gory of cognitive modelling. We agree that preregistration is

rarely applicable to the exploratory practice of model devel-

opment and that Lee et al.’s proposal of lab notebooks—

which we comment on below—is a more promising future

avenue for this category. However, preregistration should be

feasible in all other categories of cognitive modelling, and

although implementing preregistration in model compari-

son and model evaluation may require major refinement to

current preregistration guidelines and templates, preregis-

tration in model application should be possible with minor

amendments to existing guidelines and templates.

Objection 2: “Preregistration does not cover all specific

needs of cognitive modelling.”

We agree that this is currently the case and share the

concern that overly general templates will not be useful

for the diverse nature of cognitive modelling. However,

we believe that this can be solved by creating specific

templates for model application, model comparison, and

model evaluation. In cases where multiple categories of

cognitive modelling are used within a single study, a

researcher can apply different templates for the different

confirmatory analyses, which will separate the confirmatory

and exploratory modelling efforts.

Objection 3: “Cognitive modelling often uses existing

data, which cannot be preregistered.”

We agree that creating consistent and transparent practices

for the reuse of existing data is challenging, though it has

been recently addressed within confirmatory experimental

research. An existing preregistration template for studies

using secondary data (https://osf.io/v4z3x/) proposes that

researchers should create a detailed recording of their

existing knowledge of the data set and any possible sources

of bias. While bias from previous experience with the

data cannot be ruled out, preregistering this information

adds transparency to the modelling process, placing the

findings into the context of previous knowledge for both the

researcher and readers of the study.

Objection 4: “None of this applies to model development.”

Although model development is rarely confirmatory, we

caution against throwing the baby out with the bathwa-

ter. While preregistration may not be appropriate for model

development, other Open Science practices may provide

greater consistency and transparency to the process, such

as the proposal of Lee et al. (2019) of “postregistration” in

the form of lab notebooks, which we discuss below. Further-

more, as model development is often used in combination with

other categories of cognitive modelling, such as model eval-

uation, preregistration may still be useful for the sections of

the overall modelling process where the developed model is

then applied, compared, and/or evaluated.

Lab Notebooks

Lee et al. (2019) proposed the idea of “postregistration,”

in the form of lab notebooks, for exploratory work. Based

on our categorization, lab notebooks are most applicable to

model development and could add transparency to the explo-

ration of the different forking paths taken to reach the

final model. Moreover, as noted by Lee et al. (2019), the

documentation of the development processes may foster

the publication of failed model development efforts, which

could counteract file-drawer effects and add community

knowledge about unfruitful development processes. There-

fore, lab notebooks can be seen as an effective way to

increase transparency in model development.

However, we argue that the overly general proposal

of Lee et al. (2019) lacks the necessary detail to create

consistent and transparent practices. Firstly, it should be

clearly noted that documenting choices in notebooks is in

no way comparable to preregistration. Lab notebooks are

an important step towards greater transparency, but the term

“postregistration” can be misleading and may result in the

retroactive framing of exploratory processes as “registered”

confirmatory analyses. Secondly, a lab notebook must

be constrained and accessible to ensure consistency and

transparency. Lee et al. (2019) suggested that “Modeling

notebooks can be created using existing software tools such

as Jupyter or Rmarkdown” (p.8). However, no framework,

guidelines, or standards were provided for what these

notebooks should consist of and how they should be

structured, meaning that the current proposal may result

in thousands of lab notebooks that are overly detailed,

missing important information, poorly documented, and/or

not reproducible. Given that cognitive modelling work

already suffers from accessibility problems resulting from

the use of a multitude of different programming languages

and a poor adherence to good coding practices (Addyman

and French 2012), it does not seem unreasonable to believe

that similar issues will be present within lab notebooks.

We believe that specific standards are crucial for the

success of post-hoc study registration. The standards for

post-hoc study registration could be based on the format

of exploratory reports, which aim to promote transparency

in exploratory work (McIntosh 2017). However, while

exploratory reports help promote the value of exploratory

work, the precise advantages of the specific proposal of

Comput Brain Behav (2019) 2:255–265260
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McIntosh (2017) are still unclear. Another possibility would

be adapting the idea of living preregistration documents

(Haven and Grootel 2019) to model development. At a

minimum, lab notebooks should adhere to a set of basic

standards for coding and data sharing (Addyman and French

2012), such as the Google Style Guides1 or the psych

data standard project,2 and researchers must agree on

specific standards for what aspects need to be recorded

and how they should be detailed. An agreed set of

standards would also provide the opportunity for more

rigorous review processes (e.g., code review), which could

increase transparency while also decreasing errors. We also

believe that these standards should extend beyond empirical

studies to simulation studies, as the selective reporting of

specific simulations results can provide an incomplete and

inaccurate picture of the properties of a model, though the

specific standards for simulation studies may have different

requirements than those of empirical studies, and we leave

a more detailed discussion of this topic to future research.

Ideally, if a researcher were to leave a project, a lab

notebook should allow their successor to immediately fill

their role based on the notes: a lofty gold-standard, but one

worth attempting to accomplish.

Chalk and Cheese

One final point of brief debate is the cognitive modelling

concepts that Lee et al. (2019) mentioned within their “good

practices.” Specifically, we believe that Lee et al.’s discus-

sion conflated several distinct theoretical goals for imple-

menting cognitive models and that the chosen cognitive

modelling assessment should match the specific theoretical

goals of the implementation, as different assessments can

potentially lead to different conclusions. In this section, we

discuss the difference between answering which and why

questions, the difference between explanation and predic-

tion, and the difference between updating prior model odds

and updating prior parameter distributions.

The Difference BetweenWhich andWhy

Lee et al. (2019) proposed a “continuum of utilities (i.e.,

cost functions) for ‘scoring’ a model against data” (p.

6). Specifically, Lee et al. (2019) discussed two different

ways in which researchers commonly assess the ability

of models to account for empirical data: assessing how

well different models can account for different qualitative

1http://google.github.io/styleguide/
2https://github.com/psych-ds/psych-DS

benchmarks, as in our category of model evaluation, or

comparing models on a flexibility-corrected goodness-of-fit

metric, as in our category of model comparison. Lee et al.

(2019) suggested that these different assessments could be

treated as “two end-points on a continuum of utilities,”

where researchers “balance between giving weight to

qualitatively important data patterns, while still measuring

overall quantitative agreement” (p. 6). In practice, this

would involve researchers deciding upon the relative weight

given to the qualitative benchmarks and quantitative fit and

then selecting the model that provides the best-weighted

performance across both of these factors.

Although we agree that both model evaluation and

model comparison are important for understanding psy-

chological processes, we disagree that these two cate-

gories should form a continuum for selecting between

models. Rather, we argue that these different forms of

assessment reflect fundamentally different goals of imple-

menting models that answer fundamentally different ques-

tions (see Evans 2019b, for a more in-depth discussion).

Specifically, model comparison provides the most appro-

priate answer to which model provides the best account

of a sample of data, as model comparison methods have

been specifically designed to achieve this goal, taking

into account all aspects of the data providing corrections

for model flexibility. In contrast, model evaluation pro-

vides the most appropriate answer to why some models

perform better than others according to model selection,

as model evaluation provides visual insights into how a model

succeeds or fails to account for specific parts of the data,

and does not attempt to correct for flexibility.

The Difference Between Explanation and Prediction

Lee et al. (2019) also proposed that researchers should

preregister the assessment criteria (i.e., the “rules of

the game”, pp. 3f) when performing model comparison

(according to our categorization) in a registered modelling

report. Specifically, Lee et al. (2019) provided a token

example where different evaluation criteria lead to different

models being selected and, therefore, opposite theoretical

conclusions. While we agree that researchers should

preregister the model selection method used for model

comparison to limit researcher degrees of freedom, making

a sensible choice for this preregistration requires knowledge

of what method best suits the research question: an issue

that Lee et al. (2019) wrote off as “a challenging statistical

and methodological question that remains an active area

of debate and research throughout the empirical sciences

and statistics” (p. 4). Although we agree that understanding

and developing methods of model comparison is an ongoing

area of research, we believe that there is a clear rationale for

why researchers should prefer specific methods in specific
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situations and that this rationale is required for principled

preregistration of assessment criteria (Evans 2019a; Gronau

and Wagenmakers 2019).

In most cases, mathematical psychology researchers use

models to either explain or predict a cognitive process

(Yarkoni and Westfall 2017). As mentioned previously,

selecting a model that maximizes one of these goals

requires a method that provides some penalty for flexibility,

as models with greater a priori flexibility provide less

constrained (and hence poorer) explanations of a process,

and models that over-fit to a sample of data provide

poorer predictions about future data. Importantly, specific

methods have been designed to correct for each type of

flexibility: Bayesian model selection methods (e.g., Kass

and Raftery 1995; Evans and Brown 2018; Annis et al.

2019; Evans and Annis 2019; Gronau et al. 2017; Schwarz

1978) punish models for their a priori flexibility, reflected in

their integration of the unnormalized posterior probability

over the parameter space, and out-of-sample prediction

methods (e.g., Spiegelhalter et al. 2002; Vehtari et al.

2017; Browne 2000; Akaike 1974) punish models for

overfitting to samples of data, reflected in their assessment

of unseen samples of data.3 Therefore, some simple and

clear guidelines already exist for how researchers should

choose a method for model comparison: when researchers

are interested in providing the best explanation of a

cognitive process, they should use a model comparison

method that penalizes for a priori flexibility, such as

Bayesian model selection (though also see the minimum

description length principle; Myung et al. 2006); when

researchers are interested in best predicting future data,

they should use a model comparison method that penalizes

for overfitting, such as out-of-sample prediction (see Evans

2019a, for a more in-depth discussion). Furthermore, we

believe that model comparison methods without corrections

for a priori flexibility or overfitting (e.g., the RSME, MAD,

correlations, and LL methods mentioned by Lee et al. 2019)

can be ignored in most situations, as these methods only

provide insight into which model maximizes the fit for

a sample of data, and in the context of explanation or

prediction will provide conclusions that are biased towards

more flexible models.

The Difference Between Updating Prior Model Odds
and Updating Prior Parameter Distributions

Lee et al. (2019) also proposed that the distinction between

confirmatory and exploratory analysis can be posed in

terms of Bayesian updating. Specifically, Lee et al. (2019)

3Note that the “information criteria” do not actually assess unseen

data, but instead provide an approximation to leave-one-out cross

validation under certain assumptions.

suggested that in confirmatory analyses “claims are sought

about the relative probability of models, based on the

data” and require prior odds, and in exploratory analyses

“it is difficult to make claims about prior probabilities of

models” (p. 10). While we agree that the prior model odds

are an important part of Bayesian model selection that is

often overlooked by researchers and may be the difference

between confirmatory and exploratory analyses in some

case, we disagree that this is a “useful way to think of

the distinction” (p. 10). We argue that this distinction is

extremely limited, as it is only applicable to a single method

(i.e., Bayesian model selection) within a single category of

cognitive modelling (i.e., model comparison) and ignores

the process of theory updating.

In Bayesian terms, the process of theory updating can

often be represented as updating the prior distributions

of the parameters: the plausibility assigned to different

parameter values before having observed some sample

of data. After having observed the sample of data, a

researcher may be interested in refining their model based

on the information contained within the sample of data for

inferences on future samples of data. This could involve

updating the prior distributions to the estimated posterior

distributions (i.e., today’s posterior is tomorrow’s prior;

Lindley 1972; Wagenmakers et al. 2010), or altering the

functional form of the model by adding or removing

parameters (i.e., adding/removing prior distributions). In

contrast, updating the prior model odds suggests that

researchers believe that these exact models (including the

prior distributions) will be the comparison of interest

in future samples of data, and serves as an update to

the running tally of the relative probability of the two

models. Therefore, refining a model by updating the

prior distributions changes the precise form of the model,

meaning that researchers must choose between refining

their theories and updating the relative probability of the two

models. Importantly, we argue that confirmatory settings

exist where it is difficult to make claims about prior odds

and exploratory settings exist where reasonable prior odds

can be derived. For instance, we believe that in some

situations, researchers may wish to perform confirmatory

analyses after refining theories: a case of a confirmatory

analysis without updated prior model odds. Furthermore,

we believe that in other situations, researchers may wish

to add a model to the comparison that they have previous

knowledge about (e.g., the unrefined model), in a secondary,

exploratory step: a case of an exploratory analysis that

could involve prior model odds. Therefore, we disagree

with the proposed distinction between confirmatory and

exploratory based on prior model odds and instead suggest

that after observing a sample of data, researchers should

carefully consider whether they wish to refine their theory

through updating the prior distributions or adjust the relative
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probability of the two models through updating the prior

model odds.

Conclusion

Our article provided a discussion of several important issues

that we believe were not fully addressed by Lee et al. (2019).

Firstly, we proposed a clear categorization for the diverse

types of cognitive modelling, and through this categoriza-

tion proposed a framework for Open Science practices in

cognitive modelling that emphasizes local consistency in

approaches, while allowing for global diversity in mod-

elling practices. This is an important step towards both

category-appropriate guidance and more fruitful discussions

regarding Open Science practices in cognitive modelling.

Secondly, we addressed potential objections to preregistra-

tion in cognitive modelling and argued that preregistration

and lab notebooks need further, more detailed development

to be useful tools of transparency and consistency for cog-

nitive modelling. We also provided several suggestions for

how these practices could be further developed, and how

categorizations, such as the one that we proposed, may help

this process. More generally, Open Science practices, and

especially preregistration, should be adapted more specif-

ically for individual fields to create the greatest potential

benefits. Lastly, we addressed several cognitive modelling

concepts that are closely related to Open Science practices

but that we believe Lee et al. (2019) conflated and provided a

detailed discussion of how these concepts differ. We also dis-

cussed when each of these concepts is likely to be relevant

for researchers, which should allow greater consistency in

cognitive modelling practices. We hope that the discussions

within our article will help advance the field of mathemati-

cal psychology from robust discussions to robust standards

for Open Science practices in cognitive modelling.
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