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ABSTRACT

We present a framework for robust estimation of the config-

uration of an articulated robot using a large number of redun-

dant proprioceptive sensors (encoders, gyros, accelerometers)

distributed throughout the robot. Our method uses an Unscented

Kalman Filter (UKF) to fuse the robot’s sensor measurements.

The filter estimates the angle of each joint of the robot, enabling

the accurate estimation of the robot’s kinematics even if not all

modules report sensor readings. Additionally, a novel outlier de-

tection method allows the the filter to be robust to corrupted ac-

celerometer and gyro data.

INTRODUCTION

Snake robots are a class of hyper-redundant mechanisms [1]

consisting of kinematically constrained links chained together in

series. The many degrees of freedom of these robots give them

the potential to navigate a wide range of environments and pro-

vide unique challenges in the fields of robotic locomotion and

control. There is a wide variety of snake-like robots and research

from groups around the world which is thoroughly surveyed by

Transeth and Pettersen in [2]. Our group has developed modular

snake robots that rely solely on changing their shape to loco-

mote through their environment [3]. These snake robots consist

of single degree-of-freedom (DOF) modules which achieve 3D

manipulation and mobility by alternately orienting the joints in

the lateral and dorsal planes of the robot (Fig. 1).

Remotely operating these robots can be difficult, since the

operator lacks a good overall view of the robot and its envi-

ronment [4]. To help provide better feedback and improve an

operator’s situational awareness, we have integrated MEMS ac-

celerometers and gyros into each of the robot’s modules. Prior

work from our group has already used an extended Kalman filter

Figure 1: The most recent iteration of the Carnegie Mellon modular snake robot,

the Unified Snake. Typically, the robot consists of 16 single degree-of-freedom

modules (shown here), with additional unactuated modules at the head and tail.

(EKF) to fuse these distributed sensors and achieve an estimate

of the robot’s pose [5]. By using knowledge of the robot’s cyclic

controller (gait) and an averaged body frame that we call the vir-

tual chassis, we were able to estimate the robot’s orientation,

even when it undergoes highly dynamic motions.

Unfortunately, our previous work has limitations in terms of

its robustness in real-world field use. Frequent communication

dropouts or corrupted data from the modules would sometimes

cause the EKF to diverge. Additionally, the need for the state

estimator to have explicit knowledge of the robot’s gait equation

means that it has to be tightly integrated with the gait framework

that we use for control. This work addresses these issues with

two contributions. First, we formulate the state estimation prob-

lem in a way that leverages redundancies in the proprioceptive
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information provided by the robot’s joint angle encoders and in-

ertial sensors. Second, we are introducing a novel outlier detec-

tor that can identify corrupted measurement data with a minimal

amount of tuning.

PRIOR WORK

Fusing redundant data in robotics systems is a topic with a

wealth of prior work [6]. A common method of fusing redundant

and complimentary sensor data is the Kalman filter [7]. How-

ever, the Kalman filter only applies to linear systems, and there

are a number of extensions that allow it to be applied to non-

linear systems. The work in this paper includes the implementa-

tion of three state estimators, an extended Kalman Filter (EKF),

an unscented Kalman filter (UKF), and a spherical simplex un-

scented Kalman filter (SSUKF). The EKF extends the Kalman

filter to non-linear systems by linearizing the system at the cur-

rent state estimate at each timestep [8]. The UKF is a method that

attempts to address the problems inherent in linearization. It uses

a deterministic sampling technique that relies on sigma points to

directly calculate the mean and covariance statistics that are nec-

essary for the filter [9]. The SSUKF is a variant of the UKF that

uses fewer sigma points, making it more computationally effi-

cient [10, 11].

All forms of Kalman filters have problems in the presence

of outliers, due to their underlying assumption of Gaussian noise

in the state estimate and measurement observations. This is par-

ticularly problematic in robotics, where real-world effects like

unmodelled disturbances, faulty sensors, or failed actuators can

frequently produce outliers. Because of this, there have been a

number of modifications to the Kalman filter to make it more

robust to outliers at the cost of more computation and complex-

ity. Some techniques require noise to be modeled as heavy-tailed

distributions [12]. Others use a weighted least-squares approach

learning the states and noise models online [13]. Ting et al [14]

have developed a Kalman filter that is robust to outliers and re-

quires very little tuning. However, their method relies on es-

timating the linear system dynamics, and in our case we have

time-varying non-linear process and measurement models.

Perhaps the most widely used methods of outlier detection

are ones that threshold on the Mahalanobis distance of the mea-

surement residuals during the filter update [14, 15]. If the Maha-

lanobis distance is sufficiently large, the measurement vector at

the current iteration is assumed to contain outliers, and the update

step is skipped. Tuning this threshold can be difficult, especially

in systems that are highly dynamic or modeled poorly.

STATE ESTIMATION

Snake robots are unique in both their locomotive capabili-

ties as well as their challenges to estimation and control. Pre-

vious work from our group demonstrated accurate estimation

of a snake robot’s orientation using the robot’s proprioceptive

sensors [5] and an EKF. This work extends and improves those

methods, so that they are more suitable for use in the field. To

explore more state of the art techniques, we implemented a UKF

and SSUKF in addition the conventional EKF. All three filters

used the same process and measurement models, as well as the

same values for process and measurement noises.

Kalman Filter

All of the filters presented in this paper extend the Kalman

filter to non-linear systems. At the heart of the filter are the state

estimate, xk, its covariance, Pk, the robot’s sensor measurements,

zk, and the non-linear process and measurement models. The

process model, f , is a function that predicts the state of the robot

given the state at a previous timestep,

xk = f (xk−1,∆t). (1)

The measurement model, h, is a function that predicts sensor

measurements given the state of the robot,

ẑk = h(xk). (2)

In the EKF, the state estimate is propagated through these

non-linear functions, and the functions are linearized at each it-

eration of the filter, resulting in the Jacobians Fk and Hk that

correspond respectively to the functions f and h. This allows the

propagation of the the state covariance between timesteps and

the processing of measurements into the state estimate.

In the UKF and SSUKF, a deterministically sampled set of

sigma points are chosen, propagated through the models, and

then averaged in a way that directly calculates the state mean

and covariance. For an n-dimensional state vector, the UKF uses

2n+1 sigma points, and the SSUKF uses n+2 sigma points.

In all of these filters, a process noise matrix, Q, is added

to the state covariance at every prediction step. A measurement

noise matrix, R, is similarly used to tune the relative confidence

in sensor measurements. The parameters in Q and R are used to

tune the relative confidence of different states and measurements

with respect to each other. The process model noise is assumed

to be additive, and is incorporated before the state covariance is

pushed through the process model at each iteration [16, 17].

Choice of Body Frame
A key assumption in all of the following sections is that all

of the calculations of the robot’s kinematics are carried out using

an averaged body frame, that we call the virtual chassis. The

virtual chassis is a body frame that is aligned with the principle

components of the robot’s overall shape, as shown in Fig. 2.

The calculation of this body frame is performed as part of the

measurement model at every iteration of the filter, using SVD to

identify the principle component of the robot’s shape [5].
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Figure 2: An example of the virtual chassis body frame for various shapes of the

snake robot. Because the body frame is aligned with the principle components

of the robot’s shape, it helps separate the robot’s internal shape changes from its

external motions.

The virtual chassis body frame has the advantage that it ap-

proximately separates the robot’s internal shape changes from its

external motions in the world, enabling more accurate and stable

state estimation with generic constant velocity process models.

Additionally, the state of the snake robot in this body frame is

more intuitive to the operator, since the notions of up-down and

left-right are more aligned with the overall shape of the robot.

State Vector

The state of the filter tracks the robot’s orientation, its iner-

tial frame acceleration, and its shape variables,

xk = [ ak qk ωωωk θθθk θ̇θθk ]T (3)

The first part of the state vector describe the robot’s inertial

state and orientation: a = [ ax ay az ] is robot’s world frame ac-

celeration, q = [ q1 q2 q3 q4 ] is the world frame orientation,

and ωωω = [ ωx ωy ωz ] are the robot’s body frame angular veloc-

ities.

The second part describes the robot’s kinematic state. As-

suming a robot with m links, the vector joint angles, θθθ =
[ θ1 · · ·θm ] describe the shape of the robot, and the vector of

joint velocities, θ̇θθ = [ θ̇1 · · · θ̇m ] provide a first-order estimate of

how the robot’s shape changes over time.

Having an estimate of the robot’s shape in the filter state

means that we can always perform a prediction and an update,

even if the robot does not report all (or even any) of its joint an-

gles at a given timestep. Furthermore, this formulation of the

state means the the joint angles are being redundantly estimated

both directly, by observing the joint angles, and indirectly, by

observing the inertial readings at adjacent modules. In the Re-

sults section, we show that this allows us to track the angles of

modules that fail to provide feedback, even for extended periods

of time.

Process Model
The process model evolves the robot’s state over time. Over-

all, this model can be thought of as a generic constant velocity

model that does not explicitly model the interaction of the world.

In the following section, the hat notation indicates the states in

the prediction step of the filter, before the update that incorpo-

rates measurement observations.

Acceleration is estimated in a world frame assumed to be

damped according to the update

âk = e−τ∆tak−1. (4)

In our experience acceleration must be strongly damped (τ >

20) for the filter to remain stable, since the signal from the ac-

celerometers is noisy and dominated by gravitational accelera-

tion. Previous iterations of our state estimators [18] assumed

zero world frame acceleration of the robot. This resulted in good

performance at slow speeds, but became problematic when the

snake robot falls or experiences sudden changes in pose.

The quaternion representing the orientation of the robot

is updated based on the estimated angular velocities at that

timestep. We perform a discrete-time update developed by van

der Merwe et al. [19]

q̂k = exp(−
1

2
ΨΨΨ∆t) qk−1 (5)

ΨΨΨ =









0 ωx ωy ωz

−ωx 0 −ωz −ωy

−ωy ωz 0 −ωx

−ωz −ωy ωx 0









. (6)

The body frame angular velocities of the robot, ω, are as-

sumed to be constant across timesteps,

ω̂ωωk = ωωωk−1. (7)

The kinematic shape of the robot is also estimated in the

state of the filter. This is achieved by estimating both the snake

robot’s joint angles and their angular velocities. Joint angles are

updated by their estimated velocities,

θ̂θθk = θθθk−1 + θ̇θθk−1∆t. (8)

The angular velocities of the joints are estimated by a weighted

combination of the estimated velocities from the last timestep,

θ̇θθk−1, and the commanded angular velocities at the current

timestep, θ̇θθ
cmd

k ,
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θ̇θθk = (1−λ)θ̇θθk−1 +λθ̇θθ
cmd

k . (9)

The weighting parameter λ ranges from 0 to 1 and controls how

much of the commanded angular velocity is mixed into the state.

A value of 1 essentially overwrites the estimated joint angle ve-

locities at each iteration, whereas a value of 0 turns the filter into

a constant-velocity model that has no knowledge of the robot’s

controls. Since the robot’s joints often deviate significantly from

their commanded trajectories, this parameter is set relatively low,

around 0.25.

Measurement Vector

Our latest snake robot provides feedback measurements

from single-axis joint angle encoders, 3-axis accelerometers and

a 3-axis gyros located in each module. This means that the vec-

tor of measurements in the filter has 7m dimensions, where m is

the total number of modules in the robot,

zk = [ φφφk αααk γγγk ]T . (10)

In (10), each element is a vector containing the mea-

surements of a corresponding sensor type for all the modules

throughout the snake robot. φφφ is the robot’s joint angle measure-

ments from its encoders, ααα is the accelerometer measurements,

and γγγ is the gyroscope measurements.

Measurement Model
The measurement model predicts measurements at the cur-

rent timestep, given the prediction of the of the robot’s state. The

measurement model is a kinematic model that takes into account

the robot’s shape variables and its inertial state. In the following

section, the superscript indicates the module for which a mea-

surement is predicted and the hat operator denotes a predicted

measurement, rather than a sensed measurement from the robot.

The superscript i indicates that the measurements correspond the

ith module in the robot.

Expected joint angle measurements are predicted directly

from the estimated angles in the state vector (3),

φ̂φφk = θ̂θθk. (11)

Using the estimated joint angles, θθθ, and joint angle veloci-

ties, θ̇θθ, accelerometer and gyro measurements for each module

can be predicted using the finite time-differencing approach de-

tailed below.

Accelerometers have the property that they measure an ac-

celeration due to gravity in addition to lateral acceleration due

to motion. For this reason our model treats these two sources

of sensed acceleration separately and sums them to generate the

predicted accelerometer measurement for each module,

α̂ααi
k = âi

gravity + âi
motion. (12)

Acceleration due to gravity is predicted by transforming the es-

timated gravity vector g into the frame of each module

âi
gravity = Wi

kVkg (13)

where W is the rotation matrix that describes the orientation of

module i in the body frame, and V is the rotation matrix repre-

sentation of the quaternion pose q in the state vector (5) or (6).

Acceleration due to a module’s motion is further split into

two components,

âi
motion = âi

internal +Wi
kVkâ (14)

Acceleration due to the robot’s internal shape changes in the

body frame, âi
internal, is predicted by double-differentiating the

position of the module in the virtual chassis body frame. Fi-

nally, the estimated world frame acceleration of the entire robot

is incorporated by rotating the world frame acceleration â from

filter’s state estimate into the frame of each module.

The predicted gyro measurements for each module are gen-

erated by differentiating the orientation of the robot at two nearby

timesteps. If Wi
k and Wi

k−1 are rotation matrices that describe the

orientations of module i in the body frame at two timesteps, then

gyro measurements due to the internal motion of the gait at two

timesteps, k and k−1 can be approximated by





1 −ω̄i
z ω̄i

y

ω̄i
z 1 −ω̄i

x

−ω̄i
y ω̄i

x 1



≈
Wi

k(W
i
k−1)

−1

∆t
. (15)

The complete prediction for each gyro is the angular velocity

from (15) plus the robot’s body frame angular velocity from the

current state estimate, (7), rotated into the coordinate from of

each module using Wi
t

γ̂γγi
k = ω̄ωωi +(Wi

k)
−1ω̂ωωk (16)

Using Partial Measurement Data

Due to noise in the robot’s communications, around 2% of

our sensor data is missing at a given update step. If intermit-

tent connections are present in the robot this can increase even

further. Furthermore, when using our robots aggressively in the
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field, modules frequently reset due to their electrical protection

circuitry. In these cases an individual module may drop out for 2-

3 seconds before rebooting. During this time the module’s joint

is rotating freely with no direct measurement of its joint angle.

Thus, it is desirable to have a method to identify and mitigate

these problems.

To handle these issues, our communications are set up so

that missing data is reported as NaN, or not a number. In the filter

this measurement data is over-written with a value of 0, and that

measurement’s corresponding value in the additive measurement

noise matrix, R, is increased to 106 for that timestep. This causes

the filter to effectively ignore the measurement during the update

step and is simpler to implement than dynamically resizing the

covariance and state at every iteration.

OUTLIER DETECTION
Because our robots are undergoing constant development,

testing, and maintenance, it is not uncommon for sensors to be-

come unresponsive or miscalibrated. And because erroneous

measurements from an unresponsive sensor can severely disrupt

the state estimate [14, 15], it is beneficial to detect such outliers

from the observed sensor data.

Algorithm
The Mahalanobis distance for the residual error between the

predicted measurement vector, ẑk = h(x̂k|k−1), and the observed

measurement vector, zk,

dk = (ẑk− zk)
T S−1

k (ẑk− zk),

gives an indication of the likelihood of the measurement, where

Sk is the innovation covariance.

To detect outliers, our method computes, for each sensor s,

a Mahalanobis distance that excludes sensor s from the measure-

ment vector. To exclude these elements, we define the following

selection matrix,

Ys =

[

IMxM 0Mx3 0MxN

0NxM 0Nx3 INxN

]

,

where M is the number of elements in the measurement vector zk

that precede sensor s, N is the number of elements in zk that fol-

low sensor s, and 3 is the number of elements in the measurement

vector that correspond to sensor s.

The Mahalanobis distance associated with excluding sensor

s can be written as follows,

ds
k = (ẑs

k− zs
k)

T [Ss
k]
−1 (ẑs

k− zs
k), (17)

where zs
k = Yszk, ẑs

k = Ysẑk, and Ss
k = YsSkYT

s .

For each sensor s, a Mahalanobis distance ds
k that is sig-

nificantly smaller than dk means that the excluded component

is likely to be an outlier. For our implementation, we initially

choose to discard a fixed number of sensors from the measure-

ment vector (specifically the 4 that are more likely to be outliers

based on ds
k being small). After discarding the four most likely

outliers, we calculate the mean, µk, and standard deviation (SD),

σk, of the remaining Mahalanobis distances.

Finally, for each sensor s, a new metric is computed that

compares the Mahalanobis distance ds
k to the mean and variance

of the Mahalanobis distances of the presumed inliers,

ws
k =

(

ds
k−µk

)2

σ2
k

.

We then consider all sensors, including the initially dis-

carded sensors, and decide whether each one is an inlier or out-

lier by thresholding the metric ws
k at some level, ξ. When ws

k is

large, the sensor is likely to be an outlier and when this metric

is small, the sensor measurement is likely to be an inlier. If the

measurement is determined to be an outlier, the measurement’s

corresponding element in R is set to 106, just as is done for miss-

ing data.

In a sense, ws
k is a Mahalanobis distance of Mahalanobis

distances. By thresholding on this statistic, we are able to pick

a single static threshold that is valid at all times. Compared to

thresholding on the Mahalanobis distance alone, outliers tend to

be extremely obvious, often greater than 100 standard deviations

from the mean. Setting the detection threshold, ξ, to a value

between 10 and 50 has been shown to work well for our system,

regardless of sensor type or the robot’s motion. Finally, this algo-

rithm has the benefit that it ensures an upper limit on the number

of sensors that can be flagged as outliers, as long as ξ is not set

too low (setting ξ > 3).

Efficient Implementation
One drawback of this outlier detection algorithm, as written,

is the need to invert Ss
k for each sensor in order to compute ds

k as

computed in (17). For our 16-link snake robot that has 2 inertial

sensors per module, the accelerometer and the gyro, performing

this for a typical 16-link robot would require 32 inversions of a

109-by-109 matrix. This is a significant computational expense

during real-time operation.

Ideally, it would be beneficial to compute the inverse of the

innovation covariance, S−1
k , only once and then to somehow effi-

ciently infer, for each sensor s, the matrix
[

Ss
k

]−1
. By definition,

[

Ss
k

]−1
=

[

YsSkYT
s

]−1
. But unfortunately,

[

Ss
k

]−1
6= YsS

−1
k YT

s ,

otherwise we would compute
[

Ss
k

]−1
directly from S−1

k . This is

not possible because Ys is not an orthogonal matrix.

Instead, we can leverage the Woodbury matrix identity [20],

to perform a low-rank correction to the relatively large matrix
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S−1
k . This allows us to efficiently obtain the matrix

[

Ss
k

]−1
, which

we require for computing the Mahalanobis distance in Eq. (17).

First, we define the following matrix that can be used to rearrange

the elements of the innovation so that the elements corresponding

with sensor s are last,

Gs =

[

←−−−− Ys −−−−→
03xM I3x3 03xN

]

,

Using this matrix, we can rearrange the inverse of the innovation

covariance matrix as follows,

[S′k]
−1 =

[

GsSkGT
s

]−1
= GsS

−1
k GT

s =

[

A B

BT C

]

.

Using the Woodbury matrix identity to invert the matrix [S′k]
−1,

we obtain,

S′k =

[

(A−BC−1BT )−1 ∼
∼ ∼

]

.

Above, the ∼ indicates regions of the matrix from the Woodbury

matrix identity that are omitted for clarity. Since the upper left

component of S′k is equal to the matrix Ss
k, due the existence of

Ys in Gs, we can simply invert the upper left component of S′k,

[Ss
k]
−1 = A−BC−1BT

. (18)

In (18), C is the inverted covariance of the sensor being ex-

cluded. This form only requires the inversion of C, which in our

case is 3-by-3. Thus, we can efficiently calculate the inverse of

the innovation covariance,
[

Ss
k

]−1
for each test of a sensor s by

performing a small update to the full inverse of the innovation

covariance matrix S−1
k . A summary of the algorithm that we use

for outlier detection is provided in Alg. 1.

EXPERIMENT

To test the accuracy of the different state estimators, multi-

ple trials of the snake robot were performed in a Vicon motion

capture system. During these trials, the robot was remotely con-

trolled through a wide variety of motions, some of which were

quite fast and abrupt. The pose of the head module was tracked

by the motion capture system to provide ground truth. This was

then compared to the filter’s estimate for pose of the head mod-

ule, which is dependent on the estimate of the entire state of the

Algorithm 1 Outlier Detection Procedure

1: for each s do

2: S′−1
k ←GsS

−1
k GT

s

3: [A,B,C]← extractBlocks
(

S′−1
k

)

4:
[

Ss
k

]−1
← A−BC−1BT

5: zs
k = Yszk

6: ẑs
k = Ysẑk

7: ds
k = (ẑs

k− zs
k)

T
[

Ss
k

]−1
(ẑs

k− zs
k)

8: end for

9: [µk,σk]← statistics of inliers
(

ds
k for all s)

10: for each s do

11: ws
k←

(ds
k
−µk)

2

σ2
k

12: if ws
k > ξ then

13: Mark s as outlier

14: end if

15: end for

Filter Performance Comparison

Euler Angle Errors (degrees)

Roll Pitch Yaw

EKF 2.9 3.4 36.3

UKF 2.9 3.4 34.7

SSUKF 3.1 3.3 24.3

Table 1: The accuracy of the SSUKF in predicting the euler angle orientation of

the head module of the snake robot. The filter performs well even with half of

the robot’s data being excluded. Even when 75% of the data is excluded the filter

continues to run, although accuracy begins to be degraded.

robot. Figure 4 shows a montage of the robot during one of these

trials.

To demonstrate the advantages of redundant state formula-

tion, we simulated missing data and complete module dropouts.

To test the outlier detection algorithm, we simulated corrupted

data on the robot’s inertial sensors similar to what is seen when

a module is poorly calibrated or programmed incorrectly.

RESULTS

Overall, the EKF, UKF and SSUKF performed comparably.

The filters were all able to run in real time on the feedback data

coming from the robot, about 20 Hz. A comparison of the errors

of the estimated head Euler angles for each filter is presented in

Table 1. This is the averaged error for 3 different motion capture

trials where the robot was driven in a wide variety of speeds and

directions. The accuracy in yaw is significantly lower than pitch

and roll because it is being dead-reckoned based on the filter’s

integration of estimated angular velocities.
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Figure 3: A montage of the snake robot’s movements in one of the motion capture trials. The robot does a combination of motions that include slithering forward,

sidewinding right and left, and turning in place clockwise and counter-clockwise. This montage corresponds to the plots that are presented in the results section.

SSUKF Performance - Missing Data

Euler Angle Errors (degrees)

Roll Pitch Yaw

Baseline 3.1 3.3 24.3

25% Missing 3.7 4.1 31.8

50% Missing 4.5 5.3 27.6

75% Missing 18.4 11.7 84.9

Table 2: The accuracy of the SSUKF in predicting the Euler angle orientation of

the head module of the snake robot. The filter performs well even with half of

the robot’s data being excluded. Even when 75% of the data is excluded the filter

continues to run, although accuracy begins to be degraded.

Figure 4 shows a comparison of the estimated head module

orientation from the SSUKF compared the motion capture data

for one of the trials. To provide a meaningful comparison the

quaternion orientations of the head have been converted into Eu-

ler angles.

Partial Measurement Data
Under normal circumstances, our snake robot drops about

2% of its data due noise and errors in its communications. To

simulate more adverse conditions, we randomly selected and re-

moved higher proportions of the robot’s feedback data. The re-

sults are summarized in Table 2.

We simulated prolonged module dropouts by eliminating all

of the feedback data (joint angles, gyros, accelerometers) from a

SSUKF Performance - 4 Dropped Modules

Euler Angle Errors (degrees)

Roll Pitch Yaw

5.5 6.1 44.0

Table 3: The accuracy of the SSUKF in the presence of missing data from some

modules for the entire run. These results are for the same trial as shown in Fig.

3. Feedback from a quarter of the snake robot (modules 3,6,7 and 12) was elimi-

nated.

module in the robot for the entirety of the same data set shown

in Fig. 4 and Fig. 5. For the data presented here, the joint an-

gles and inertial sensors were unavailable for the entire run in

modules 3, 6, 7 and 12. Even if up to 4 modules were elimi-

nated the filter still converged and estimated the pose of the head

reasonably well (Table 3).

Outlier Detection

To test our method of outlier detection, feedback data from

the IMUs was corrupted by having its sign reversed. For the

data presented in Table 4, modules 3, 6, 7 and 12 had their IMU

data corrupted. When running the outlier detection, the filter per-

forms on par with its normal baseline performance. However,

it is worth noting that the redundant state formulation is robust

enough to remain stable even without the outlier detection, albeit

with degraded performance.

7 Copyright © 2013 by ASME
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SSUKF Performance - Corrupted IMU Data

Euler Angle Errors (degrees)

Roll Pitch Yaw

Outlier Detection OFF 9.1 6.4 75.6

Outlier Detection ON 3.6 3.7 17.3

Table 4: The accuracy of the SSUKF when accelerometer and gyro feedback

from quarter of the robot (modules 3,6,7 and 12) was corrupted. With the outlier

detection, the filter performs almost as well as with clean data.

CONCLUSIONS AND FUTURE WORK

This paper implements and evaluates a state estimation

framework that leverages the distributed redundant sensing of an

articulated robot. It enables an accurate estimate of the robot’s

orientation even in the presence of extreme sensor degradation

and corruption. This kind of state estimator is extremely valu-

able for snake robots, where the large numbers of modules and

sensors increases the likelihood of failure among some of the

sensors.

We evaluated the state estimators by comparing the robot’s

estimate of the orientation of its head module to ground truth data

provided by motion capture system. Missing and corrupted mea-

surements were simulated, demonstrating that filter performance

degraded only slightly, even in the most severe situations. Three

different varieties of Kalman filters were tested (EKF, UKF and

SSUKF) all with similar results. For our system, it is our conclu-

sion that the formulation of the estimation problem, filter tuning,

and other system-specific considerations are more important fac-

tors than the choice of Kalman filter.

The most obvious improvement that can be made to the fil-

ter would be to handle the update of the quaternion orientation

correctly. In all of the filter implementations presented here the

quaternion is normalized after the Kalman update, but this is

sub-optimal. There are estimators that have been developed that

properly handle the multiplicative correction that quaternions re-

quire [17,21]. We plan to implement these to see if they improve

the state estimate of the robot’s orientation, particularly the drift

8 Copyright © 2013 by ASME
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Figure 7: The error of the estimated joint angle. After the filter converges it tracks the joint angle reasonably well, with a mean error of 7 degrees.

in yaw due to it being dead-reckoned by the robot’s gyros.

Like our previous work, this filter uses a simplified model

that makes minimal assumptions about the way the robot inter-

acts with the world. Perhaps the biggest assumption is embodied

in our choice of body frame, using the virtual chassis to attempt

to separate the robot’s internal shape changes from its external

motions. A more elaborate motion model that makes assump-

tions about ground contact would likely provide better results, as

long as ground contact can be accurately estimated.

Incorporating additional sensors that observe the robot’s

yaw in an inertial frame is desirable. Unfortunately, the magnetic

fields from the robot’s distributed motors have thus far prevented

the use of MEMs magnetometers in the modules. However, the

video feed from the head module of the robot remains unused.

Implementing various vision algorithms on this video and inte-

grating this into the filter could aid greatly in pose estimation, as

has been demonstrated in recent work that estimates motion with

the camera and IMU of a smartphone [22, 23].

Finally, it is possible that this redundant state formulation

and outlier detection method could be relevant to other modular

robots, particularly those that use wireless protocols to commu-

nicate between modules.
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