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Abstract

We study the problem of estimating a mixed geometric

model of multiple subspaces in the presence of a significant

amount of outliers. The estimation of multiple subspaces is

an important problem in computer vision, particularly for

segmenting multiple motions in an image sequence. We first

provide a comprehensive survey of robust statistical tech-

niques in the literature, and identify three main approaches

for detecting and rejecting outliers. Through a careful ex-

amination of these approaches, we propose and investi-

gate three principled methods for robustly estimating mixed

subspace models: random sample consensus, the influence

function, and multivariate trimming. Using a benchmark

synthetic experiment and a set of real image sequences, we

conduct a thorough comparison of the three methods.

1. Introduction

The estimation of subspace models is an important prob-

lem in computer vision. For instance, in multiple-view ge-

ometry, we are often faced with the problem of recovering

the parameters of a single motion in a dynamic scene from

image features. Under most conventional camera models,

such as orthographic, paraperspective, and affine models,

one can show that image features associated with a rigid

body motion lie on a subspace of dimension less than five

[5, 16, 34]. Thus one can recover the motion parameters by

estimating a linear subspace model. [28] further proposed a

unified framework to represent the projective epipolar and

homography relations using subspace models.

The problem becomes more complicated when there are

multiple motions in the scene. Scenes with multiple mo-

tions are very common in many real-world applications.

For example, a surveillance sequence of a parking lot may

contain feature sets from multiple cars, each of which may

undergo a different motion. In this situation, we are in-

terested in the problem of segmenting image features to
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different moving objects, which is equivalent to estimat-

ing multiple subspaces – one subspace for each motion. If

the measurement of the image features is perturbed only by

moderate Gaussian noise, we can use either expectation-

maximization (EM) [19] or K-Subspaces [11] to iteratively

estimate the subspaces. Alternatively, generalized principal

component analysis (GPCA) [29] and its extensions [33]

provide a noniterative solution, which also tolerates mod-

erate data noise. Spectral clustering methods have also

been used to heuristically segment samples in different sub-

spaces [5, 16], but the results have been shown more sensi-

tive to noise than the previous two approaches [27, 31, 34].

Unfortunately, though the previous methods can provide

stable model estimates in the presence of moderate noise,

they will fail when the data are contaminated by outliers. In

imagery data, outliers often correspond to false features or

features that are not from the objects of interest. A model

estimation method is called “robust” if it tolerates a cer-

tain amount of outliers in the sample data.1 In this paper,

we provide a rigorous and thorough study of the subspace

segmentation problem when outliers are present. More pre-

cisely, we are interested in the following problem:

Problem Formulation. Let A = V1 ∪ V2 ∪ · · · ∪ Vn ⊂
R

D be a union of n linear subspaces (i.e., all pass the

origin) in general position2 with possibly different dimen-

sions d1, d2, . . . , dn. Assume that a set of samples X =
{x1,x2, . . . ,xN} are drawn from A, and are contaminated

by certain amount of noise and outliers. Given the number

of the subspaces and their dimensions, estimate the under-

lying subspaces and segment the inlying data to their re-

spective subspaces.

Notice that the problem becomes more difficult if the

number of subspaces and their dimensions are unknown. In

this case, one has to rely on certain model selection crite-

ria [16,21,33] to balance the model complexity and the data

fidelity. For brevity, we do not address the model selection

issue in this paper.

Contributions. Various robust techniques have been devel-

oped to deal with the outlier issue in many computer vision

1Some stable algorithms in the literature claim to be robust but in the
sense of noise tolerance, e.g., [12].

2In this paper, general position means the dimensions of the intersec-
tions of all subspaces are the smallest possible.



applications. For work on estimating single subspace mod-

els, we refer to [10, 15, 23, 26]. However, to the best of

our knowledge, only a few methods address the robustness

issue for estimating multiple subspaces. The proposed so-

lutions either highly rely on a good initialization [19], or as-

sume that the subspaces have special properties that cannot

be easily generalized to other situations, e.g., orthogonality,

no intersections, or same dimensions [5, 16, 21, 25].

In this paper, we conduct a systematic study on the ro-

bust estimation of mixed subspace models. Under a very

general assumption that a data set is drawn from a union

of linear subspaces, we propose and investigate three prin-

cipled approaches to robustly estimate the subspace pa-

rameters, namely, random sample consensus (RANSAC),

the influence function, and multivariate trimming. Using

a benchmark synthetic sample set and a set of real motion

sequences, we conduct a thorough comparison of the three

approaches. All MATLAB codes are available on our web-

site: http://perception.csl.uiuc.edu/gpca/.

2. Robust Techniques: A Literature Review

Despite centuries of study, there is no universally ac-

cepted definition for “outliers.” Most approaches are based

on one of the following assumptions:

1. Probability-based: Outliers are a set of small-

probability samples with respect to the probability dis-

tribution in question. A data set is atypical if such sam-

ples constitute a significant portion of the data. Meth-

ods in this approach include M-estimators [3, 14] and

its variation, multivariate trimming (MVT) [9].

2. Influence-based: Outliers are samples that have rela-

tively large influence on the estimated model param-

eters [10, 15]. The influence of a sample is normally

the difference between the model estimated with and

without the sample.

3. Consensus-based: Outliers are samples that are not

consistent with the model inferred from the remain-

der of the data. A measure of inconsistency is nor-

mally the error residue of the sample in question with

respect to the model. Methods in this approach include

Hough transform [1], RANSAC [7], and its many vari-

ations [4, 20–22, 25, 30].

In computer vision, various techniques have been de-

rived based on these three assumptions. For instance,

RANSAC was first used to estimate fundamental matri-

ces [24], and was then extended to estimate multiple homo-

graphy relations [2] and a mixture of epipolar and homo-

graphy relations [21]. [17,32] used M-estimators and MVT

to robustify PCA. [15] also discussed how to robustify PCA

using the influence function.

One important index of robust methods is the breakdown

point, which is the minimal percentage of outliers in a data

set that can cause arbitrarily large estimation error. It can be

shown that the breakdown point for most probability-based

and influence-based methods is 50% [10, 23]. This draw-

back motivates the investigation of consensus-based meth-

ods. These techniques treat outliers as samples drawn from

a model that is very different from the model of inliers.

Therefore, although the outlier percentage may be greater

than 50%, they may not result in a model with higher con-

sensus than the inlier model.

The breakdown point also depends on the definition of

the model. In the context of multiple subspaces, if one

chooses to estimate and extract one subspace at a time, the

inlying samples from all other subspaces together with the

true outliers become the outliers for the subspace of interest.

Therefore, one has to adopt a consensus-based method in

searching for an estimator with a high breakdown point. On

the other hand, if one chooses to treat the union of the sub-

spaces as a single model, probability-based and influence-

based approaches may also be applied to achieve good es-

timation, as long as the true outliers do not exceed 50% of

the total sample points.

In Section 3, we compare two ways to estimate multiple

subspaces using random sampling techniques. The first one

estimates the union of the subspaces as a single model, and

the other estimates one subspace at a time. Alternatively,

GPCA and its variations estimate multiple subspaces by re-

covering a set of polynomials that vanish on the union of the

subspaces. However, as we will explain later, all previous

algorithms do not handle outliers well, i.e., the breakdown

points are 0%. In Section 4, we propose a novel way to de-

tect and eliminate outliers in estimating the vanishing poly-

nomials based on traditional robust statistical techniques.

3. Subspace Segmentation via RANSAC

As we have mentioned, there are two ways to apply

the random sampling scheme to estimate a mixed subspace

model. Since in our problem, the number and the dimen-

sions of the subspaces are given, one can either sample a

larger subset to estimate the union of the subspaces (referred

to as RANSAC-on-Union), or estimate and extract one sub-

space at a time (referred to as RANSAC-on-Subspaces). In

the computer vision literature, the latter approach domi-

nates most applications [2, 4, 21, 25, 30] because applying

RANSAC on individual simple geometric models has been

well studied, and the algorithm complexity is much lower.

To illustrate the dramatic difference of the complexity,

suppose a set of 1800 valid samples is evenly drawn from

three hyperplanes of dimension five in R
6, and the data set

is further contaminated by 20% outliers. To estimate a sin-

gle subspace model, we need five points (plus the origin),

and with respect to a single subspace, the outlier percentage

is 73.3%. To reach 95% confidence that one subset is out-

lier free, one needs to sample 2220 subsets.3 However, to

estimate the three subspaces as a union, we need to sample

15 points, evenly partition the set into three subsets, and es-

3While the joint confidence of the whole model will be slightly less
than 95%.

http://perception.csl.uiuc.edu/gpca/


Table 1. RANSAC-on-Union applying to three models with 6% Gaussian noise and 24% outliers.

Model (2, 2, 1) in R
3 (4, 2, 2, 1) in R

5 (5, 5, 5) in R
6

Inlier Size (200, 200, 100) (400, 200, 200, 100) (600, 600, 600)

Number of Samplings 5,000 1,000,000 10,000,000

Angle Error (degree) 1.5 3.5 10.2

Time Lapse 27s 5 hours > 2 days

timate three subspace bases from the three subsets, respec-

tively. To reach 95% confidence that one subset is outlier

free, one needs to sample about 7.27 billion subsets.

However, out experiments show that RANSAC-on-

Union can achieve good accuracy as long as enough iter-

ations are provided. We implemented this method in MAT-

LAB on a dual 2.7GHz G5 Apple workstation, and the re-

sults of three simulations are shown in Table 1. We use the

average subspace angle error between the a priori model

and the estimated one to measure the accuracy of the algo-

rithm. The numbers of iterations shown in the table are the

smallest ones in order to achieve reasonable estimation re-

sults, although they are much smaller than the theoretical

ones with 95% confidence.

3.1. RANSAC on Individual Subspaces

To sequentially estimate multiple subspaces via

RANSAC, most solutions assume that either the subspaces

have the same dimensions or the data do not contain

samples on the intersections of the subspaces. Special

care has to be given when we deal with a more general

situation. In fact, many complications arise when we try to

apply RANSAC to a mixture of subspaces: 1. If one tries

to find a higher-dimensional subspace first, the model may

over-fit one or multiple lower-dimensional subspaces, and

they are more likely to rank high in the consensus test. 2.

If one tries to estimate a lower-dimensional subspace first,

a subset from a higher-dimensional subspace or even the

intersection of subspaces may likely win out first in the

consensus test.

These types of ambiguities have been well known in

computer vision as a potential problem of RANSAC. In

multiple-view geometry, if both a planar object and a

general 3-D object are present, a RANSAC process that

searches for a fundamental matrix may overfit points from

the planar object since a homography is a degenerate epipo-

lar relation, which causes an erroneous estimation of the

epipolar geometry [4]. However, in the general subspace

segmentation problem, the situation is much more delicate,

as multiple subspaces or samples at intersections may give

high consensus to a subspace model in the presence of both

noise and outliers. These “rare” situations are indeed very

common in many applications. For instance, in hybrid lin-

ear systems, a single linear system may satisfy a subspace

constraint of an arbitrary dimension, and the switching be-

tween multiple systems will generate output samples that

are close to subspace intersections [13]. Figure 1 illustrates

the complications in a simple toy example.

Recently, two modifications have been proposed to ad-

dress this problem:

(a) Two data sets (w/o 32% outliers).

(b) 3 possible fits for the first plane. (c) 3 possible fits with outliers

Figure 1. Possible segmentation results (in color) to fit the first

plane model on samples drawn from 4 subspaces of dimensions

(2, 2, 1, 1). The support of this 2-D model may come from sam-

ples on the true plane, or multiple degenerate line models. The

degeneracy becomes more difficult to detect with outliers.

1. Starting with the highest-dimensional model, after a

minimal sample set of the model achieves a high con-

sensus, the algorithm further verifies if subsets of

this minimal set result in high consensus of lower-

dimensional models. If this is true, the algorithm will

re-estimate the model from the remaining samples [4].

2. Alternatively, [8, 21] suggested a means to simultane-

ously apply RANSAC on multiple model hypotheses

at a much larger scale, and use a model selection cri-

terion to decide the number and types of models that

best represent the mixed data.

In this section, we implement RANSAC-on-Subspaces us-

ing the first method.4 Its performance is demonstrated in

Section 5. We observe that the algorithm highly relies on the

degeneracy testing for subspaces of different dimensions.

With more uniformly distributed outliers added in, the de-

generacy testing becomes more inefficient (e.g., Figure 1),

which leads to declined accuracy.

4. Robust GPCA

Given a set of sample points X = {x1,x2, . . . ,xN}
drawn from a union of subspaces A = V1 ∪ V2 ∪ · · · ∪
Vn in R

D, GPCA seeks to simultaneously infer the sub-

spaces and segment the data points to their closest sub-

spaces. The key idea is to identify a set of polynomials

4For the second method, the model selection step via either minimum
description length or maximum likelihood estimation inevitably introduces
new heuristic parameters to the process. The algorithm complexity in over-
sampling more models usually is also much higher.



P = {f1(x), f2(x), . . . , fm(x)} of degree n that vanish

on (or fit) all the sample data. The way to estimate the

polynomials is to use the Veronese embedding νn of degree

n that embeds the data points x into a higher-dimensional

space [29]. The coefficients of each vanishing polynomial

f(x) is then in the left null space of the following embedded

data matrix

Ln
.
= [νn(x1), νn(x2), . . . , νn(xN )] ∈ R

M [D]
n

×N , (1)

where M
[D]
n =

(

n+D−1
D−1

)

is the number of monomials

of degree n in D variables, and m := dim(Null(Ln)) is

uniquely determined by the Hilbert function of the sub-

spaces [33]. Once the vanishing polynomials are found, the

derivatives of the polynomials DP = { d
dx

f(x)} at each

sample point xi give the normal vectors to the subspace to

which xi belongs, which give a segmentation of the whole

sample set with respect to the subspaces. In the presence of

noise, a voting scheme can be applied to improve the stabil-

ity of the estimated subspaces [33].

However, it is known that the breakdown points of these

algorithms are 0%, i.e., an add-in outlier with a large mag-

nitude can arbitrarily perturb the estimated subspaces. The

reason is that the coefficients of the vanishing polynomials

P = {f1(x), f2(x), . . . , fm(x)} correspond to the small-

est eigenvectors of the data matrix Ln. A single outlier may

arbitrarily change the eigenspace of Ln, which is estimated

by PCA, and result in erroneous coefficients of the polyno-

mials in P . Therefore, to eliminate the effect of outliers,

we are essentially seeking a robust PCA method to estimate

Null(Ln) such that it is insensitive to outliers, or to reject

outliers before estimating Null(Ln).
In the robust statistics literature, there are two major

approaches to robustify PCA with high-dimensional mul-

tivariate data, namely, the influence function and the robust

covariance estimator [15]. In this section, we first discuss

a simpler situation in which the percentage of outliers is

known. We introduce two methods to robustly estimate

the coefficients of a set of linearly independent vanishing

polynomials by both the influence function and multivariate

trimming (MVT) . When the percentage of outliers is not

given, we propose a method to estimate the percentage in

Section 4.3.

4.1. The Influence Function

As we have noticed above, the null space Null(Ln) is

spanned by a set of eigenvectors C = {c1, c2, . . . , cm},

whose coefficients correspond to the coefficients of a set of

linearly independent polynomials fi(x) = c
T
i νn(x) of de-

gree n that vanish on the valid sample data. The influence

of a particular sample xi on {f1, f2, . . . , fm} is measured

by the difference between the subspace Null(Ln) estimated

from all the N samples and the subspace Null(L
(i)
n ) esti-

mated from all but the ith sample:

I(xi)
.
= 〈Null(Ln), Null(L(i)

n )〉, (2)

where 〈·, ·〉 denotes the subspace angle difference between

two subspaces. All samples then can be sorted by their in-

fluence values, and the ones with the highest values will be

rejected as “outliers”, and will not be used for the estimation

of the eigensubspace (or the vanishing polynomials).

In robust statistics, I(xi) is called the sample influence

function. Notice that the complexity of the resulting algo-

rithm is rather high. Suppose we have N samples, then we

need to perform PCA N + 1 times in order to evaluate the

influence values for the N samples. In light of this draw-

back, several formulae have been proposed to approximate

the function, which are usually called theoretical influence

functions. The reader may refer to [18] for more develop-

ment about using theoretical influence functions to robustify

GPCA.

4.2. Multivariate Trimming

If we treat the vectors {νn(xi)} in Ln as ran-

dom samples, the problem of robustly estimating C =
{c1, c2, . . . , cm} becomes how to robustly estimate the co-

variance matrix of the random vector u = νn(x). It is

shown in [6] that, if both the valid samples and the outliers

are of zero-mean Gaussian distribution and the covariance

matrix of the outliers is a scaled version of that of the valid

samples, the Mahalanobis distance:

di = u
T
i Σ−1

ui (3)

based on the empirical sample covariance Σ =
1

N−1

∑N

i=1 uiu
T
i is a sufficient statistic for the optimal test

that maximizes the probability of correct decision about the

outlier (in the class of tests that are invariant under linear

transformations). Thus, one can use di as a measure to

down-weight or discard outlying samples while trying to

estimate a robust sample covariance Σ.

Depending on the choice of the down-weighting

schemes, many robust covariance estimators have been de-

veloped in the literature, among which is multivariate trim-

ming (MVT). The convergence rate of MVT is the fastest

among all methods of this kind, and its breakdown point is

the percentage of samples trimmed from the data set.

The MVT method proceeds as follows. As the ran-

dom vector νn(x) is not necessarily zero mean, we first

obtain a robust estimate of the mean ū of the samples

{ui = νn(xi)} (using techniques such as in [9]). We then

need to specify a trimming parameter α%, which essentially

is equivalent to the outlier percentage. To initialize the co-

variance matrix Σ0, all samples are sorted by the Euclidean

distance ||ui − ū||, and Σ0 is calculated as:

Σ0 =
1

|U | − 1

∑

h∈U

(uh − ū)(uh − ū)T , (4)

where U is an index set of first (100 − α)% samples with

the smallest distance. In the kth iteration, the Mahalanobis

distance of each sample, dk = (ui − ū)T Σ−1
k−1(ui − ū),

is calculated, and Σk is again calculated using the set of



first (100 − α)% samples with the smallest Mahalanobis

distance. The iteration terminates when the difference be-

tween Σk−1 and Σk is small enough.

To proceed with the rest of the GPCA algorithm, we treat

the trimmed samples in the final iteration as outliers, and

estimate P = {f1(x), f2(x), . . . , fm(x)} from the last m

eigenvectors of the resulting covariance matrix.

Example 1 We apply both the influence function and MVT

to robustify the GPCA-Voting algorithm [33] on the three

synthetic models in Table 1 with various outlier percent-

ages. The only heuristic parameter in GPCA-Voting,

namely, the angle tolerance τ , is fixed at 0.3 rad, and the a

priori outlier percentages are given to the algorithms. Fig-

ure 2 shows the results of the average angle errors. MVT

performs much better than the influence function in the three

data sets, particularly when the outlier percentage is high.

The highest angle errors for MVT are all within 4 degree.

(a) (2, 2, 1) in R
3

(b) (4, 2, 2, 1) in R
5

(c) (5, 5, 5) in R
6

Figure 2. Average space angle errors of the robustified GPCA al-

gorithm via the influence function and MVT.

Finally, we emphasize that although the distribution

of the data is multi-modal of multiple subspaces in the

original data space, the embedded data in the Veronese

space become uni-modal as a single subspace model.

One can show that any sample that perpendicular to

Null(Ln) indeed vanishes on the set of polynomials P =
{f1(x), f2(x), . . . , fm(x)}, and therefore is on the union

of the subspaces in the original data space [18]. In MVT, the

Mahalanobis distance is a sufficient statistic by assuming a

Gaussian distribution of u = νn(x), which is not true under

the Veronese embedding. Nevertheless, this approximation

of the distribution gives consistent good performance in our

simulated and real experiments.

4.3. Estimating the Outlier Percentage

The above algorithms did not completely solve the out-

lier issue, since usually we do not know the outlier percent-

age for a given data set. In this subsection, we propose a

means to estimate the outlier percentage. The percentage

will be so determined that the GPCA algorithm returns a

“good” mixed subspace model from the remaining sample

points. The main idea is to conduct the outlier rejection

process multiple times under different rejection rates, and

verify the “goodness” of the resulting models.

We first illustrate the basic ideas with an example. We

randomly draw a set of sample points from three sub-

spaces of dimensions (2, 2, 1) in R
3 with sample sizes

(200, 200, 100) and add 6% Gaussian noise. Then, the data

are contaminated by 16% uniformly distributed outliers. We

use MVT to trim out various percentages of samples rang-

ing from 0% to 54%, and compute the maximal residual of

the remaining samples with respect to the model estimated

by GPCA. Figure 3 shows the plot of the maximal resid-

ual versus the rejection rate. The maximal sample resid-

ual reaches a plateau right after 7% rejection rate, and the

residual decreases when the rejection rate increases. Figure

4 shows the segmentation results at rejection rate 7% and

38%, respectively.

Figure 3. Maximal sample residual versus rejection rate.

(a) a priori (b) 7% rejected (c) 38% rejected

Figure 4. Subspace segmentation results.

In the experiment, although the 7% rejection rate is far

less than the a priori 16% outlier percentage, the remaining

outliers left in the sample set are nevertheless close to the

subspaces (in terms of their residuals w.r.t. the estimated

mixed model), and the resulting subspaces are close to the

ground truth. We also see that MVT is moderately stable

when the rejection rate is higher than the actual percentage

of outliers. In this case, when the rejection rate is 38%,

MVT trims out inlying samples that have relatively larger

noise, which results in even a smaller maximal residual as

shown in Figure 3. Therefore, one does not have to reject

the exact a priori outlier percentage in order to obtain a

good estimate of the model. In the presence of both noise

and outliers, e.g., Figure 4(b), it is impossible and unneces-

sary to distinguish outliers that close to the subspaces from

valid samples that have large noise.

Principle (Outlier Percentage Test). A good estimation

of the outlier percentage can be determined by the influence

of the outlier candidates with respect to the estimated (sub-

space) models. That is, further rejection from the data set

only results in small changes in both the model parameters

estimated and the fitting error.



This principle suggests two possible approaches for de-

termining the rejection rate from the plot of the maximal

sample residual:

1. The rejection rate can be determined by finding the first

“knee point,” or equivalently the first “plateau,” in the

residual plot (in the above example, at 7%).

2. The rejection rate can be determined by a pre-specified

maximal residual threshold.

In practice, one may choose to use either approach based

on the nature of the application. However, for the first ap-

proach, it is commonly agreed in the literature that a method

that finds knee points and plateaus in a plot may not be ro-

bust if the data are noisy, since they are both related to the

first-order derivatives of the plot. In addition, a well-shaped

plateau may not exist in the residual plot at all if the a priori

outlier percentage is small.

Therefore, in this paper, we determine the outlier per-

centage as the smallest one such that the maximal sam-

ple residual is smaller than a given residual threshold for

several consecutive rejection rates, i.e., the residual “stabi-

lizes.” The residual threshold can also be seen as the vari-

ance of the noise of the inlying data, which is similar to

the same parameter in other robust statistical techniques, in

particular RANSAC. Algorithm 1 gives an outline of the re-

sulting algorithm. In practice, we find that three consecutive

trials of 1% increments works well in both simulations and

real experiments.5

Algorithm 1 (Robust GPCA).

Given a set of samples X = {x1, x2, . . . , xN} in R
D , a threshold

τ for the subspace angle, and a residual threshold σ, fit n linear

subspaces of codimensions c1, c2, . . . , cn:

1: Set a maximal possible outlier percentage M%.

2: Normalize the data such that the max vector magnitude is 1.

3: for all rejection rate 0 ≤ r ≤M do

4: X
′ ← removing r% samples from X using MVT or Influ-

ence Function.

5: Estimate the subspace bases {B̂1, B̂2, . . . , B̂n} by apply-

ing GPCA to X
′ with parameters τ and c1, c2, . . . , cn.

6: Maximal residual σmax ← maxx∈X ′ mink ‖x −

B̂kB̂T

k x‖.
7: if σmax is consistently smaller than σ then

8: Bk ← B̂k for k = 1, 2, . . . , n. Break.

9: end if

10: end for

11: if σmax > σ then

12: ERROR: the given σ is too small.

13: else

14: Label x ∈ X as an inlier if mink ‖x −BkBT

k x‖ < σ.

15: Segment the inlying samples to their respective subspaces.

16: end if

5It implicitly requires that the samples from any single subspace shall
be more than 3% of the total data.

5. Experiments

5.1. Simulations

We test RANSAC-on-Subspaces and RGPCA on the

three subspace models in Table 1 with various outlier per-

centages. Each data set has a maximal magnitude of one.

For RANSAC, the boundary threshold is fixed at 0.1. For

RGPCA using either MVT or Influence, the residual thresh-

old σ is fixed at 0.04, and the angle threshold τ is fixed at

0.3 rad. Figure 5 shows the results of the average angle er-

ror. Table 2 shows the average time of the three algorithms

with 24% outliers.

(a) (2, 2, 1) in R
3

(b) (4, 2, 2, 1) in R
5

(c) (5, 5, 5) in R
6

Figure 5. Average space angle errors of RANSAC and RGPCA

(50 trials at each percentage).

Table 2. Average time of RANSAC and RGPCA with 24% out-

liers.
Arrangement (2,2,1) in R

3 (4,2,2,1) in R
5 (5,5,5) in R

6

RANSAC 44s 5.1m 3.4m

MVT 46s 23m 8m

Influence 3m 58m 146m

We compare the performance of the two RGPCA algo-

rithms with that of RANSAC. Both MVT and Influence

methods run slower than RANSAC, particularly when the

number and dimensions of the subspaces are high. With

respect to the accuracy, MVT gives the best overall estima-

tion of the mixed subspace models on all three synthetic

data sets. The subspace angle errors for MVT in (2, 2, 1)
case and (4, 2, 2, 1) case are both within 2 degree with up

to 50% outliers. For (5, 5, 5) case, the worst angle error

for MVT is 11 degree. Finally, RANSAC outperforms the

influence function method in most cases.

5.2. Motion Segmentation

We also apply RANSAC-on-Subspaces and RGPCA on

a set of real motion sequences for segmenting features that

belong to different moving objects. To fairly evaluate the

performance of the methods as generic subspace segmenta-

tion algorithms, no information other than the coordinates

of the tracked features is used in the experiment.



Suppose N 3-D points p1, p2, . . . , pN on a rigid object

are tracked from F consecutive frames of a motion se-

quence. Denote mij ∈ R
2 as the image coordinates of the

ith point in the jth frame. Then it can be shown in [16] that

all vectors of the form

xi = [mT
i1,m

T
i2, . . . ,m

T
iF ]T ∈ R

2F , i = 1, 2, . . . , N,

under affine camera projection lie in a 4-dimensional sub-

space. Furthermore, if the object is a planar structure, or a

3-D structure undergoing a planar motion, the xi’s shall lie

in a 3-dimensional subspace. We first project the stacked

vectors {x1,x2, . . . ,xN} onto a 5-dimensional space us-

ing PCA. Then let the algorithms estimate multiple 3-D or

4-D subspaces with the number of subspaces and their di-

mensions given.

Four motion sequences shown in Figure 6 are used for

testing. We separate the sequences into two categories.

For the first two sequences, the objects all undergo rigid-

body motions, and the cameras are far away from the scene.

Therefore, the affine camera model is valid. For the last two

sequences, the affine model is not strictly satisfied: In Se-

quence C, the camera is very close to the man, and the head

motion is not a rigid-body motion; in Sequence D, the cam-

era is also close to the scene, and partial occlusion of the ob-

jects causes false tracked features. For such sequences, the

affine camera model becomes an approximation, and hence

the stacked vectors {x1,x2, . . . ,xN} satisfy more complex

models than 3-D or 4-D subspaces. Nevertheless, we com-

mand RANSAC and RGPCA to robustly fit subspaces to

the data. We also use Sequence C and D to test the seg-

mentation result on subspaces of different dimensions. For

each sequence, the planar background is modeled as a 3-

dimensional subspace, and the foreground objects are mod-

eled as 4-dimensional subspaces.

Figure 7 shows the segmentation result. All parame-

ters are tuned to achieve the best segmentation results. We

can see that the algorithms perform reasonably well on the

four sequences, considering no other imagery information

is used to optimize the segmentation. The two RGPCA al-

gorithms perform slightly better on Sequence B and D, and

RANSAC performs better on Sequence C.

6. Conclusions

In this paper, we have examined three major robust sta-

tistical techniques to estimate multiple subspaces in the

presence of moderate data noise and outliers. For ran-

dom sampling techniques, our experiments have shown that

RANSAC-on-Union requires a very large number of itera-

tions to achieve good estimation results, which is not prac-

tical for most applications. RANSAC-on-Subspaces that

sequentially extracts subspaces can handle subspaces of

different dimensions by adding a degeneracy testing step.

However, the testing may become inefficient when the out-

liers are abundant in the data set.

For robust GPCA, our experiments have shown that

MVT provides better overall performance than the influence

(a) Sequence A: 140
points in 27 frames.

(b) Sequence B: 53
points in 26 frames.

(c) Sequence C: 107
points in 81 frames.

(d) Sequence D: 126
points in 81 frames.

Figure 6. The first and last frames of the four sequences.

function when the number and dimensions of the subspaces

are moderate. However, two common drawbacks of both

RGPCA algorithms are: 1. They do not provide a conve-

nient estimate of the outlier percentage, because the outliers

must be rejected in the Veronese embedded space. 2. The

Veronese embedding causes RGPCA to not scale as well

as RANSAC-on-Subspaces in terms of computational com-

plexity when the subspace dimensions are high (e.g, > 10).

Taking account of other alternative solutions mentioned

in the paper, e.g., using RANSAC to over-estimate a larger

set of single subspace models (possibly via MCMC), it

seems that no method can outperform others in all situa-

tions. Based on the nature of the data and the application,

the reader is recommended to wisely choose or extend an

appropriate method discussed in this paper.
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