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Abstract

Recently, it has been shown that excellent results can

be achieved in both facial landmark localization and pose-

invariant face recognition. These breakthroughs are at-

tributed to the efforts of the community to manually anno-

tate facial images in many different poses and to collect 3D

facial data. In this paper, we propose a novel method for

joint frontal view reconstruction and landmark localization

using a small set of frontal images only. By observing that

the frontal facial image is the one having the minimum rank

of all different poses, an appropriate model which is able

to jointly recover the frontalized version of the face as well

as the facial landmarks is devised. To this end, a suitable

optimization problem, involving the minimization of the nu-

clear norm and the matrix ℓ1 norm is solved. The proposed

method is assessed in frontal face reconstruction, face land-

mark localization, pose-invariant face recognition, and face

verification in unconstrained conditions. The relevant ex-

periments have been conducted on 8 databases. The ex-

perimental results demonstrate the effectiveness of the pro-

posed method in comparison to the state-of-the-art methods

for the target problems.

1. Introduction

Face frontalization refers to the recovery of the frontal

view of faces from single unconstrained images. Accurate

face frontalization is a cornerstone for many face analysis

problems. For example the recent success in face recog-

nition in unconstrained conditions would not be possible

without a meticulously designed face frontalization proce-

dure [35].

An essential step towards face frontalization is facial

landmark localization. State-of-the-art landmark localiza-

tion methods [5, 17, 28, 32, 36, 40] model the problem dis-

criminatively by capitalizing on the availability of annotated
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Figure 1. Flowchart of the proposed method: a) Given an input

image, the results from a detector, and a statistical model U, built

on frontal images only, b) a constrained low-rank minimization

problem is solved. c) Face alignment and frontal view reconstruc-

tion are performed simultaneously. Finally, d) face recognition is

performed using the frontalized image.

data in terms of facial landmarks [30, 31]. Unfortunately,

the annotation of facial landmarks is laborious, expensive,

and time consuming process. This is even more the case for

faces that are not in frontal pose1.

In many cases, accurate 2D landmark localization is not

enough for successful face frontalization. That is, in prac-

tice, the frontalization step is very elaborate requiring both

landmark localization and pose correction by usually resort-

ing to 3D face models [33–35, 41]. In general, 3D model-

based methods achieve high recognition accuracy [35, 41].

However, such methods cannot be widely applied since they

require: (a) a method for accurate landmark localization in

various poses, (b) fitting learned 3D model of faces, which

is expensive to built, and (c) a robust image warping al-

gorithm for frontal view image reconstruction [35]. Re-

cently, a simple method for the reconstruction of frontal

views using a 3D reference mesh has been proposed in liter-

ature [12]. The main difference between the frontalization

system in [35] and the one proposed in [12] is that the latter

1From experience we know that annotation of facial image with poses

take in many cases twice the time compared with frontal poses.
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method uses the same 3D reference mesh as the approxima-

tion of different subject’s face shape. The main drawback of

this method is that it relies on the perfect localization of fa-

cial landmarks. In addition, the frontalized view is affected

by the existence of noise in the non-frontal view. An ap-

proach that does not require a 3D model but only a small

set of landmarks is presented in [13]. This method aims

to recover the frontal view of a non-frontal image by em-

ploying Markov Random Field (MRF). The main drawback

of the latter is that for each non-frontal image, an exhaus-

tively batch-based alignment algorithm is applied (trained

on frontal patches). Clearly, such a procedure is time con-

suming.

In this paper, we propose a simple yet extremely pow-

erful statistical frontalization of faces. The key motiva-

tional observation is that, for the facial images lying in a

linear space, the rank of a frontal facial image, due to the

approximately structure of human face, is much smaller

than the rank of facial images in other poses. To demon-

strate the above observation ‘Neutral’ images of twenty ob-

jects from Multi-PIE database [11] under poses −30◦ to

30◦ were warped into a reference frontal-pose frame and

the nuclear norm (convex surrogate of the rank) of each

shape-free texture was computed. In Table 1 the average

value of the nuclear norm for different poses is reported.

Clearly, the frontal pose has the smallest nuclear norm value

compared to the corresponding values computed for other

poses. However, severe deviations from the above linear

facial model occur in the presence of pose, occlusions, ex-

pressions, and illumination changes.

To remedy the aforementioned challenges, we propose

a unified method for joint face frontalization (pose correc-

tion), landmark localization, and pose-invariant face recog-

nition, using a small set of frontal images only. In par-

ticular, we show that if: (a) deformations due to pose

and expressions are approximately removed, (b) occlu-

sion/specular highlights and warping errors due to pose are

modelled as sparse errors and, (c) illumination is modelled

by using in-the-wild training facial images, then the linear

space assumption is valid. Inspired by recent advances in

learning using low-rank and sparsity e.g., [22,24,25,29,38],

a suitable optimization problem, involving the minimiza-

tion of the nuclear norm and the matrix ℓ1 norm is solved

to achieve the above mentioned goals. The flowchart of the

proposed method (coined as RSF–Robust Statistical Face

Frontalization) is depicted in Fig. 1.

Pose −30◦ −15◦ 0◦ 15◦ 30◦

Average value

of nuclear norm
0.72 0.71 0.65 0.70 0.73

Table 1. The average value of nuclear norm computed based on

neutral images of twenty subjects from Multi-PIE database under

poses −300 : 300.

The most closely related work to the proposed method is

the Transform Invariant Low-rank Textures (TILT) method

[47]. In TILT, texture rectification is obtained by apply-

ing a global affine transformation onto a low-rank term,

modelling the texture. By blindly imposing low-rank con-

straints without regularization, for non-rigid alignment op-

posite effects may occur. Recently, it was demonstrated

[9,29], that non-rigid deformable models cannot be straight-

forward combined with optimization problems [25] that in-

volve low-rank terms without a proper regularization. To

overcome this and ensure that unnatural faces will be not

created, a model of frontal images is employed in this work.

In that sense, our method can be seen as a deformable TILT

model regularized within a frontal face subspace.

Summarizing, the contributions of the paper can be sum-

marised as follows:

• Technical contributions:

1. A novel RSF method for joint landmark localiza-

tion and face frontalization is proposed that uses

a statistical model of frontal images, low-rank,

and sparsity in order to adequately model pose,

occlusions, expressions, and illumination varia-

tions.

2. An effective algorithm for the RSF is developed.

• Applications in computer vision:

1. To the best of our knowledge this is the first

generic landmark localization method which

achieves state-of-the-art results using a model of

frontal images only.

2. It is possible to improve the state-of-the-art

in pose-invariant face recognition and uncon-

strained face verification using only frontal faces

and simple features for classification unlike other

complex feature extraction procedures e.g., [33,

35].2

3. Furthermore, we demonstrate the performance of

RSF in handling all human faces, cat faces, and

face sketches.

The most important and surprising contribution of our pa-

per is that we show that when phenomena are properly mod-

elled simple statistical linear models, even pixel intensities,

could produce state-of-the-art results.

Notations. Throughout the paper, scalars are denoted by

lower-case letters, vectors (matrices) are denoted by lower-

case (upper-case) boldface letters i.e., x, (X). I denotes

the identity matrix. The ith column of X is denoted by

2We note that we refer to the restricted protocol of the LFW [15] and

not to the unrestricted which unfortunately we cannot compete since we do

not have access to millions of annotated faces.
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xi. A vector x ∈ R
m·n (matrix X ∈ R

m×n) is re-

shaped into a matrix (vector) via the reshape operator :

R(x) = X ∈ R
m×n,

(

vec(X) = x ∈ R
m·n×1

)

. The

ℓ1 and the ℓ2 norms of x are defined as ‖x‖1 =
∑

i |xi|

and ‖x‖2 =
√

∑

i x
2
i , respectively. The matrix ℓ1 norm

is defined as ‖X‖1 =
∑

i

∑

j |xij |, where | · | denotes the

absolute value operator. The Frobenius norm is defined as

‖X‖F =
√

∑

i

∑

j x
2
ij , and the nuclear norm of X (i.e.,

the sum of singular values of a matrix) is denoted by ‖X‖∗.

Given a Point Distribution Model (PDM) [10], denoted as

S = {s̄,US ∈ R
2N×NS}, a new shape instance is gen-

erated as s = s̄ + USp, where p ∈ R
NS×1 is the vec-

tor of shape parameters. The warp function x(W(z;p))
(

X(W(z;p))
)

denotes the warping of each 2D point z =
[x, y] within a shape instance to its corresponding location

in a reference (common) frame. To simplify the notation

x(p)
(

X(p)
)

will be used throughout the paper instead of

x(W(z;p))
(

X(W(z;p))
)

.

2. Robust Face Frontalization

Let X ∈ R
h×r be an image depicting a non-frontal view

of a face and s = [x1, y1, · · · , xN , yN ]T an initial estima-

tion of N landmark points, describing the shape. To create

a shape-free texture, the input image is warped into a com-

mon frame by employing a warp function W(·). In many

cases, the warped image X(p) ∈ R
m×n can be corrupted

by sparse errors of large magnitude. Such sparse errors in-

dicate that only a small fraction of the image pixels may

be corrupted by non-Gaussian noise and occlusions. In this

paper, the goal is to recover the clean low-rank frontal view

(i.e., L ∈ R
m×n) of the X(p) and the parameters p such

that X(p) = L + E, where E ∈ R
m×n is a sparse ma-

trix, accounting for gross errors. In particular, based on the

observation that the frontal view of the face lies onto a low-

rank subspace (please refer to Table 1), it can be expressed

as a linear combination of a small number of precom-

puted orthonormal basis (i.e. U = [u1|u2| . . . | · · · |uk] ∈
R

m·n×k, UTU = I) that span a generic (clean) frontal

view subspace, that is L =
∑k

i=1R(ui)ci. Therefore,

the deformed corrupted input image can be expressed as:

X(p) = L+E =
∑k

i=1R(ui)ci +E.

A natural estimator accounting for the low-rank of the

frontal image and the sparsity of the error matrix is to min-

imize the rank of L and the number of non-zero entries

of the E measured by the ℓ0 quasi norm e.g., [8] by de-

manding X(p) = L + E. Unfortunately both rank(·) and

ℓ0 norm are non-convex, discrete valued functions, mini-

mization of which is NP-hard. Furthermore, the constraint

X(p) = L + E is non-linear. To alleviate this problem,

the nuclear- and the ℓ1- norms are adopted as surrogates

to rank and ℓ0- norm [8]. To address the non-linearity

of the above mentioned equality constraint, a first order

Taylor linear approximation is applied on the vectorized

form of the constraint: x(p + ∆p) ≈ x(p) + J(p)∆p.

where vec(X(p)) = vec(L + E) = Uc + e = x(p) and

J(p) = ∇x(p)∂W
∂p

is the Jacobian matrix with the steep-

est descent images as its columns. Consequently, the RSF

solves the following optimization problem:

argmin
L,e,c,∆p

‖L‖∗ + λ‖E‖1

s.t.

{

H(1)(∆p, c, e) = x(p) + J(p)∆p−Uc− e = 0

H(2)(L, c) = L−
∑k

i=1R(ui)ci = 0
(1)

where λ is a positive weighting parameter that balances

the norms. The set of (primal) variables is defined as

V = {L, c,∆p, e}.

2.1. Optimization

To solve (1), the augmented Lagrangian is introduced:

L(V,M) = ‖L‖∗ + λ‖e‖1 +
µ

2

∥

∥H(1)(∆p, c, e) +
a

µ

∥

∥

2

2

+
µ

2

∥

∥H(2)(L, c) +
B

µ

∥

∥

2

F
−

1

2µ

(

‖a‖22 + ‖B‖
2
F

)

, (2)

where M = {a ∈ R
m·n,B ∈ R

m×n} is the set of La-

grange multipliers for the equality constraints in (1) and

µ > 0 is a penalty parameter. By employing the alternating

directions method of multipliers (ADMM), (1) is solved by

minimizing (2) with respect to each variable in an alternat-

ing fashion. Finally, the Lagrange multipliers are updated

at each iteration.

Let t be the iteration index. For notation convenience

(2) will be denoted as L(V
(i)
[t] ,M[t]) when all the variables

expect V(i) are kept fixed. Accordingly, given {V
(i)
[t] }

4
i=1,

M[t] and µ the updates of the primal variables are computed

by solving the following sub-problems:

Step 1. Update L:

V
(1)
[t+1] = argmin

V(1)

‖L‖∗ +
µ

2

∥

∥H(2)(L, c) +
B

µ

∥

∥

2

F
. (3)

The nuclear norm regularized least squared problem (3) has

the following closed-form solution:

V
(1)
[t+1] = D 1

µ[t]

[

k
∑

i=1

R(ui)ci,[t] −
B[t]

µ[t]

]

. (4)

The singular value thresholding (SVT) operator is de-

fined for any matrix Q with Q = UΣVT as Dτ [Q] =
USτV

T [7], with Sτ [σ] =sgn(σ)max(|σ| − τ, 0) being

the (element-wise) shrinkage operator [8].

Step 2. Update c:

V
(2)
[t+1] = argmin

V(2)

µ

2

(
∥

∥H(1)(∆p, c, e) +
a

µ

∥

∥

2

2

+
∥

∥H(2)(L, c) +
B

µ

∥

∥

2

F

)

. (5)
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Algorithm 1: ADMM solver

Data: Test image X, initial shape parameters pin, clean

frontal-view face subspace U, and the parameter λ
Result: The low-rank clean image L, the sparse error e, the

coefficient vector c, and the shape parameters p.

while not converged do

X(p)←Warp and normalize the image;

J← Compute the Jacobian matrix;

Initialize: Set {L[0], e[0], c[0], a[0], B[0]} to zero

matrices, µ[0] = 1.25/‖X(p)‖ , ρ = 1.1;

while not converged do

Solve (1);

end

p← p+∆p;

end

(5) is a quadratic problem which for each ci, i ∈ {1, . . . k}
admits a closed form solution given by:

ci,[t+1] =
aT[t]ui + tr(BT

[t]R(ui))

2µ[t]
+
x̂Tui + LT

[t+1]R(ui)

2
,

(6)

where x̂ = x(p) + J(p)∆p[t] − e[t].

Step 3. Update ∆p:

V
(3)
[t+1] = argmin

V(3)

µ

2
‖H(1)(∆p, c, e) +

a

µ
‖22. (7)

The increment of the parameters ∆p is computed by solv-

ing the least square problem (7):

V
(3)
[t+1] = −

(

J(p)TJ(p)
)−1

J(p)T
(

x(p)−Uc[t]−e[t]+
a[t]

µ[t]

)

.

(8)

Step 4. Update e:

V
(4)
[t+1] = argmin

V(4)

λ‖e‖1 +
µ

2
‖H(1)(∆p, c, e) +

a

µ
‖22.

(9)

The closed-form solution of (9) is given by apply-

ing element-wise the shrinkage operator onto: x(p) +
J(p)∆p−Uc+ a/µ, namely:

V
(4)
[t+1] = S λ

µ[t]

[

x(p) + J(p)∆p[t+1] −Uc[t+1] +
a[t]

µ[t]

]

.

(10)

Step 5. Update Lagrange multipliers a,B and µ : The

Lagrange multipliers are updated by:







a[t+1] = a[t] + µ[t] ·H
(1)(∆p[t+1], c[t+1], e[t+1])

B[t+1] = B[t] + µ[t] ·H
(2)(L[t+1], c[t+1])

µ[t+1] = min(ρ · µ[t], 10
10)

(11)

Convergence criteria: The inner loop of the Alg. 1 termi-

nates when:














max
(

‖e[t+1] − e[t]‖2/‖x(p)‖2,
‖L[t+1] − L[t]‖F /‖x(p)‖2

)

≤ ǫ1
max

(

‖H(1)(∆p[t+1], c[t+1], e[t+1])‖2/‖x(p)‖2,
‖H(2)(L[t+1], c[t+1])‖F /‖x(p

)

‖2) ≤ ǫ2
(12)

The Alg. 1 terminates when the change of the ‖L‖∗+λ‖E‖1
between two successive iterations is smaller than a prede-

fined threshold ǫ3 or the maximum number of the outers’

loop iterations is reached.

S
to

p
 c

ri
te

rt
io

n
 o

f 
th

e
 i
n

n
e

r 
lo

o
p

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Iterations
0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

S
to

p
 c

ri
te

rt
io

n
 o

f 
th

e
 i
n

n
e

r 
lo

o
p

Iterations

(a) (b)

Figure 2. The convergence curve of the Algorithm’s 1 inner loop

in case of (a) human face and (b) cat face.

Computational Complexity: The dominant cost of each

iteration of Alg. 1 is that of the Singular Value Decompo-

sition (SVD) algorithm involved in the computation of the

SVT operator in update of L (Step 1). Consequently, the

computational complexity of Alg. 1 is O(T (min(m,n)3 +
n2m)), where T is the total number of iterations until con-

vergence.

Convergence: Regarding the convergence of the Alg. 1

there is currently no theoretical proof known for the ADMM

in problems with more than two blocks of variables. How-

ever ADMM has been applied successfully in non-convex

optimization problems in practice [23, 25, 29]. In addi-

tion, the thorough experimental evaluation of the proposed

method presented in Sec. 3, indicates that the convergence

of Alg. 1 is empirically proved. In Fig. 2, the empiri-

cal convergence curves of the inner loop of Alg. 1 for the

cases of human and cat faces are depicted. The low-rank

and error images produced after 30, 50 and 117 iterations,

respectively, are also shown.

3. Experimental Evaluation

The performance of the RSF is assessed in four different

tasks: (i) frontal view reconstruction, (ii) landmark local-

ization, (iii) pose-invariant face recognition, and (iv) face

verification in unconstrained (in-the-wild) conditions, by

conducting experiments on 8 databases which are presented

in Table 2. For the CAT database, 350 out of 10000 cat

images were re-annotated by employing a dense mark-up

scheme consisting of 48 points. In case of sketches, 375
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(a) LFPW - HELEN - AFW (b) FERET (c) Multi-PIE

(d) FS (e) CAT

Figure 3. Reconstructed frontal views of unseen objects under controlled and in-the-wild conditions.

Database Object # Images Conditions # Points

LFPW [6]

Face

1035

In-the-Wild

68

HELEN [18] 2330 68

AFW [48] 468 68

LFW [15] 13233 -

FERET [26] 14051

Controlled

-

Multi-PIE [11] 750000 68

FS [39], [46] Sketches 1800 35 /3

CAT [45] Cat 10000 In-the-Wild 9

Table 2. Overview of the used databases.

face sketches (305 images taken from [39], [46] and another

53 images download from the web) were used. All images

were annotated using the typical 68 points mark-up scheme

employed in LFPW, HELEN, and AFW [30, 31].

3.1. Experimental setup

In all experiments, the orthonormal clean frontal sub-

space U3 was constructed by employing only frontal view

face images without occlusions. The images were warped

in a reference frame by using theW . Subsequently a PCA

was applied on the warped shape-free textures. Then, the

first k eigen-images with the highest variance were used to

form the U. Unless otherwise stated, throughout the exper-

iments, the parameters of the Alg. 1 were fixed as follows:

λ = 0.3, ρ = 1.1, ǫ1 = 10−5, ǫ2 = 10−7, and ǫ3 = 10−3.

3.2. Reconstruction of frontal view

The ability of the RSF to reconstruct the frontal view

from non-frontal images of unseen faces is investigated in

this Section. Given the test image and initial landmarks

a warped version of the image is produced by employing

the W . Next, (1) is solved iteratively. In each iteration

t + 1, a low-rank (frontalized) image (L[t+1]), an error im-

age (E[t+1]), coefficients (c[t+1]) and increments ∆p[t+1]

of parameters p are obtained. The new position of the land-

marks is then computed by employing the updated param-

3The employed frontal subspaces were created from training sets of

the databases: UW: 500 LFPW & HELEN, UL: 209 LFPW, UH: 284

HELEN, US: 261 FS, UC: 305 CATS

eters p ← p + ∆p. The test image is then warped using

the new landmarks and (1) is solved again (INNER loop of

Alg. 1). Finally, after the convergence of Alg. 1, the final

frontalized test image, location of the landmarks, and error

image are produced. All the frontalizations presented in this

Section were created by using the UW, UC, and US.

In Fig. 3 (a) the frontalized views of unseen faces from

the in-the-wild images are illustrated. Fig. 3 (b) and (c) de-

pict the frontal reconstructed views from the non-frontal im-

ages of ‘00268’ subject from FERET with ‘Neutral’ expres-

sion and pose [−40◦ : 40◦] and images from Multi-PIE with

(i) ‘Surprise’ at −30◦, (ii) ‘Scream’ at −15◦, (iii) ‘Squint’

at 0◦, (iv) ‘Neutral’ at +15◦, and (v) ‘Smile’ at +30◦. The

efficacy of the RSF is also assessed by creating the frontal

view of face sketches and cat faces. The obtained recon-

structions for these objects are depicted in Fig. 3(d) and (e).

By visually inspecting the results, it is clear that the RSF is

robust to many variations such as pose, expression, sparse

occlusions, and lighting conditions. This attributed to the

fact that the matrix ℓ1-norm was adopted for sparse non-

Gaussian noise characterization.

To quantitatively assess the quality of the frontalized im-

ages the following experiment was conducted. ‘Neutral’

images of 20 different subjects from Multi-PIE under poses

[−300 to 300] (5 for each subject, 100 in total) were se-

lected. The images of each subject were frontalized by

employing the RSF. The Root Mean Square Error (RMSE)

between each frontalized image and the real frontal image

of the subject is used as the evaluation metric. The per-

formance of the RSF with respect to RMSE is compared

with that obtained by the frontalization method of the Deep-

Face [35]. The average RMSEs of the RSF and DeepFace

were 0.0817 and 0.1025, respectively. It is worth noting

that, even though DeepFace employs a 3D model to handle

out-of-planar rotations, the RSF performs better without us-

ing any kind of 3D information.
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Figure 4. Cumulative error distribution curves on LFPW, HELEN, AFW, FS, and CAT databases: (a), (c), (d): TILT-PIs, CLMS-PIs,

AAM-PIs, SDM-PIs, RSF-PIs, (b) RSF-PIs, SDM-SIFT, LBF and ERT.

3.3. Landmark localization

The performance of the RSF for the generic alignment

problem is assessed by conducting experiments on (i) in-

the-wild faces, (ii) sketch faces and (iii) cat faces. To this

end, the performance of the RSF is compared against to that

obtained by the TILT [47], AAMs [2, 21], CLMs [32], and

SDM [40]. In order to compare fairly the competing meth-

ods, the same training data, initialization, and feature rep-

resentation were employed. For all experiments the simple

representation of Pixel Intensities (PIs) was used. The aver-

age point-to-point Euclidean distance of N landmark points

normalized by the Euclidean distance of the outer corner of

eyes is used as the evaluation measure. In addition, the cu-

mulative error distribution curve (CED) for each method is

computed by using the fraction of test images for which the

average error was smaller than a threshold. Finally, the im-

plementations provided by the platform MENPO [1] were

used for all compared methods.

3.3.1 Aligning in-the-wild face images

Same train set and features: The in-the-wild face databases

LFPW, HELEN and AFW were employed in order to assess

the performance of the RSF in the problem of generic face

alignment. The results produced by the detector in [42, 48]

were used to initialize all the methods. The annotations pro-

vided in [30, 31] have been employed for evaluation pur-

poses. The error for each method was computed based

on N = 49 interior landmark points (excluding the points

correspond to face boundary). Finally, the bases matrices

UL,UH and UW were used by the RSF.

The CEDs produced by all methods for the LFPW (test

set), the HELEN (test set), and the AFW databases are de-

picted in Fig. 4 (a). Clearly, the RSF outperforms the TILT-

PIs, the AAMs-PIs, the CLMs-PIs, and the SDM-PIs. More

specifically, for normalized error of 0.054 the RSF yield an

20.1%, 21.5% and 24.6% improvement compared to that

obtained by the AAMs-PIs across the test databases. TILT

performs worst overall which can be explained to the fact

that minimizes the unconstrained rank of the image ensem-

ble. The discriminative methods SDM and CLMs yield

poor performance because they were trained with only 500
frontal images. In general the discriminative methods re-

quire large amount of annotated data in order to yield pow-

erful classifiers and functional mappings. In contrast, the

AAMs, which are generative models, achieved better results

than the CLMs and SDM.

State-of-the-art methods and features: In this exper-

iment, the RSF is compared against the state-of-the-art

methods SDM [40], LBF [28], and ERT [17]. The authors

provided pre-trained model and code was used for the SDM,

while the LBF and ERT were trained and tested by using

the available implementations. In particular, the LBF and

ERT were trained using the AFW and train sets of LFPW

and HELEN. The parameters were set as explained in the

corresponding papers. The CEDs from this experiment are

shown in Fig. 4 (b). The RSF achieves comparable perfor-

mance with that obtained by the competing methods, but

it uses only a small set of frontal images for training.This

4This value was found by visually inspecting the results.
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(a)

(b)

(c)
Figure 5. Sample fitting results produced by RSF-PIs for (a) in-

the-wild faces, (b) sketches, and (c) cats.

is contrast to all other methods were trained on thousand

images captured under several variations including differ-

ent poses, illuminations and expression (i.e., train sets of

the used databases). Furthermore, the SDM method takes

full advantage of SIFT – a powerful hand-crafted feature –

while the RSF employs only simple PIs. Fig. 5(a) illustrates

fitting examples produced by RSF.

3.3.2 Aligning cat and sketch face images

While the previous experiment concerned in images of hu-

man faces, the RSF is a general method capable of aligning

any object that the frontal view is that of the lowest rank. In

this set of experiments, the ability of the proposed method

to align cat faces and face sketches is demonstrated by using

the FS and the CAT databases. The matrices UC, US were

employed and the fitting error in case of CAT was calcu-

lated based on N = 37 interior landmark points (excluding

the points of boundary). The results obtained by the com-

pared methods are summarized in CED curves depicted in

Fig. 4 (c), (d). The quality of fitting results produced by the

RSF can be visually compared in Fig. 5 (b), (c). It is clear

from the results that the RSF outperforms all the other meth-

ods, validating its ability to handle other symmetric objects

and modalities.

Although, we tested the state-of-the-art methods LBF

and ERT in the same experiment, their performances were

poor. Therefore, in order to avoid the clutter of our figures

we do not report their CEDs.

3.4. Pose­invariant face recognition

The performance of the RSF on pose-invariant face

recognition with one gallery image per person is assessed

by conducting experiments on the Multi-PIE and FERET

databases. The experiment proceeds as follows. First, the

frontal views of all images used in this experiment were

reconstructed following the methodology described in Sec.

3.2 by employing the UW. In order to remove the sur-

rounding black pixels, the reconstructed frontal views were

cropped. Subsequently, the Image Gradient Orientations

(IGOs) features [37] were used for image representation.

The dimensionality of IGOs was reduced by applying PCA.

Finally, the classification was performed by employing the

classifier in [43].

The performance of the RSF is compared to 2D based

methods: LGBP [44] and PIMRF [13], 3D based meth-

ods: 3DPN [4], EGFC [20], and PAF [41], as well as the

Deep learning based methods: SPAE [16] and DIPFS [49].

It should be noticed that all methods were evaluated under

the fully automatic scenario, where both the bounding box

of the face region and the facial landmarks were located au-

tomatically.

Results on FERET: One frontal image, denoted as ‘ba’,

from each of the 200 subjects was used to form the gallery

set, while the images captured at 6 different poses i.e.,

[−40◦ : 40◦] were selected as the probe images. In Table 3

the recognition rates achieved by the competing methods in

the different poses are reported. Clearly, the RSF (recog-

nition accuracy 98.58%) outperforms both the 2D and 3D

state-of-the-art methods. It is worth mentioning that the

PIMRF employs 200 images from the FERET database (dif-

ferent from the test set) in order to train the frontal synthe-

sizer. Consequently, the different lighting conditions of the

database are taken into account. This is not the case for

the RSF where only frontal images from a generic in-the-

wild database (i.e., the LFPW and HELEN) have been used.

Even though the RSF does not use any kind of 3D informa-

Table 3. Recognition rates achieved by the compared methods on

the FERET database.

Method −40
◦ −25

◦ −15
◦

15
◦

25
◦

40
◦ Avg

LGBP [44] 62.0% 91.0% 98.0% 96.0 % 84.0% 51.0 % 80.5 %

3DPN [4] 90.5% 98.0% 98.5% 97.5% 97.0% 91.9% 95.6%

PIMRF [13] 91.0% 97.3% 98.0% 98.5% 96.5% 91.5% 95.5%

PAF [41] 98.0% 98.5% 99.25% 99.25% 98.5% 98.0% 98.56%

RSF 96.5% 99.0% 100.0% 100.0% 100% 96% 98.58%

tion, it performs comparably to the PAF where an elaborated

3D model (trained from 4624 facial scans) has been used to

find the 3D pose and extract pose adaptive features. The

reported results of the EGFC [20] were not included in Ta-

ble 3 as they were obtained using a semi-automatic protocol

(i.e., 5 manually annotated landmark points used).

Results on Multi-PIE: The images of 137 subjects (Sub-

ject ID 201 : 346) with ‘Neutral’ expression and poses

[−30◦ : +30◦] captured under 4 different sessions were se-

lected. The gallery was created by the frontal images of

the earliest session for each subject, while the rest of im-
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ages including frontal and non-frontal views were used as

probes. It should be mentioned that images of first 200
subjects which include all poses (4207 in total) were not

used for training purposes by the RSF. Those images were

used in the 3DPN to train view-based models, in the SPAE,

DIPFS to train the deep networks, and in the EGFC to train

the pose estimator and matching model. The recognition

accuracy achieved by the compared methods is reported in

Table 4. The RSF outperforms four out of five methods that

is compared to, verifying the high quality of the frontalized

images. The RSF also performs comparable to the DIPFS

though only using 500 frontal images outside the Multi-PIE.

Table 4. Recognition rates achieved by the compared methods on

the Multi-PIE database.
Method −30

◦ −15
◦

0
◦

15
◦

30
◦ Avg

PIMRF [13] 89.7% 91.7% 92.5% 91.0% 89.0% 90.78%

3DPN [4] 91.0% 95.7% 96.9% 95.7% 89.5% 93.76%

SPAE [16] 92.6% 96.3% - 95.7% 94.3% 94.72%

EGFC [20] 95.0% 99.3% - 99.0% 92.9% 96.55%

DIPFS [49] 98.5% 100% - 99.3% 98.5% 99.07%

RSF 94.3% 98.7% 99.4% 97.3% 95.6% 97.06%

3.5. Face verification

The performance of the RSF in the face verification un-

der in-the-wild conditions is assessed by conducting exper-

iment in the LFW database, using the ‘image-restricted, no

outside data results’ setting. The standard evaluation proto-

col, which splits the View 2 dataset into 10 folds, with each

fold consisting of 300 intra-class pairs and 300 inter-class

pairs, was employed.

In this experiment the basis U and the detector in [48]

were not used since they are based on images outside the

database. To create the initializations and a new ULFW, the

method for automatic construction of deformable models

presented in [3] was employed. The goal of this method

is to build a deformable model using only a set of images

with the corresponding face bounding boxes. To define the

face bounding boxes without using a pre-trained detector,

the deep funneled images of the LFW [14] were employed.

Therefore, since these images are aligned, the exact face

bounding box is known. Subsequently, a deformable model

was built automatically from the training images of each

fold. The created model was fitted to all images and those

(from training images) with fitted shapes similar to the mean

shape were selected to build the basis ULFW. In each fold

the images were frontalized using the ULFW and they were

cropped subsequently. The gradient orientations φ1, φ2 of

each image pair were extracted and the cosine of difference

between them ∆φ = φ1 − φ2 was normalized to the range

[0 − 2π] and used as the feature of the pair. These fea-

tures are classified by a Support Vector Machine (SVM)

with an RBF kernel. The performance of the RSF is com-

pared against that obtained by the Fisher Vector Faces [33],

MRF-Fusion-CSKDA [27], and the EigenPEP [19] meth-

ods5. The mean classification accuracy and the correspond-

ing standard deviation computed based on 10 folds are re-

ported in Table 5. By inspecting Table 5 it can be seen that

the RSF outperforms the MRF-MLBP and the Fisher Vector

Faces and performs comparably with the recently published

method EigenPEP. In [27] by using an MRF, which opti-

mization is computationally heavy, for dense image match-

ing and three different multi-scale features an accuracy of

0.9589±0.0194 is achieved. We tested the proposed frame-

work by using different multiple features and we observed

the same accuracy improvement as in [27]. However, the

scope of the conducted experiment was to validate the qual-

ity of the frontalized images and that is why we used only

IGOs which is a very simple feature.

Table 5. LFW: Mean classification error and standard deviation.
Method Mean ± Std

Fisher vector faces [33] 0.8747± 0.0149

EigenPEP [19] 0.8897± 0.0132

LFW3D-IGOs-SVM [12] 0.7928± 0.0175

RSF 0.8881± 0.0078

In order to compare the RSF with the recently pro-

posed frontalized version of LFW named LFW3D [12], the

same classification framework as before was applied. The

achieved accuracy is 79.28% while the accuracy achieved

by the RSF is 88.21%. This is a quite interesting result

since the proposed RSF method does not use any kind of

3D information. This is due to the fact that in RSF sparse

noise such as occlusions and illuminations is removed from

the frontalized images.

4. Conclusions

In this paper, to the best our knowledge, we presented

the first method that jointly performs landmark localization

and face frontalization using only a simple statistical model

of few hundred frontal images. The proposed method out-

performs state-of-the-art methods for face landmark local-

ization that were trained on thousands of images in many

poses and achieves comparable results in pose-invariant

face recognition and verification without using 3D elabo-

rate models or Deep Learning-based features extraction.
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