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Robust Steady-State Filtering for Systems With
Deterministic and Stochastic Uncertainties

Fan Wang, Member, IEEE,and Venkataramanan Balakrishnan, Member, IEEE

Abstract—For uncertain systems containing both deterministic
and stochastic uncertainties, we consider two problems of optimal
filtering. The first is the design of a linear time-invariant filter that
minimizes an upper bound on the mean energy gain between the
noise affecting the system and the estimation error. The second is
the design of a linear time-invariant filter that minimizes an upper
bound on the asymptotic mean square estimation error when the
plant is driven by a white noise. We present filtering algorithms
that solve each of these problems, with the filter parameters deter-
mined via convex optimization based on linear matrix inequalities.
We demonstrate the performance of these robust algorithms on a
numerical example consisting of the design of equalizers for a com-
munication channel.

Index Terms—Linear matrix inequality, parametric uncer-
tainty, robust filtering.

I. INTRODUCTION

T HE problem of signal estimation plays an important role in
several engineering applications, especially in signal pro-

cessing, control, and communications. The basic problem is il-
lustrated in Fig. 1. Here, is the signal to be estimated,is the
measured signal, and is a noise input, typically with a sto-
chastic description. The signal estimation problem consists of
designing a filter that generates estimatesof that are optimal
over realizations of the noise. The measures for optimality
typically involve the estimation error, which is simply the dif-
ference between and .

A number of standard estimation problems in signal pro-
cessing, control, and communications can be posed in the
framework in Fig. 1; see, for example, [1] and [2] and the
references therein. Perhaps the best-known estimation problem
is the Kalman filtering problem [3]. Here, the plant generating
the signal in Fig. 1 is linear time-invariant (LTI), and the noise
input is a zero-mean unit variance white noise sequence. The
Kalman filter implements a recursive algorithm that, at each
step, minimizes the mean square value of the estimation error,
i.e., it is an “MMSE filter.” This recursive algorithm converges
to a steady-state Kalman filter if the plant is stable. Another
class of filters for LTI plants are the so-called -optimal

Manuscript received June 10, 2002; revised March 11, 2003. This work was
supported by the Office of Naval Research under contract N00014-97-1-0640.
This paper was presented at the IEEE Conference on Decision and Control,
Phoenix, AZ, 1999. The associate editor coordinating the review of this paper
and approving it for publication was Dr. Olivier Besson.

F. Wang is with the Advanced Radio Technology, GTSS, Motorola Inc., Ar-
lington Heights, IL 60004 USA (e-mail: fanw@cig.mot.com).

V. Balakrishnan is with the School of Electrical and Computer Engi-
neering, Purdue University, West Lafayette, IN 47907–1285 USA (e-mail:
ragu@ecn.purdue.edu).

Digital Object Identifier 10.1109/TSP.2003.816861

Fig. 1. Block diagram describing the estimation framework.

filters [4]. With the quantity interpreted as the
energy of the input signal , the -optimal filter minimizes
the largest energy gain (or gain, norm of the linear
estimation) from input to the estimation error. The ideas
behind the Kalman filtering algorithms and the -optimal
algorithms can be combined to design the so-called mixed
performance filter [5], [6].

The specific estimation problems described so far assume that
the model of the plant is known exactly. However, in most cases,
models of engineering systems are only approximate. This mis-
match between the actual plant and its model arises from sev-
eral factors, such as dynamics and nonlinearities that are either
neglected to make the model tractable or are simply unknown,
and uncertainties in model parameters and model structure that
arise from the limitations of system identification procedures
[7]. Therefore, filters must be designed with graceful perfor-
mance degradation in the presence of modeling errors [8]. This
issue of “robust estimation” has been the focus of a number of
recent publications; see, for example, [9]–[11].

In the literature, two types of parametric uncertainties have
been considered in the context of robust estimation. The first
type consists of deterministic uncertainties that are assumed to
lie in some bounded set. In this setting, the objective of the de-
signed filter is to optimize the worst-case performance (or an
upper bound on the worst-case performance in cases when it
is too hard to optimize the worst-case performance directly)
of the filtering over all possible values of the uncertainties. In
[12], the resulting robust estimation problems for such un-
certain systems are solved by reformulating them as optimiza-
tion problems with matrix inequality constraints; these prob-
lems are then numerically solved using a heuristic algorithm.
In [13], a steady-state robust Kalman filter for systems with
norm-bound uncertainties is designed by solving two Riccati
equations. In [14], an alternate approach is presented to de-
sign robust filters that requires the solution of a single convex
optimization problem with linear matrix inequality (LMI) con-
straints. The filters developed here are all linear time-invariant,
and worst-case performance in the presence of uncertainties can
be guaranteed by a single quadratic Lyapunov function. To re-
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duce the conservatism by using a single quadratic Lyapunov
function for all the possible uncertainties, parameter-dependent
Lyapunov functions are applied in robust filter design [15], [16]
for the so-called polytopic uncertain systems, where the state-
space matrices are affine functions of bounded time-invariant
parametric uncertainties.1 Robust recursive filters for systems
with deterministic norm-bound uncertainties can be designed
using least-squares approach [17] and set-membership approach
[18].

The second kind of parametric uncertainties that have been
studied in the literature consist of those with a stochastic de-
scription. These uncertainties can also be viewed as multiplica-
tive noise inputs to the system. In this setting, the uncertain-
ties in state-space matrices are random variables with bounded
variance. The objective of the designed filter is to minimize the
expected squared estimation error (or an upper bound, if nec-
essary) averaged over the uncertainties using the knowledge of
their statistics. For such uncertain systems, a robust recursive
Kalman filtering algorithm was presented in [19], where at each
step, an upper bound on the mean square of the estimation error
is minimized using semidefinite programming (SDP). The op-
timal filtering problem that minimizes the mean energy of the
estimation error for systems with stochastic uncertainties re-
mains to be explored.

Existing treatments of the robust estimation problem in
the literature consider all the uncertainties to have either a
deterministic description or a stochastic description. However,
in most realistic situations, systems are best modeled as
having a mix of deterministic and stochastic uncertainties. In
a typical wireless communication channel, for example, real
field experimental data [20], [21] suggest that the channel
coefficients are time-varying random variables that depend on
uncertainties including propagation path loss, antenna heights,
irregular terrain conditions, clutter environments, and local
conditions such as buildings, trees, and road intersections.
Assuming that the arriving signal is a combination of many
reflected signals with random phase, the channel coefficients
can be modeled as Gaussian random variables whose mean and
variance are themselves uncertain (and thus can be modeled
as deterministic uncertainties). This yields a model that has a
mixture of deterministic and stochastic uncertainties.

Thus, a model that includes both deterministic and stochastic
parametric uncertainties can characterize a larger set of uncer-
tain systems. In this paper, we consider steady-state robust fil-
tering problems for such models; see Fig. 1. Specifically, we
design the following.

a robust steady-state MMEG filter, i.e., an LTI filter that
minimizes an upper bound on the largest value (over all
possible values of the deterministic uncertainties and the
statistics of the stochastic uncertainties) of the mean-en-
ergy gain (MEG) from the noise input to the estimation
error ;
a robust steady-state MAMSE filter, i.e., an LTI filter that
minimizes an upper bound on the largest value (over all
possible values of the deterministic uncertainties and the

1The uncertain system is calledpolytopicsince the set of uncertain state-space
matrices is a polytope.

statistics of the stochastic uncertainties) of the asymptotic
mean square (AMSE) value of the estimation error.

In each case, the robust filter design problem is reduced to
a convex optimization problem with linear matrix inequality
(LMI) constraints. This problem can be numerically solved ef-
ficiently using standard SDP algorithms [22]–[24]. The com-
putational burden with SDP increases gracefully (in particular,
polynomially) with the problem size. See [25] for a more de-
tailed discussion on the efficiency of SDP algorithms.

The organization of the paper is as follows. In Section II, we
describe the mathematical framework underlying our problem
and formally pose the two filter design problems. In Sections III
and IV, we describe the design of a steady-state robust MMEG
filter and MAMSE filter, respectively. In Section V, we present
a numerical example, consisting of an equalizer design for a
communication channel, that illustrates the performance of the
new filters developed in this paper. All the proofs are in the
Appendix.

Our notations are standard. denotes the expectation of a
random variable (matrix). ( ) means that is a
symmetric and positive definite (semidefinite) matrix. Tris
the trace of a matrix. denotes the convex hull. is the
Euclidean norm. is the the set of non negative integers. For
discrete time systems considered in the paper, the state-space
matrix is stable if all the eigenvalues of are strictly inside
the unit circle.

II. PRELIMINARIES

Consider the following uncertain system:

(1)

where

Here, , is the state, is the
measured output, is the signal we wish to estimate,
and is the noise input. are deterministic
uncertain parameters that for each satisfy ,

. , are zero-mean white noise
processes that satisfy , where

is a Dirac Delta function.2 The initial condition is a

2The more general case where� have nonzero means, and/or nonunity vari-
ances, can be reduced to the case considered here via simple linear transforma-
tions and normalization, followed by absorbing the linear transformation and
normalization constants into the state-space matrices.
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random vector. The random processesand , ,
and the random vector are mutually independent.

A closer look at (1) shows that there are product terms be-
tween the uncertainties and the noise input . Such terms can
be used to accommodate the situation when a system is driven
by noise with uncertain variance; see the numerical example in
Section V, as well as [11] and [26].

System (1) is said to bemean square stableif with
and for all , we have

regardless of the initial condition .
Let

(2)

be the vertices of the polytope

The following lemma gives a sufficient condition for the mean
square stability of system (1). This lemma is an extension of the
corresponding result [27] for systems with stochastic parametric
uncertainties to systems with both deterministic and stochastic
uncertainties.

Lemma 2.1:System (1) is mean square stable (or second mo-
ment asymptotically stable [28]) if there exists a matrix
such that

(3)

Moreover, the quadratic Lyapunov function
satisfies as .

Lemma 2.1 implies that for any
and satisfying the recursion

(4)

where , (3) guarantees the conver-
gence of as . Indeed, this conclusion can be gen-
eralized that for any ( can be indefinite) satisfying
the recursion (4), (3) guarantees the convergence of . This
conclusion follows from the fact that can be represented
as , where and satisfy
the recursion (4) separately. Lemma 2.1 will be applied in the
proof of Lemma 4.1.

Lemma 2.1 gives a sufficient condition for the mean square
stability of system (1). If there is no deterministic uncertainty,
i.e., for all and , (3) is also necessary for the system
to be mean square stable [27], [28]. However, for more general

, (3) is not necessary for the mean square stability since
it requires the use of asinglequadratic Lyapunov function to
prove the mean square stability of system (1) for all possible

choices of the state-space matrices . If there exists a matrix
such that (3) holds, system (1) is said to bemean square

quadratically stable.
Our objective in this paper is to design a steady-state linear

time-invariant filter

(5)

where . We may write down a state-space real-
ization for the interconnection in Fig. 1:

(6)

We will focus on two design objectives:

Robust MMEG filter design
If almost surely, and the input signal has

bounded mean energy, i.e., , we
wish to determine the filter parameters by
solving the following problem:

(7)

Condition (7) has the interpretation of minimizing an upper
bound on the largest value (over all possible values of
the deterministic uncertainties and the statistics of the sto-
chastic uncertainties) of the mean-energy gain from the
noise input to the estimation error.
Robust MAMSE filter design

We wish to determine the filter parameters
to solve the following problem:

s.t. (8)

where the input signal is a zero-mean unit variance white
noise. Condition (8) has the interpretation of minimizing
an upper bound on the largest (over all possible values of
the deterministic uncertainties and the statistics of the sto-
chastic uncertainties) asymptotic mean square value of the
estimation error .

III. ROBUST MMEG FILTER

In this section, we consider the robust MMEG filter design
problem. For system (1), with almost surely, the
quantity

(9)

will be referred to as the worst-case mean energy gain
(worst-case MEG). The following lemma gives a sufficient
condition for the worst-case MEG to be less than a level.
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Lemma 3.1:The worst-case MEG of system (1) is less than
if there exists a matrix such that

(10)

where

The upper bound on the worst-case MEG given by (10) can
be conservative, in general. However, if there exist no determin-
istic uncertainties, it turns out that the upper bound is tight, i.e., it
equals the worst-case MEG. We also note that if the worst-case
MEG is bounded, then the system must be mean square quadrat-
ically stable. This simply follows from the fact that (10) implies
that

which is equivalent to (3) with .
We are now ready to state our main result on the robust

MMEG filtering: that a robust MMEG filter for system (1) can
be designed by solving a semidefinite programming problem
with linear matrix inequality constraints.

Theorem 3.2:For the uncertain system (1), there exists a full
order steady-state filter (5) such that the worst-case MEG from
the noise input to the estimation erroris less than if there
exist , , ,

, and such that

(11)

where

... ...

...

and (12)

If there is no deterministic uncertainty, the smallest such
that (11) holds is the exact value of MEG.

Condition (11) is a sufficient condition for the existence of a
linear time-invariant filter such that the worst-case MEG from

to of system (1) is less than . For system (1) with no
parametric uncertainties, corresponds to the norm con-
straint on the linear estimation.

By minimizing , we can design an optimal robust MMEG
filter (problem (7)). This can be represented as the following
semidefinite programming problem:

(11) (13)

We summarize the various steps comprising the construction
of a robust MMEG filter using a feasible solution of LMI (11).

Robust MMEG Filtering Algorithm
1) Solve the semidefinite programming
problem (13) using an efficient SDP al-
gorithm [22]–[24] , and find the optimal
values of , , , , and .
2) Define and .
Then, and can be represented as

(14b)

Note that (11) implies and that
is nonsingular.
3) According to (31) , construct the state-
space matrices of the optimal MMEG filter

(15)

For the steady-state filter we constructed above, the quadratic
Lyapunov function , where defined in
(14), guarantees that irrespective of the uncertaintiesand ,
we have

IV. ROBUST MAMSE FILTER

Suppose the input is a zero-mean, unit variance white noise
random process. We now consider problem (8) of designing
a steady-state filter (5) that minimizes an upper bound on the
largest (over all possible values of the deterministic uncertain-
ties and the statistics of the stochastic uncertainties) asymptotic
mean square value of the estimation error. Here, we note that
for uncertain bilinear stochastic systems, where the norm-bound
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deterministic uncertainties appear in the state and the measure-
ment metrics ( ), robust filter with estimation error variance
constraints was designed in [29].

Lemma 4.1:Consider system (1). Suppose there exists a ma-
trix such that for

(16)
Then, there exists such that if , then

. Moreover, if , then
for every .

Lemma 4.1 provides a solution to the MAMSE filtering
problem, which is summarized in the following theorem.

Theorem 4.2:For system (1), there exists a full order steady-
state filter (5) such that when is large
enough if there exist , ,

, , and such that

Tr

(17)

where

...

with , , , , defined in
(12).

Here, we note that for system (1) with no parametric un-
certainties, corresponds to the norm constraint on the
linear estimation. The following algorithm constructs a robust
MAMSE filter for system (1) based on Theorem 4.2.

Robust MAMSE Filtering Algorithm
1) Solve the semidefinite programming
problem

(17) (18)

using an efficient SDP algorithm [22]–[24],
and find the optimal values of , , ,

, and .
2) Define and .
3. Construct the desired MAMSE filter by

(19)

In addition, the Lyapunov function , where
defined in (14), guarantees that

when is large enough.
Our robust steady-state filtering algorithm extends the re-

sults in [9] and [14] by incorporating stochastic uncertainties
in the system model. In addition, our filtering algorithm also
has the advantage that the so-called “mixed performance” fil-
tering problem [5], [6] can be solved easily by combining the
corresponding LMI conditions. This will be illustrated with the
numerical example that we describe next.

V. NUMERICAL EXAMPLE: EQUALIZER

FOR COMMUNICATION CHANNELS

We present an application of the robust MMEG and MAMSE
filtering techniques proposed in this paper on designing a linear
time-invariant equalizer for a communication channel. With
denoting the signal (modeled as white noise) that is transmitted
through the channel and denoting an additive white receiver
noise, the system is modeled by the state equations

(20)

denotes the uncertainty, assumed to satisfy
, where is deterministic and satisfies

for all ; is a zero-mean white noise process with a unit
variance and is independent ofand .

System (20) is a model of a wireless communication channel
estimated using a training sequence or a pilot signal. is the
deterministic parametric uncertainty that represents the mean
of the channel identification error, whose bounds depend on
the coherence time of the channel; is the normalized sto-
chastic parametric uncertainty that accounts for the variance of
the channel identification error, which depends on the received
reference signal power, the noise density, and the channel esti-
mator bandwidth [30].

In general, the coefficients of a wireless communication
channel are complex random variables, where the phase
information represents the delay of the sine waveform. The
model considered here has real coefficients and can be thought
of as representing an equivalent channel for either the in-phase
signal or the quadrature signal.

The nonideal channel frequency response causes successively
transmitted symbols to interfere with each other [this is just the
familiar intersymbol interference (ISI)]. We will therefore de-
sign a linear time-invariant equalizer for the channel (20) in
order to estimate the transmitted signal (see Fig. 2), with
the performance criteria presented in Sections II–IV. We will
allow ourselves a unit delay in equalization.

In order to employ the techniques proposed in the paper, we
need to add one more state variable in (20). The unit delay in
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Fig. 2. Communication channel with an equalizer.

equalization adds another state variable, resulting in the fol-
lowing modified channel model:

(21)

Using the techniques presented in Sections II–IV, we design
a filter to estimate (i.e., the transmitted signalwith a unit-
delay) to minimize an upper bound of the worst-case AMSE
of the estimation, subject to an additional MEG constraint [5],
[6]. (The MEG constraint can be thought as a safeguard against
the possibility that the statistics of or are not actually white
[31].) This mixed performance filtering problem—that of de-
signing an optimal steady-state MAMSE filter subject to an
MEG bound of —is

(11) and (17) (22)

Solving the optimization problem (22) for a series of values of
, we obtain a “tradeoff” curve, shown in a solid line in Fig. 3.

Every point on the tradeoff curve represents a linear time-in-
variant equalizer that is guaranteed to yield i) a worst-case MEG
from and to that is less than and ii) with unit variance
white noise processes and , a worst-case AMSE of the esti-
mation that is less than . The dashed line in Fig. 3 shows the
best bound on the MAMSE of the estimation with no MEG con-
straint. This is simply the optimal answer from the semidefinite
programming problem (18).

In Fig. 3, we also show the performance of the “zero filter.”
We require the equalizer coefficients . This
filter leads to a trivial equalizing result of . Not surpris-
ingly, this filter yields AMSE MEG , which is verified by
the and norms of (21) with as the system output.

We next consider one specific filter, constructed from the so-
lution of the optimization problem (22) with . From
Fig. 3, it can be seen that the corresponding value ofis about
0.19. Thus, this filter guarantees that the worst-case MEG from

and to is less than one for all the uncertaintiesand
and that the worst-case AMSE of the estimation is less than 0.19
or 7.2 dB. For this filter, we simulate two quantities:

Fig. 3. Tradeoff between the optimized MEG and the AMSE performance
constraints.

• the averaged mean square value of the estimation error at
time step , computed as

MSE (23)

where is the time-course of the estimation error over
the th Monte Carlo run;

• the averaged energy gain of the filter fromto at time
step , computed as

MEG (24)

where and are the time-courses of the estima-
tion error and the transmitted signal over theth Monte
Carlo run.

Two sets of simulations are shown in Fig. 4. The first
case, which is shown in Fig. 4(a), corresponds to the deter-
ministic uncertainty being held constant at 0.9999, i.e.,

. The second case, which is shown in Fig. 4(b),
corresponds to , assuming random values in (, 1). The
transmitted signal and the additive noise have zero mean
and unit variance. The estimates of the MSE and MEG were
computed by averaging over 1000 runs [i.e., in (23)
and (24)].

It is evident from Fig. 4 that the MSE in both cases is bounded
by , as guaranteed by our design. It is also clear that
the MEG in both cases is bounded by ; indeed, in this
case, the MEG is bounded by. (It can be shown from (24) that
when the input signal is white, it is always true that MEG
AMSE for large enough . For more general (colored) input
signals, the worst-case MEG of the estimation error is upper
bounded by .)

For the purpose of comparison, we also show the averaged
MSE of the zero filter in Fig. 4. The estimation error of the zero
filter is the same as the transmitted signal.
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(a)

(b)

Fig. 4. Averaged mean square and mean energy gain of the estimation error.

VI. CONCLUSION

We have developed robust minimum mean-energy gain
(MMEG) and minimum asymptotic mean-square error
(MAMSE) filtering algorithms for systems with both deter-
ministic and stochastic uncertainties. We have illustrated, via a
numerical example, the application of these filtering techniques
toward designing equalizers for communication channels.

APPENDIX

A. Proof of Lemma 2.1

Suppose that there exists a matrix such that (3) holds.
By convexity, (3) implies that

(25)
With , the correlation of the state

satisfies the recursion (4) and . Define a Lyapunov
function Tr . Then,

, with equality holds if and only if .
Then

Tr

From (25), we get that with equality
holds if and only if . Therefore, is monoti-
cally decreasing and approaches zero as . Thus, we have

.

B. Proof of Lemma 3.1

First, let us define a Lyapunov function
with . If

(26)
we then have

Following a similar argument as in the proof of Lemma 2.1,
it can be checked that (26) is equivalent to LMI conditions

(27)

for , where . With a change
of variable and standard matrix manipulations, it
follows that (27) is equivalent to (10).

C. Proof of Theorem 3.2

From Lemma 3.1, we have

if there exists a matrix such that

(28)

where

...
...

...

and . Let be partitioned as

and (29)
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where , . According to the
matrix completion lemma (see, for example, [32]), by requiring

, such a decomposition is feasible for some fixed
and if and only if and satisfy

(30)

Define new variables [14]

(31)

and . Note that we may always require to be
nonsingular in (29). If is singular, we may add some per-
turbations on to enforce this requirement. Multiplying by

and from the
left and right sides of (28), where

we get the linear matrix inequality (11). Sinceis nonsingular,
(11) and (28) are equivalent. Finally, we note that by Schur’s
complement lemma, (30) is implied by the LMI (11). This com-
pletes the proof.

D. Proof of Lemma 4.1

Suppose that there exists such that (16) holds. Let
and .

Since , , where ,
are defined in (2), we have

for some .
By (1), satisfies the recursion

We then have

It can be verified by recursion that

(32)

where

and . Condition (16) implies that

Then, from Lemma 2.1, we have . There-
fore, there exists such that if , then . To
prove the second claim, suppose that . It can be im-
mediately verified from (32) that for .

E. Proof of Theorem 4.2

The proof of Theorem 4.2 is similar to the proof of Theorem
3.2.

First, from Lemma 4.1, there exists a filter (5) such that
when is large enough, if

Tr

(33)

where , and

and

Following similar steps as in the proof of Theorem 3.2, the claim
made in the theorem follows.
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