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Robust Stereo Matching Using Adaptive
Normalized Cross-Correlation

Yong Seok Heo, Student Member, IEEE, Kyoung Mu Lee, Member, IEEE, and
Sang Uk Lee, Fellow, IEEE

Abstract—A majority of the existing stereo matching algorithms assume that the corresponding color values are similar to each other.
However, it is not so in practice as image color values are often affected by various radiometric factors such as illumination direction,
illuminant color, and imaging device changes. For this reason, the raw color recorded by a camera should not be relied on completely,
and the assumption of color consistency does not hold good between stereo images in real scenes. Therefore, the performance of
most conventional stereo matching algorithms can be severely degraded under the radiometric variations. In this paper, we present a
new stereo matching measure that is insensitive to radiometric variations between left and right images. Unlike most stereo matching
measures, we use the color formation model explicitly in our framework and propose a new measure, called the Adaptive Normalized
Cross-Correlation (ANCC), for a robust and accurate correspondence measure. The advantage of our method is that it is robust to
lighting geometry, illuminant color, and camera parameter changes between left and right images, and does not suffer from the
fattening effect unlike conventional Normalized Cross-Correlation (NCC). Experimental results show that our method outperforms
other state-of-the-art stereo methods under severely different radiometric conditions between stereo images.

Index Terms—Stereo matching, color, radiometric variation, illumination, camera exposure, gamma correction.

1 INTRODUCTION

1.1 Motivation

STEREO matching aims to obtain 3D information by finding
the correct correspondence between images captured
from different point of views or at different times. However,
finding the accurate correspondence is not an easy task;
there exist a number of difficulties, such as occluded
regions, textureless regions, and object boundaries. This
issue has been an important area of research in the past
several decades, and considerable progress has been made
with respect to the problem surrounding stereo matching
algorithms. Efforts toward this end have resulted in
numerous stereo algorithms that perform relatively well
for the images in the Middlebury database [1], [2].

These algorithms are based on a common assumption
that corresponding pixels have similar color values, an
assumption we refer to as color consistency. As a conse-
quence, a majority of these utilize a data cost which
includes simple L, or L, difference of intensities or color
values of corresponding pixels. However, it should be
noted that these methods do not hold good for stereo
images which do not have similar corresponding color
values. Nonetheless, a few studies have been performed in
order to solve this problem.
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In a real scenario, various factors prevent two corre-
sponding pixels from having the same color value. One
major preventing factor is a radiometric change, which
includes lighting geometry, illuminant color, and camera device
changes between stereo images. Different color values are
obtained when the same scene is viewed under a different
lighting geometry; the reason for this is that the intensity at
each point is determined by the angle between the direction
of the incident light and the direction of the surface normal
in a Lambertian model. After fixation of the lighting
geometry, the object when viewed under different illumi-
nant colors also produces different colors because there is a
change in the spectral distribution of the reflected light from
the object. Furthermore, color changes can also be induced
by using a camera device or setting changes such as
exposure variations because there are options to vary the
total amount of photon that is incident to the camera.
Common situations such as these can be a reason for
practical problems in stereo images such as aerial images.
Having said that, one should not completely trust the raw
color recorded by a camera for purposes of matching, and it
remains that the color consistency assumption is no longer
valid for stereo images in real scenes. Under radiometric
variations such as these, the performance of most stereo
matching algorithms can be severely degraded. To prove
this point with an example, we show in Fig. 1 the case in
which a conventional method such as the Sum of Absolute
Difference (SAD) with Graph-cuts (GC) method fails, while
the proposed method is more robust under severe radio-
metric changes between the left and right images.

However, there exists a natural color-constancy process
in the human visual system that can compute colors
regardless of radiometric variations and also estimate the
reflectance of the object under any illumination condition

Published by the IEEE Computer Society
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Fig. 1. Comparison of the proposed method with a conventional stereo method (SAD+GC) for the illumination-varying stereo images. (a)-(b) The left
and right Aloe images with varying illumination. (c) Disparity map of SAD+GC for the input stereo image pair in (a) and (b). (d) Disparity map of the

proposed method for the input stereo image pair in (a) and (b).

[3]. In practice, however, almost all existing stereo matching
algorithms do not take into consideration this color-
constancy process. Therefore, there is a pressing need to
include this process into the matching mechanism.

In this paper, we present a new stereo matching measure
that is robust in handling various radiometric changes,
including local radiometric variations caused by varying
lighting geometry, as well as global radiometric variations
that are brought about by changes in illuminant color and
camera parameter [4]. It should be noted that this paper is
based on the assumption of the Lambertian world. Under
the assumption, the color formation process was explicitly
modeled, unlike other methods. Then, we have extracted
the invariant color information from the color model and
thereby propose, in this paper, a new matching measure,
called Adaptive Normalized Cross-Correlation (ANCC), which
is robust to various radiometric changes.

1.2 Related Works

Hirschmiiller and Scharstein carried out an evaluation of
various cost functions for stereo matching on radiometri-
cally different images caused by factors such as light
configuration, camera exposure, gamma correction varia-
tions, and noise, etc [5]. Under various radiometric
conditions, they compared Birchfield and Tomasi data cost
(BT) [6], BT with Laplacian of Gaussian (LoG) filtering [7],
BT with Mean filtering, BT with Rank transform [8],
Normalized Cross-Correlation (NCC), and Hierarchical
Mutual Information (HMI) [9] with correlation-based
method, as well as the semiglobal and global method.
Although BT cost is a very popular data cost which is
insensitive to camera sampling, the major drawback of it is
that it cannot handle radiometrically different images as it
employs the use of linearly interpolated function of
intensity values. Although the LoG filter calculates sec-
ond-order derivatives that are insensitive to outliers [7], BT
with LoG filtering itself is insufficient for use in stereo
matching. BT with Rank transform [8] possesses a robust
property to radiometric variations because the Rank trans-
form is based on the principle that the rank between pixel
intensities does not vary after radiometric variations.
Although it is effective in handling global radiometric
changes, it is weak with respect to local radiometric
variations. NCC is a highly popular as well as traditional
measure for matching contrast-varying images [10], [11]. It
measures only the cosine of an angle between matching

vectors because normalization renders the matching vectors
to have zero mean and one standard deviation. Therefore,
NCC is suitable only for matching affine-transformed
intensity or color values and it also suffers from the
fattening effect that object boundaries are not reconstructed
correctly similar to the Sum of Absolute Difference (SAD)
and the Sum of Squared Difference (SSD). Mutual Informa-
tion (MI) has been used as a similarity measure in computer
vision [9], [12], [13], [14]. For stereo matching, Kim et al. [14]
proposed a pixelwise data cost in the MAP-MRF framework
based on mutual information. Their work was improved by
Hirschmiiller [9] and extended to handle occlusion and
speed up the computation by using the Hierarchical Mutual
Information (HMI). The advantage of the MI-based cost is
that it enables finding the correspondence between globally
transformed image pairs by utilizing the joint histogram of
intensities between two input images. However, local
radiometric variations due to lighting geometry changes
cannot be handled by Ml-based cost. Because of the just-
discussed reasons, Hirschmiiller and Scharstein [5] con-
cluded that all compared costs previously described fail to
achieve success with respect to strong local radiometric
changes caused by the light configuration changes. Besides,
Wang et al. [15] presented a new invariant measure called
light transport constancy (LTC) based on a rank constraint
for non-Lambertian surfaces. Their method required at least
two stereo image pairs with different illumination condi-
tions to be available for making use of rank constraint.
Ogale and Aloimonos [16] presented a contrast-robust
stereo matching algorithm for local matching using multi-
ple frequency channels. Negahdaripour [17] proposed a
general linear brightness constraint for handling radio-
metric variations between images. The principle behind his
model was that the linear transformation of the brightness
between image patches was assumed, and the linear
transformation parameters and the optical flow vectors
were simultaneously estimated. Zhang et al. [18] presented
a unified MRF framework for the estimation of illumination
variation and disparity map simultaneously. Their frame-
work sought to define Illumination Ratio Map (IRM), and
assumed disparity and illumination smoothness.

A major drawback of most of the above-mentioned
methods is that these utilize only raw intensity (or color)
information, which can be sensitive to severe radiometric
variations for stereo matching due to the fact that raw
intensity depends only on the direction of the light and the
surface normal and does not take into consideration the
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color of surface and light and information regarding the
camera parameters. Although the intensity information is
applied widely in global transformations such as exposure
variations, it still remains sensitive to local variations
caused by changes in lighting geometry. Taking all of these
factors into consideration, in this paper we intend to show
that it is more efficient and robust to use invariant color
information rather than the simple raw intensity (or color)
information for handling various local and global radio-
metric variations.

2 STEREO ENERGY FORMULATION

In this paper, we define stereo matching as a minimization
problem of the following energy in the MAP-MRF frame-
work [19]:

E(f) - Edata(f) + Esmooth(f):
Egata(f) = Z Dy(fp):

Esmooth(f) = Z Z ‘/pq(fpv fq)v
)

P qeN(p

(1)

where N(p) is the neighborhood pixels of p and D,(f,) is the
data cost, which is a measure of the dissimilarity between
pixel p in the left image and pixel p + f, in the right image.
Vig(fp, fq) is the smoothness cost that favors the piecewise
smooth objects. Taking these costs together, we can arrive at
the optimal disparities by minimizing the total energy in (1).
From the findings of the study by Meltzer et al. [20], it can
be inferred that the globally optimal disparity map that was
even obtained by the powerful tree-reweighted message
passing (TRW) [21] was not perfect because of the incorrect
modeling of the energy functional. In order to find out
correspondence, the most fundamental part is a matching
cost (data cost) computation. This acted as a motivation for
us to concentrate on the modeling of a more accurate,
radiometric-insensitive data cost for the MAP-MRF frame-
work in real scenarios. In order to model radiometric-
insensitive data cost, the color formation process has to be
taken into consideration in an explicit manner and proper
color-insensitive matching information has been extracted.

3 COLOR-INVARIANT INFORMATION

Color-constancy algorithms [3], [22], [23], [24], [25], [26],
[27] attempt to separate the illumination and the reflectance
components on images similar to the human visual system.
The first attempt made toward this end was the Land’s
retinex algorithm [22] with the objective of modeling and
computing the human color constancy. It is worth mention-
ing here that retinex algorithms can calculate only the
lightness sensations and not the physical reflectance in a
given image and can compensate for nonuniform lighting in
an effective manner [3], [22], [23], [24]. Retinex algorithms,
however, are highly sensitive as well as dependent on color
variations of the adjacent objects in the images [25].

The illuminant in given images can be estimated using
the gamut-mapping algorithm [26] and the color-by-
correlation algorithm [27]. However, the estimation of the

illuminant is not an easy task because the color constancy
problem is ill-posed [28].

The color-invariant approaches [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39] find the function which is
independent of lighting conditions and imaging devices.
There exist two types of invariants, namely, the Lambertian-
based color invariant and the invariant that is designed to
deal with non-Lambertian reflectance effects such as
specular highlights.

With regard to Lambertian object, Geusebroek et al. [32]
derived invariant color features such as edges based on the
Gaussian scale-space framework. Gevers and Smeulders
[33] proposed various color-invariant features for robust
object recognition. However, these invariants suffer from
instabilities under certain conditions. Gevers and Stokman
[34] constructed a color-invariant histogram using variable
kernel density estimation to resolve these instabilities.
Finlayson et al. [35] made a suggestion in their study for
the removal of shadow from color images. Ebner [36]
suggested an algorithm to shift colors of the input image in
the direction of the gray vector according to the gray
world hypothesis.

Various studies also exist in the published literature for
finding invariants for non-Lambertian objects. Berwick and
Lee [37] suggested utilizing a chromaticity space based on
log-ratio of sensor responses for illumination pose and color
and specular invariance. Tan and Ikeuchi [38] devised a
method for the separation of the specular components from
diffuse reflection components using the iterative logarith-
mic differentiation framework. Zickler et al. [39] suggested
a specular-invariant by making use of the dichromatic
reflectance model [40], [41]. Their method is based on the
linear transformation of RGB color space (called SUV color
space) with the assumption that the source-illuminant color
is known [39].

Among these color-invariant approaches, the most
simple and commonly used methods for Lambertian sur-
face are the chromaticity normalization and the gray world
assumption [42]. Chromaticity normalization is primarily
used for the removal of the lighting geometry effects,
whereas the gray world assumption is used for the removal
of the illuminant color effects. However, neither of the two
methods can remove the dependency of both lighting
geometry and illuminant color simultaneously. A compre-
hensive normalization method strives to remove both of
them iteratively [29] and noniteratively [31].

3.1 Color Image Formation Model

The following equation describes an image taken by a linear
imaging device [27], [30]:

= [ EWS @i (2)

where hj represents the kth sensor (color channel) response
at a point z in the scene and X is the wavelength. E(\)
represents the spectral power distribution of the incident
illuminant, S*(\) represents the surface reflectance at a
point z in the scene, and Qi(\) stands for the spectral
response of the kth sensor. As this work is based on the
assumption of the Lambertian surface, the radiometric
variations induced by non-Lambertian reflectance effects



810 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 4, APRIL 2011

such as specular highlights are not considered. For a camera
sensor model, we also assume the diagonal model [43], [44],
[45], from which the spectral response is approximated as
the Dirac delta function. Therefore, Qi(\) =¥8(A — \x),
which represents a Dirac delta function at wavelength ;.
Now, (2) simply becomes

hi; = E(A\)S® (). (3)

During the image acquisition process, the device responds
in a linear fashion. However, for the compression of the
dynamic range, there is a nonlinear transformation of the
image data before the storage process. This process is called
gamma correction and it results in the raising of the value of
each RGB response to a power function of an exponent ~y
value depending on the camera [46], [47], [48]. Taking all of
these factors into consideration, the color image formation
model at pixel p can be represented as follows [31]:

R(p) R(p) p(p)aR(p)’
G@p) | = | Glp) | = | p)G(K)" |, (4)
B(p) B(p) p(p)cB(p)’

where each pixel p has its own individual brightness factor
p(p) which depends on the angle between the direction of
the light and the direction of the surface normal at that
point. Changing illumination color while fixing the lighting
geometry would result in changes in the responses in three
color channels by the global scale factor a, b and ¢,
respectively.

3.2 Color Image Normalization

As mentioned previously, chromaticity normalization [42]
is commonly employed for the elimination of the effect of
lighting geometry that depends only on the direction of
surface normal and the direction of light in the Lambertian
model. At pixel p, if we divide each of R(p), G(p), and B(p)
by the averages of them, then we can obtain the p(-)
independent color representation as follows:

3p(p)aR(p)’ n 3aR(p)’
p(p)(aR(p)"+bG(p) +cB(p)") (aR(p)"+bG(p) +cB(p)")

3p(P)bG (p) _3bG(p)’ (5)
p(p)(aR(p)"+bG(p) ' +cB(p)") (aR(p)"+bG(p) +cB(p)")

3p(p)cB(p)’ 3cB(p)’

p(p)(aR(p)’+bG (p)"+cB(p)) (aR(p)"+bG(p)"+cB(p)")

On the other hand, we can acquire an illuminant color-
independent representation by the gray world assumption
[42]. By dividing each of R(p), G(p), and B(p) by its channel
mean value, we can obtain the a, b, and ¢ independent
expressions as follows:

p0)aR () S LrTE
p(p)aR(p)” Py Eﬁ o
gl ppGo)” | _ | Do)
p(p)bG(p)w T G | T G |
p(p)cB(p)’ p(p)eB(p)” Np(p)B(p)”
Boean S PBE) (6)
fop = et BO) o 5 GO)
mean N b mean N b
B, = 2 B0
N

where N represents the number of pixels in the image I.
As mentioned earlier, it should be noted that neither

chromaticity normalization nor gray world normalization
can remove both the dependency of lighting geometry and
illuminant color simultaneously. Finlayson et al. proposed
a comprehensive normalization method that combines the
two normalization methods in one framework iteratively
[29] and noniteratively [31]. However, because their
method requires global image information such as channel
mean value, it is not appropriate to apply the method in a
naive manner to the stereo matching problem. For instance,
in the gray world normalization process described in (6),
the left and right Ropean values are mostly not the same
because of the view changes characteristic of stereo images.
The inference that can be drawn from this is that the true
corresponding pixel values are still not the same between
stereo images even after comprehensive normalization.
Thus, applying the stereo matching algorithm to the
prenormalized images by this method does not produce
satisfactory results as shown in our experiments.

4 STEREO MATCHING USING ANCC

Let us make an assumption that Ij(p) and Iz(p + f,) are
corresponding pixel values, where I € {R,G, B} and I.(p)
is the value in the left image at pixel p and Ir(p + f,) is the
value in the right image at pixel p+ f, in each color
channel, respectively. NCC [10] is a well-known similarity
measure between two pixels with neighbors that is defined
by the equation

NCC(f)

>

tLEW (),
tREWR (p+fp)

[I(tr) = Ir(p)] x [Ir(tr) — In(p + f,)] /

> Mu(tn) = L)’

tLeWr(p)

x\/ Z [In(tr) — Ir(p+ £,)I° |,
treWR(p+fp)
(7)

where I;,(p) and Iz(p + f,) are the mean values of pixels in
the window Wy (p) centered at pixel p in the left image and
the mean values of pixels in the window Wgx(p+ f,)
centered at pixel p + f, in the right image, respectively. It
should be mentioned here that this NCC is insensitive to the
following affine transformations of image intensity values
of two images [10]:

I, — kplp +vp, Ir— kglp+ vg. (8)

Simply applying this NCC directly in stereo matching of
general image pairs would result in two critically important
problems: According to (4), there could be a complicated
nonlinear relationship between two corresponding pixels
between stereo images, thereby causing NCC to cease
working. Thus, applying NCC to raw stereo images in a
naive fashion does not work well because the various
radiometric changes caused by p, a, b, ¢, and y are not taken
into consideration. The second serious problem is that the



HEO ET AL.: ROBUST STEREO MATCHING USING ADAPTIVE NORMALIZED CROSS-CORRELATION 811

R (p)

R(p+1.)

Radiometric variation

R.(p)=p,(P)a. R, (p)"
Rip+1)=plp+t )R, (p+f)"

Establishing |
affine |
relationship :

Take Log (nonlinear to linear transform)
R(p)=logR (p)
Chromaticity normalization

1 Rp)=a +7.K(p)

Rp+f,)=togRp+1,)

Kp+f)=o,+rL(0+1)

Bilateral filtered mean subtraction

Rl(p)=y. K (p)

Ri(p+ 1) =rKilp+1,)

Adaptive Normalized Cross Correlation

‘4-"\";CCmgL‘mm R (f:)

Fig. 2. Overview of the proposed algorithm.

supporting windows in the left and right images do not
appear exactly because of the view changes. As a con-
sequence, NCC usually produces a fattening effect near the
object boundaries similar to conventional window-correla-
tion-based matching measures such as SSD and SAD.

Therefore, in this work, we seek to find remedies to these
two problems. First and foremost, the nonlinear relation-
ship that exists between corresponding pixel color values
because of various unknown radiometric changes is
transformed into a linear one by employing log-chromaticity
color space. Second, in order to reduce the fattening effect
and increase the accuracy between matching windows, we
define a modified NCC measure called the Adaptive
Normalized Cross-Correlation which utilizes adaptive weight-
ing scheme. This approach is described in detail in the
following sections.

4.1 Overview of Our Approach

We provide an overview of our approach in this section. Fig. 2
depicts the overview. The principle behind our novel
approach is that the color formation model is explicitly
modeled and incorporated into a new stereo correlation
measure. To achieve this, we considered the color formation
process in an explicit manner instead of using the raw color
value for handling the various radiometric changes that occur
between stereo images. From this color model, we propose a
new data cost that is not only insensitive to the various
radiometric changes but is also able to reduce the problems
faced with window-based stereo methods such as the
fattening effect simultaneously. In order to render the color
values changed by various radiometric factors suitable for
stereo matching, we carried out a proper transformation of
the nonlinear relationship to the affine-transformed relation-
ship between the corresponding pixels that can be solved
effectively by the NCC framework. In addition, to ensure
accurate and coherent matching, we subtracted bilateral
filtered value instead of the simple window mean value for
coherent normalization around window pixels. Taking into
consideration these bilateral filtered weights again, we

defined a new correlation measure called ANCC, using
which we defined a new data cost for global energy modeling.

4.2 Log-Chromaticity Normalization

If the reflectance model is Lambertian and the spectral
response function is the Dirac delta function, then the image
is formed on the basis of (4). If the lighting geometries,
illuminant colors, and camera parameters of the left and
right images are different, they can be represented by the
following equations, respectively:

R (p) pr(p)ar R} (p)

Grlp) | = | pe(bcGY (D) |,

Bi(p) pr(p)er BY (p) (©)
RR(p + fp) PR(p + fp)aRR;/zR (p + fp)

Grlp+ 1) | = | pr(p+ £o)brGY (0 + f,)

BR(p + fp) PR(p + fp)CRB;/?I,{ (p + fp)

Without loss of generality, only the red channel value is
considered. According to (9), the corresponding left and
right color values have a nonlinear relationship because of
different gamma values, v, and ~yp, respectively. In order to
transform this nonlinear relationship into a linear one, the
logarithms of both images have to be taken. Then, each
color value can be represented by

R} (p) =1log pr(p) +logar, + v log R, (p),
Ry(p+ fp) =log pr(p + f,) +1ogar + yrlog Ry(p + f,),
(10)

where p(-) term is dependent on each pixel position relative
to the direction of the lighting and surface normal. This
log p(-) term can be eliminated by simply subtracting the
average of the transformed color values in R, G, B channels
(chromaticity normalization), which is defined by the
following equation:
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Ry (p) + GL(p) + BL(p)

3

logarbrcr n v (log Ry (p)G 1 (p)
3 3

I (p) =

B
= log pr(p) + Lp)),
(11)
Subtracting the mean value I (p) at each pixel, each color
value becomes

Rj(p) = Ry(p) — I(p)

g RL( >

ay,
—
Varbcr Yl g\/RL (12)

A
=ar + 7 KL(p).

By (p)

In a similar way, the corresponding pixel value R} (p + f,)
in the right image is represented as

Ry(p+ fp) 2 ap +yrKr(p+ In)-

We call these transformed color values in (12)-(13) log-
chromaticity color, denoted logChrom_R for the red channel.
The computation of the log-chromaticity values in other
channels such as logChrom_G and logChrom_B can be
performed similarly. It should be noted that K;(p) and
Kr(p+ f,) are not dependent on p, a, b, ¢, and . This means
that they are insensitive to radiometric variations. This also
implies that if the corresponding pixels are correct, then
K1 (p) and Kr(p + f,) must be the same. Moreover, because
R](p) and R} (p+ f,) are the affine-transformed values of
K (p) and Kgr(p + f,), respectively, the NCC between R/ (p)
and R (p+ f,) becomes a suitable measure for matching
Ki(p) and Kr(p+ fp)-

(13)

4.3 Adaptive Normalized Cross-Correlation

As described in the earlier text, the whole window
information around matching pixels is used by the NCC
in order to find the mean and standard deviation. There
exist possibilities that these windows could include outliers
between stereo images because of the view difference. This
problem thus renders it an inaccurate measure and fails to
find the accurate object boundaries as the size of window
grows. In order to reduce this fattening effect that is caused
by outliers, we use the weight distribution information
around matching pixels. According to this, each pixel ¢ in an
m x m window W (p) around the center pixel p has different
weights. This weight w(t) is computed by using the bilateral
filter [49], [50], [51] as follows:

w(t) = eXp(_ B ||f<p>2;§1<t>u ) (14

where || - || represents the euclidean distance. The first and
second terms in the exponent stand for the geometric distance
and the color dissimilarity between the center pixel p and the
pixel t in the window, respectively. This weight distribution
is different from the isotropic Gaussian weight in that the
former has an edge-preserving property. The weighted
sum S(p) using the bilateral filter for the center pixel p is
defined by the following equation:

llp — ¢l
20(21

D rew(p) wt)I(t)
Z(p)

where Z(p) is the normalizing constant. Instead of comput-
ing the weights for the raw RGB color, weights are
computed for the CIELab color because, in practice, it gives
stable results for the majority of cases and the weight
distributions still have stable property under different
radiometric changes. In order to reduce the effect of the
outliers, we subtract the bilateral filtered weighted sum
value for each channel instead of subtracting the global
mean value as NCC, thereby resulting in the removal of o

Sr(p)

S(p) = , (15)

RY(6) = Ry (1) -

2 tew(p wr(t)RL(1)

=oar+vKL(t) —

Z(p)
=oar +vKr(t) - Lrew) wL(g((z)L + v KL())
=1 <KL(t) _ ZteW(I,)ZuEILJSt)KL (t)> .

(16)

Let us denote the patch around pixel p in the left image as
1D vector v (p) and the corresponding weight vector of

each pixel in the window W(p) as wi(p). These are
represented as
vL(p) = (R/ll//(tl)a RE’(Q), EERE) Rl[,,/(tf\ff))a (17)
wr(p) = (wi(t), wi(ta), ..., we(ty)),

where M =m xm. In a similar way, the corresponding
patch around p + f, in the right image is denoted as

UR(p + fp) = (R%(tl)»R%(tZ)v s vR%(tM))>
wr(p+ fp) = (wr(t1), wr(t2), ..., wr(ta))-

Now, the similarity between vy (p) and vg(p + f,) is defined
by the following equation:

(18)

ANC’CZOQC}M'O?H-R (fp)
_ >y WL(t')wR( ')[R’”( i)l X [RE(t)] '
\/Zgl ‘wL R/// \/Z |wR R/u( )|
(19)

We define (19) as Adaptive Normalized Cross-Correlation
(ANCCQC) for the logChrom_R channel. ANCC for the
logChrom_G and logChrom_B channels can be computed in
a similar manner. It should be noted that ANCC does not
vary with p, illuminant color (a,b,c), and camera gamma
correction v. In addition, the fattening effect can also be
reduced because we incorporate the spatial weight in-
formation adaptively.

4.4 Combining Log-Chromaticity and Original RGB
Colors

Although the log-chromaticity color is robust to various

radiometric variations, the discriminability can be lowered

as compared to the original color because the intensity

information of each channel is normalized in the log-

chromaticity color and the original RGB color contains the
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original intensity values. We were motivated by this
observation and sought to combine two color spaces such
as log-chromaticity and original RGB colors in order to take
advantage of their different aspects. The accuracy and
robustness of the disparity maps can be enhanced by the
combination of original RGB color and log-chromaticity
color because both color spaces are orthogonal.

The ANCC for original RGB color, for example, R channel,
is defined in a similar manner by the following equation:

ANCCRr(fp)
_ Z?LwL<t>wR< t)[Ro(t:)] x [Rr(t a)
VU a6 Ree)|” x /S, fwnt) Rnl)
JRY (1)

(20)
where Ry (t;) = R} (t;) — %@“Lt and Rj(-) repre-
sents the original intensity value of the red channel in the
left image. In a similar way, for the right image, Rp(t;) can
be computed. The weight distributions wy(-) and wg(-) are
the same as those of (19). ANCC is a similarity measure that
ranges from —1 to +1. In order to arrive at a nonnegative
cost between pixel p and p + f, in the left and right images,
respectively, the value of the ANCC is subtracted from +1.
Now, by combining (19) and (20), we define our data cost
D,(f,) as follows:

3 b

Dy(f) =1~ o3 ANCER)
¢

-0 ANCCy(fp)

(21)

where ¢ € {logChrom_R, logChrom_G, logChrom_B}, k€
{R, G, B}. § is a relative weighting factor between the log-
chromaticity color and the original RGB color.

4.5 Global Energy Modeling

For the pairwise cost, we employed a simple truncated
quadratic cost as shown by the following equation:

2
‘/I)Q(fpqu) = q 7‘/max)-

By combining (21) and (22), the total energy is defined by
the equation:

A-min(|f, —

(22)

ZD (F)+> Z Voo (fpr fo)-

P geN(p

(23)

This total energy was optimized using Graph-cuts
(a-expansion) algorithm [19] in order to find the disparity
map f. Note that although Graph-cuts (a-expansion) does
not guarantee the global optimal solution for the energy
model with a truncated quadratic smoothness prior, in
practice, it can find a near-optimal solution quickly [52].

5 EXPERIMENTAL RESULTS

In our experiments, we fixed all of the parameters of the
proposed algorithm such that A =1/30, V0, =5, M =
(31 x31), 04 =14, and o, = 3.8. For the evaluation and
comparison of our method with others, we used various
images such as the testbed images (Aloe, Art, Moebius, Dolls,

Laundry, and Cloth4) in [1] and some aerial images. There are
three different exposures (indexed as 0,1,2) and three
different light sources (indexed as 1,2,3) in each data set in
[1], making a total of nine different images. These data sets
were used, similar to [5], to compare various data costs such
as the Birchfield-Tomasi (BT) [6], BT with 5 x 5 Laplacian of
Gaussian filtering [7] (LoG/BT), BT using Rank transform
(9 x 9window) [8] (Rank/BT), BT using images preprocessed
by the comprehensive normalization method [29] (CN/BT),
mutual-information-based data cost (MI) [9], NCC (7 x 7
window), and proposed ANCC. Testing was performed on
all matching costs described in the earlier text for all possible
combinations that could exist with respect to changes in
exposure and light source. However, we avoided the case of
the same illumination (or exposure) combination for left and
right images. For instance, between the 1/3 (left/right
illumination) and the 3/1 (left/right illumination) cases, we
experimented only on the 1/3 case because the properties of
1/3 and 3/1 cases are similar, as shown in [5].

All methods are optimized in the MRF framework using
Graph-cuts (GC) with truncated quadratic smoothness cost.
In order to ensure that our experiment was fair, the
parameters of all methods were carefully and optimally
selected, similarly to how it was used in [5], using images
without radiometric variations and fixed for all experiments.

We also investigated the effect of log-chromaticity color
versus original color for ANCC by varying the relative
weighting factor  in (21). Therefore, we carried out our
evaluations of ANCC with some different 6 values in the
following combinations: ANCC with original RGB color
(@ =0), ANCC with log-chromaticity color (f#=1), and
ANCC with two colors combined (§ = 0.7).

5.1 Light Source Changes

For testing the effects of changes in light source (illumina-
tion), we set the index of exposure to 1 for all images and
varied only the index of illumination from 1 to 3. Figs. 3a
and 3b depict the Aloe stereo images taken under extremely
different illumination condition (the left and the right
images have been taken at an index of illumination of 1 and
3, respectively). Figs. 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, and 31 show
the disparity maps of test stereo algorithms for input stereo
image pair in Figs. 3a and 3b, and Figs. 4 and 5 show the
results of comparative test stereo algorithms carried out for
the Dolls and Cloth4 images, respectively. Figs. 6a, 6b, 6¢
6d, 6e, and 6f show the errors of unoccluded areas for all
possible combinations of illuminations.

Changes in the light source can result in various local
radiometric changes, which is one of the most difficult
factors among the radiometric variations for matching
problem. We can find that BT is very sensitive to these
local radiometric variations. LoG/BT uses the LoG filter
which is the second-order derivative of intensity. Although
it has been proven that LoG/BT is more robust as compared
to BT, there still remains the relatively large error with
LoG/BT because the value of the derivative of intensity can
vary as determined by local variations of intensity. Because
of the change in the rank of intensities, Rank/BT is also
affected by these local variations. There is a large error with
MI when there are severe local variations in images caused
by changes in the light sources because MI-based methods
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Fig. 3. Results of test stereo algorithms on Aloe image pair with varying
illumination. (a) The left image with illumination(1)-exposure(1). (b) The
right image with illumination(3)-exposure(1). (c) The ground truth
disparity map. (d)-(I) are the disparity maps of test stereo algorithms
for input stereo image pair in (a) and (b). (d) BT+GC. (e) CN/BT+GC.
(f) LoG/BT+GC. (g) Rank/BT+GC. (h) MI+GC. (i) NCC+GC.
(j). ANCC+GC with original RGB color. (k) ANCC+GC with log-
chromaticity color. (I) ANCC+GC with colors combining log-chromaticity
and original RGB colors.

[9], [14] account for only the global intensity changes
between input images. NCC is also not strong at the local
variation to input images because it assumes only the global
affine-transformed difference. As described in the earlier
text, CN/BT also does not produce good results because the
variation in the image content between stereo images due to
the view change affects color variation between correspond-

Fig. 4. Results of test stereo algorithms on Dolls image pair with varying
illumination. (a) The left image with illumination(1)-exposure(1). (b) The
right image with illumination(3)-exposure(1). (c) The ground truth
disparity map. (d)-(I) are the disparity maps of test stereo algorithms
for input stereo image pair in (a) and (b). (d) BT+GC. (e) CN/BT+GC.
(f) LoG/BT+GC. (g) Rank/BT+GC. (h) MI+GC. (i) NCC+GC.
(j) ANCC+GC with original RGB color. (k) ANCC+GC with log-
chromaticity color. () ANCC+GC with colors combining log-chromaticity
and original RGB colors.

(U}
Fig. 5. Results of test stereo algorithms on Cloth4 image pair with
varying illumination. (a) The left image with illumination(1)-exposure(1).
(b) The right image with illumination(3)-exposure(1). (c) The ground truth
disparity map. (d)-(I) are the disparity maps of test stereo algorithms for
input stereo image pair in (a) and (b). (d) BT+GC. (e) CN/BT+GC.
(f) LoG/BT+GC. (g) Rank/BT+GC. (h) MI+GC. (i) NCC+GC.
(j). ANCC+GC with original RGB color. (k) ANCC+GC with log-

chromaticity color. (I) ANCC+GC with colors combining log-chromaticity
and original RGB colors.

ing pixels. From Fig. 6, it should be noted that in most test
images there are steep increases of error between the (1/2)
and (1/3) cases for other methods, whereas ANCC with log-
chromaticity color and ANCC with combined colors show
more stable results. For example, Fig. 7 demonstrates the
detailed comparisons of the disparity maps of ANCC with
log-chromaticity color, NCC, MI, and Rank/BT in accor-
dance with the illumination variations for the Dolls images.
The inference that can be drawn from this is that ANCC
with log-chromaticity is robust at strong local variations,
whereas all of the other methods are very sensitive to the
changes in light sources. On the other hand, even within
ANCC, ANCC with log-chromaticity shows robust prop-
erty, while ANCC with original RGB color still remains
weak at local variations. This shows that the log-chroma-
ticity color is more effective in handling local variations as
compared to the original RGB color. ANCC with combined
colors show near-similar or slightly better results as
compared to ANCC with log-chromaticity color.

5.2 Camera Exposure Changes

In order to test the effects of changes in camera exposure,
we fixed the index of illumination to 1, and changed only
the index of exposure from 0 to 2. Figs. 8a and 8b show the
Aloe stereo images which have undergone extremely
different exposure conditions (the left and the right images
have been captured with an index of exposure of 0 and 2,
respectively). Figs. 8d, 8e, 8f, 8g, 8h, 8i, 8j, 8k, and 8l depict
the disparity maps of test stereo algorithms for input stereo
image pair in Figs. 8a and 8b. In the same manner, Fig. 9
shows the results of comparative test stereo algorithms
carried out for the Moebius image. Figs. 10a, 10b, 10c, 10d,
10e, and 10f show the error of unoccluded areas for all
possible combinations of exposures.
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Fig. 6. Errors in the unoccluded areas of test stereo algorithms according to the different left/right image illumination combinations. “ANCC with
logChrom” represents ANCC with log-chromaticity color (¢ = 1). “ANCC with RGB” represents ANCC with original RGB color (¢ = 0). “ANCC with

logChrom+RGB” represents ANCC with two colors combined (0§ = 0.7)
(e) Laundry image. (f) Cloth4 image.

Changes in exposure result in global changes in intensity
between stereo images. In this global change, MI, NCC,
Rank/BT, and ANCC put up a relatively good performance.
On the contrary, BT, LoG/BT, and CN/BT are seriously
affected because of these changes in exposure. The extreme
changes in exposure make images either very dark or

Fig. 7. Results of test stereo algorithms on Dolls image pair with varying
illumination. (a)-(d), (e)-(h), (i)-(I), and (m)-(p) show the disparity maps of
ANCC+GC, NCC+GC, MI+GC, and Rank/BT+GC methods, respec-
tively, for different left/right illumination combinations. From left to right
column, the (left illumination/right illumination) illumination combinations
are (1/1), (1/2), (1/3), and (2/3), respectively.

. (a) Aloe image. (b) Art image. (c) Moebius image. (d) Dolls image.

bright. These effects make image features such as edges
indistinct. We can find that BT, LoG/BT, and CN/BT are
more sensitive to camera exposure changes as compared to
light source changes. LoG/BT is seriously influenced by
these variations because the values of the derivative of
intensity are smeared for very dark or bright regions.
Although MI can find global relationship, the main error of
MI occurs with respect to the saturated intensity region

Fig. 8. Results of test stereo algorithms on Aloe image pair with varying
exposure. (a) The left image with illumination(1)-exposure(0). (b) The
right image with illumination(1)-exposure(2). (c) The ground truth
disparity map. (d)-(I) are the disparity maps of test stereo algorithms
for input stereo image pair (a)-(b). (d) BT+GC. (e) CN/BT+GC. (f) LoG/
BT+GC. (g) Rank/BT+GC. (h) MI+GC. (i) NCC+GC. (j) ANCC+GC with
original RGB color. (k) ANCC+GC with log-chromaticity color.
(I) ANCC+GC with colors combining log-chromaticity and original RGB
colors.
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Fig. 9. Results of test stereo algorithms on Moebius image pair with
varying exposure. (a) The left image with illumination(1)-exposure(0).
(b) The right image with illumination(1)-exposure(2). (c) The ground truth
disparity map. (d)-(I) are the disparity maps of test stereo algorithms for
input stereo image pair (a)-(b). (d) BT+GC. (e) CN/BT+GC. (f) LoG/
BT+GC. (g) Rank/BT+GC. (h) MI+GC. (i) NCC+GC. (j) ANCC+GC with
original RGB color. (k) ANCC+GC with log-chromaticity color.
(I) ANCC+GC with colors combining log-chromaticity and original RGB
colors.

(e.g., very bright or dark region). Although the property of
rank invariance in the case of global variation can be
beneficial to Rank/BT, the main error of Rank/BT occurs
due to the ambiguity of rank transform which prevails with
similar rank values. It is here that the ANCC remains stable
and performs better when compared with others with
respect to exposure changes in most cases. However, ANCC
with log-chromaticity color is somewhat unstable for the
near-saturated color region, which has about (255,255,255)
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or (0,0,0) RGB color values. Therefore, this finding shows
that the most accurate and stable results are shown by
ANCC with original RGB color. ANCC with combined
colors, on the other hand, shows near-similar results as
ANCC with original RGB color.

5.3 Gamma Correction Changes

To test the effect of gamma variation, we set both the
indexes of illumination and exposure to 1, and changed the
gamma value () of the right image. We transformed each
color value to lie in the range [0, 1]. Gamma correction was
then performed for each channel in accordance with the
equation defined by

Ii(p) — In(p)"", k€ {R,G,B}. (24)

Figs. 11a, 11b, 11c, 11d, 1le, and 11f show the error of
unoccluded areas in accordance with the gamma variation
of the right image. Variations in gamma correction
influence the images in a global manner. As expected, the
effect of variation in gamma correction is highly similar to
the changes in exposure. That is the reason for MI, NCC,
Rank/BT, and ANCC showing stable results to these
variations. Although the performance of ANCC is stable
to this gamma variation and the error is lower as compared
to other methods, the error of ANCC increases slightly as
the gamma value increases. This is because of the limited
image representation for high gamma values.

5.4 Noise Variations

We also carried out investigations on the robustness of
matching costs against noise variations. In order to test the
effect of noise, we changed only the PSNR of the right
image that was contaminated by the additive Gaussian
noise. Fig. 12 shows the results of the comparative test
according to the PSNR of the right images. The results of
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Fig. 10. Errors in the unoccluded areas of test stereo algorithms according to the different left/right image exposure combinations. “ANCC with
logChrom” represents ANCC with log-chromaticity color (§ = 1). “ANCC with RGB” represents ANCC with original RGB color (¢ = 0). “ANCC with
logChrom+RGB” represents ANCC with two colors combined (§ = 0.7). (a) Aloe image. (b) Art image. (c) Moebius image. (d) Dolls image.

(e) Laundry image. (f) Cloth4 image.
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Fig. 11. Errors in the unoccluded areas of test stereo algorithms according to the gamma changes of the right image. “ANCC with logChrom”
represents ANCC with log-chromaticity color (f =1). “ANCC with RGB” represents ANCC with original RGB color (# =0). “ANCC with
logChrom+RGB” represents ANCC with two colors combined (§ = 0.7). (a) Aloe image. (b) Art image. (c) Moebius image. (d) Dolls image.

(e) Laundry image. (f) Cloth4 image.
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(e) Laundry image. (f) Cloth4 image.

noise variations for LoG/BT are highly sensitive because
the LoG operation is the second-order derivative in which
the effect of noise is considerable. There is considerable
effect of noise for NCC also. In most cases, Rank /BT is more
robust when compared to LoG/BT and NCC with respect to
noise variations. However, it is also affected severely when
the noise level is high because the noise can change the rank
transform. MI, on the other hand, shows highly robust and
accurate results to noise. ANCC with original RGB color
also shows robust property to noise, which is comparable to

MI. However, ANCC with log-chromaticity color poses
problems to strong noise because the log operation can
increase the noise factors. ANCC with the combined colors
yields a compromise between noise sensitivity and illumi-
nation invariance.

5.5 Application to Aerial Image

Aerial images are captured using only one camera at
different time intervals. There are changes in the colors of
aerial images because of the different time intervals while
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Fig. 13. Results of test stereo algorithms on aerial image pair.
(a)-(b) The left and right aerial image pair. (c) BT+GC (d) MI+GC.
(e) NCC+GC. (f) Rank/BT+GC. (g) ANCC+GC with original RGB color.
(h) ANCC+GC with log-chromaticity color. (i) ANCC+GC with colors
combining log-chromaticity and original RGB colors.

taking pictures. The colors of the aerial images are affected
by complex factors such as changes in lighting color and
position. Therefore, aerial images offer more challenges for
stereo matching. The performances of various matching
costs for aerial images are compared in Figs. 13 and 14. For
instance, Figs. 13a and 13b are stereo images of a
complicated urban area which has severe illumination and
view changes. NCC and Rank/BT produced noisy and
inaccurate disparity maps in these images. The result of MI
shows ambiguous building boundary. The proposed ANCC
produced highly accurate disparity map with sharp build-
ing boundaries. For the other aerial images such as Figs. 14a
and 14b, our method also produced more accurate results as
compared to other methods.

On the other hand, ANCC with log-chromaticity color
produced more accurate building boundaries as compared
to ANCC with original RGB color because there exist severe
local radiometric variations in these aerial images. ANCC
with two colors combined produced near-similar and less
noisy results as compared to ANCC with log-chromaticity
color.

6 DISCUSSION

6.1 Effects of Adaptive Weight in ANCC

We carried out an investigation of the effects of the adaptive
weight in the ANCC framework. The adaptive weight is
used at two parts in the ANCC, namely, the adaptive mean
computation part (16) and the adaptive correlation compu-
tation part (19). The effect of each of the two parts is
investigated and analyzed separately in the following text:

o Effect of adaptive weight for mean computation of
each window: The effect of adaptive weight for

Fig. 14. Results of test stereo algorithms on aerial image pair.
(a)-(b) The left and right aerial image pair. (c) BT+GC (d) MI+GC.
(e) NCC+GC. (f) Rank/BT+GC. (g) ANCC+GC with original RGB color.
(h) ANCC+GC with log-chromaticity color. (i) ANCC+GC with colors
combining log-chromaticity and original RGB colors.

mean computation of each window in ANCC (f = 1)
was investigated. In ANCC, in order to find the
coherent mean value, we subtracted the adaptive
mean value instead of global mean value. In order to
evaluate this, we carried out an additional test on
ANCC with a global mean approach that sets all
weights w(-) in (16) equally. We then launched a
comparison of the ANCC using adaptive mean
approach and the ANCC using global mean
approach. Fig. 15 clearly shows the benefits of the
adaptive mean approach over the simple global
mean approach. (a)-(d) in Fig. 15 is the result of the
global mean approach, whereas (e)-(h) is the result
of the adaptive mean approach. For stereo images
without radiometric variations ((a) and (e) and (c)
and (g) in Fig. 15), the main error comes from the
geometric variations such as viewpoint changes. The
greater the change in the viewpoint, the greater the

Fig. 15. The effects of adaptive weight for mean computation of each
window. (a)-(d) show results for the global mean approach, while (e)-(h)
show the proposed adaptive mean approach. (a) and (e) and (c) and (g)
are results for Aloe and Dolls images without radiometric variation. (b)
and (f) and (d) and (h) are results for Aloe and Dolls images with
illumination variations. (a) err: 4.7 percent. (b) err: 15.8 percent. (c) err:
7.7 percent. (d) err: 27.8 percent. (e) err: 4.5 percent. (f) err: 11.3
percent. (g) err: 7.3 percent. (h) err: 18.6 percent.
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Fig. 16. The effects of adaptive weight in correlation computation. (a)-(d)
show the results of ANCC without adaptive correlation weight, whereas
(e)-(h) show the results of ANCC with adaptive correlation weight. From
left to right columns, the window sizes are 7 x 7, 11 x 11, 21 x 21,
31 x 31, respectively. (a) err: 15.48 percent. (b) err: 18.17 percent.
(c) err: 20.95 percent. (d) err: 26.27 percent. (e) err: 15.93 percent.
(f) err: 12.86 percent. (g) err: 11.42 percent. (h) err: 11.36 percent.

change in the mean value. This creates some
problems for window matching in the global mean
approach such as the original NCC framework. For
instance, the region of the front stem of the Aloe and
region of the feet for the Dolls are prone to errors
with respect to the simple global mean approach.
However, this problem can be reduced by using the
adaptive mean approach. On the other hand, for
stereo images that have illumination variations ((b)
and (f) and (d) and (h) in Fig. 15), our adaptive mean
approach also shows more robust properties as
compared to the simple global mean approach
because the adaptive mean approach has the
function of suppressing outliers. Thus, we find that
the adaptive mean approach is more accurate as well
as robust even for illumination variations against the
simple global mean approach.

e Effect of adaptive weight for correlation computa-
tion: In order to investigate the effect of adaptive
weight for the correlation computation part, we

(f) (@

additionally tested the nonadaptive correlation ap-
proach which sets all weights w(-) in (19) equally. As
shown in Fig. 16, we compared the adaptive correla-
tion approach with the nonadaptive correlation
approach by varying window size as 7 x 7, 11 x 11,
21 x 21, and 31 x 31. Fig. 16 shows the comparative
results for the Aloe image pair with illumination
variations as well as the effects and benefits of
adaptive weight in the correlation computation. The
finding of this comparison is that without the
adaptive weight for the correlation (Figs. 16a, 16b,
16¢c, and 16d), the error is increased and the object
boundaries are blurred as the size of the window
increases. On the contrary, our adaptive weight
correlation scheme (Figs. 16e, 16f, 16g, and 16h) is
effective in producing sharp and accurate results as
the size of the window increases. Thus, it is here that
the role of adaptive weight for correlation computa-
tion comes into play, which is to avoid the fattening
effect even for large window matching.

6.2 Effect of Only Similarity Measure

In order to see the effect of only the proposed similarity
measure ANCC, we performed some experiments to obtain
disparity maps using the Winner-Takes-All (WTA) ap-
proach instead of Graph-cuts. The WTA is the local method
that takes the best label for each pixel using only data cost
volume. Fig. 17 demonstrates a part of the results using
WTA method for each matching cost for the Aloe images.
Figs. 17a, 17b, 17¢, 17d, and 17e are the results for the Aloe
stereo image pair without radiometric variation, whereas
Figs. 17, 17g, 17h, 17i, and 17j are the results for the Aloe
stereo image pair with illumination variation. It can be
noted that the ANCC has the least error when compared to
other methods. Furthermore, ANCC with WTA shows very
accurate results similar to ANCC with Graph-cuts. From
this finding, it can be inferred that ANCC with global
optimization such as Graph-cuts also shows highly accurate
and robust properties.

Fig. 17. (a) LoG/BT+WTA (err: 96.8 percent). (b) Rank/BT+WTA (err: 96.5 percent). (c) MI+WTA (err: 80.1 percent). (d) NCC+WTA (err:
11.7 percent). () ANCC+WTA (err: 9.8 percent). (f) LoG/BT+WTA (err: 97.7 percent). (g) Rank/BT+WTA (err: 97.3 percent). (h) MI+WTA (err:
96.7 percent). (i) NCC+WTA (err: 26.5 percent). (j) ANCC+WTA (err: 22.9 percent). (a)-(e) are the results for Aloe stereo image pair without
radiometric variations. (f)-(j) are the results for Aloe stereo image pair with illumination variations.
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Fig. 18. Performance of the proposed algorithm according to (a) o, (b) window size M, and (c) 6. (d) Computational time.

6.3 Performance Assessment Based on Parameter

Values and Comparison of Computational Time
In this section, the performance of ANCC according to
parameter variations and the comparison of computational
time are investigated. ANCC includes following four para-
meters: o, 04, window size M, and 6. To investigate the effect
of each parameter independently, we varied each parameter
value while fixing others as described in Section 5. Figs. 18a,
18b, and 18c show the changes in the performance of ANCC
according to the variation of three parameters, oy, M, and 6,
respectively, for Aloe and Dolls images under different
illuminations (left illum.(1) and right illum.(3)), different
exposures (left exp.(0) and right exp.(2)), and no radio-
metric change. We observe from Fig. 18a that ANCC is not
so sensitive to the variation of o, value. Note that since o, is
dependent on the window size M, we only tested for M. As
shown in Fig. 18b, when M was larger than “15 x 15,” it
gave nearly constant performance. The parameter ¢
determines the relative weighting between the log-chroma-
ticity color and the RGB color. So, the larger 0 is, the more
log-chromaticity color is emphasized. Empirically, the
values of ¢ between 0.6 and 0.7 yield an appropriate level
of compromise between the log-chromaticity color and the
RGB color.

Fig. 18d compares computational time (including the
Graph-cuts optimization) of various methods for the Aloe
data set (image size: 427 x 370, disparity range: 0-70) using
a PC with an Intel Pentium-IV 2.4GHz CPU. The numbers
in the parentheses indicate window size. The computational
time of ANCC quadratically increases with the window
size. However, this computational time increase can be
reduced by using parallel processors such as GPUs, because
most of the time is spent in computing correlations and
weights of pixels in windows.

7 CONCLUSIONS

From a practical perspective, it is a requirement for the
stereo matching algorithm to be both robust to radiometric
variations as well as accurate. However, in general, the
achievement of both these requirements is not trivial.
Although methods such as Rank transform, mutual
information, and NCC have achieved robustness to some
extent, they are unable to achieve high accuracy. In
addition, although the original color or intensity remains
sufficient for global radiometric variations, it is still weak at
local variations. As a remedy to these problems, we have
proposed in this paper a new stereo matching measure that
is robust to various radiometric variations, such as local and
global radiometric variations, and at the same time

accurate. For the purposes of dealing with various radio-
metric variations, we took the color formation model into
consideration in an explicit manner instead of using raw
color or intensity values. From the original color, we have
extracted color-insensitive information called log-chromati-
city color. Further, for increasing the accuracy, we have
proposed a new measure called Adaptive Normalized Cross-
Correlation. Our method produces promising results that are
quite robust to various kinds of radiometric changes.

It would be fair to comment on certain limitations of our
method, which are as follows: The method cannot handle
the multiple illumination conditions as well as non-
Lambertian reflectance objects. These problems would be
resolved in future work.

It is worth noting that our matching measure can be
effectively applied to other vision problems that require
correspondence and matching such as feature matching,
registration, and visual tracking. Also, it can be extended to
solve the multiple-view stereo problems which can be
impacted by severe radiometric variations between input
stereo images.
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