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ABSTRACT

We address the problem of synthesizing control strategies for El-
lipsoidal Markov Decision Processes (EMDP), i.e., MDPs whose
transition probabilities are expressed using ellipsoidal uncertainty
sets. The synthesized strategy aims to maximize the total expected
reward of the EMDP, constrained to a specification expressed in
Probabilistic Computation Tree Logic (PCTL). We prove that the
EMDP strategy synthesis problem for the fragment of PCTL dis-
abling operators with a finite time bound is NP-complete and pro-
pose a novel sound and complete algorithm to solve it.

We apply these results to the problem of synthesizing optimal en-
ergy pricing and dispatch strategies in smart grids that integrate re-
newable sources of energy. We use rewards to maximize the profit
of the network operator and a PCTL specification to constrain the
risk of power unbalance and guarantee quality-of-service for the
users. The EMDP model used to represent the decision-making
scenario was trained with measured data and quantitatively cap-
tures the uncertainty in the prediction of energy generation. An ex-
perimental comparison shows the effectiveness of our method with
respect to previous approaches presented in the literature.

1. INTRODUCTION
Several real-world multi-agent systems exhibit stochastic behav-

ior, and can be modeled using formalisms such as Markov Deci-
sion Processes (MDPs) [1]. Desired properties of such systems can
be both Boolean, e.g., expressible in logics such as probabilistic
computation tree logic (PCTL) [2, 3], or quantitative, such as max-
imizing a reward function [4]. The synthesis of strategies to satisfy
Boolean properties and optimize quantitative measures is naturally
a topic of much relevance. Moreover, for probabilistic models that
are inferred from empirical data, it is necessary to design strategies
that are robust to uncertainties in estimated state-transition proba-
bilities. In this paper, we present a new approach to robust strategy
synthesis for a class of MDPs with uncertainties, with application
to risk-limiting renewable energy pricing and dispatch.

Main Motivating Application. Electricity consumption world-
wide is projected to grow from 18 trillion kWh in 2006 to 32 trillion
kWh in 2030, a 77% increase [5]. To avoid catastrophic pollution
damage to the planet, it is necessary to employ energy sources alter-
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native to fossil fuels [6]. In fact, an acceleration in the deployment
of renewables is already taking place in Europe, Asia and North
America. In this paper, we focus on wind energy, which nowadays
has higher capacity than solar energy, and is expected to consti-
tute a significant portion of renewable generation integrated to the
power grids of North America [6].

The correct operation of power systems requires the balance be-
tween energy supply and demand at all times. The risk for the
system operator can be quantified both by the probability of not
meeting such a balance constraint, and by the (positive) gap be-
tween demand and supply. High values of either indicator make
the occurrence of disruptions, faults and ultimately blackouts more
likely [7]. In grids that only integrate fossil energy sources, the task
for the system operator amounts to dispatch the production of en-
ergy during the day, based on averaged demand profiles. A wealth
of deterministic optimization frameworks have been developed to
solve the energy dispatch problem, aiming to maximize the opera-
tor profit (or some other form of social welfare cost function) while
guaranteeing energy balance also in the presence of one fault in the
network, the so-called N-1 worst-case dispatch [7].

When considering the need for limiting operation risk, it is ap-
parent that a high penetration of wind generation puts forth big
operational challenges [7]. Unlike fossil energy resources, wind
generation is non-dispatchable, i.e., it cannot be harvested by re-
quest. Further, wind availability exhibits high variability across all
timescales, which makes it challenging to forecast (errors can be
up to 20% of the forecast value [8]).

To compensate for supply uncertainty, researchers have proposed
the concept of demand response, i.e., the management of customer
energy consumption in response to supply conditions. Indeed, a
large fraction of the total daily electricity consumption in developed
countries is from residential and small commercial energy users,
e.g., water heaters and dish washers, which do not need to operate
at a specific moment but only within a time interval, e.g., some time
overnight [8]. Traditionally, these energy users pay a fixed price
per unit of electricity, which represents an average cost of power
generation over a given time frame (e.g., a season). In smart grids
with two-way communications, realtime pricing protocols can be
implemented so that price can vary according to the availability of
energy supply, to incentivize (or disincentivize) energy demand.

The first stochastic optimization frameworks have thus been pro-
posed [9, 10]. These works aim to determine both optimal energy
pricing and dispatch of non-renewable baseline energy (wind pene-
tration usually accounts only up to 20-30% of the total energy gen-
eration, so fossil generation is still required). On the other hand,
these techniques do not explicitly consider the risk of power un-
balance during optimization, and only evaluate the probability of
loss of load after synthesis via Monte Carlo simulation, to assess
the quality of the proposed solution. Unfortunately, these results
offer little insight to the operator when the risk is too high. Indeed,
Varaiya et al. [7] advocated the need for an optimization frame-



work capable of bounding the risk, interpreted stochastically, at op-
timization time. Moreover, a minimum amount of delivered energy
needs to be guaranteed to the users, since otherwise operators could
potentially increase the energy price to force users out of the system
to obtain power balance at times of little wind generation. We re-
fer to this guaranteed delivered energy as Quality of Service (QoS)
for the users. As summarized in the next section, our contribution
targets these needs.

Paper Contributions. Our first contribution is a novel stochastic
model to capture energy pricing and dispatch strategies for smart
grids with wind energy sources (other renewables can be consid-
ered analogously). The model is an Ellipsoidal Markov Decision
Process MC (EMDP), a special case of the Convex-MDP (CMDP)
model first introduced by Puggelli et al. [11, 12], i.e., an MDP
where transition probabilities are only known to lie in ellipsoidal
sets. While previous works used analytical distributions, e.g., Gaus-
sian [10], to model uncertainty in wind availability, we use mea-
sured data (from the wind farm at Lake Benton, Minnesota, USA),
to train a likelihood model of the wind generation, and give quanti-
tative means to represent the confidence in the forecast values. We
then approximate the likelihood region with an ellipsoidal model,
which is more accurate than the linear ones often used in the lit-
erature, while remaining computationally tractable. Our empirical
approach has the promise of more faithfully representing the prob-
ability distribution of the generated energy because it is tailored to
the specific wind farm under analysis, and it is robust to forecast
errors.

As a second contribution, we cast the constrained optimization
problem as the strategy synthesis problem for EMDPs, to maximize
the total expected reward constrained to PCTL properties. The op-
timization aims to maximize the profits for the system operator,
while constraints limit the risk of power unbalance and guarantee
the desired QoS for the users. We focus on finite-horizon History-
dependent Deterministic (HD) strategies, i.e., for each state an op-
timal action to take is chosen deterministically, based on the entire
(finite) execution history of the decision process. The limitation
to finite-horizon strategies is not restrictive, since energy pricing
and dispatch decisions are taken on a daily basis. As explained in
Section 3, History-dependent Random (HR) strategies are in gen-
eral more powerful, i.e., they can produce a higher expected re-
ward. Nevertheless, we focus on deterministic strategies because
we believe that deterministic pricing strategies are easier to adopt
in a real-world scenario, since they can be better understood by
the system agents (e.g., household users). Using a classical con-
struction [4], we then unfold within the model the finite sequence
of decision epochs over the day, by constructing a second EMDP
M′

C in which we replicate the states of the original EMDP MC at
each decision epoch. In the strategy synthesis for M′

C , we focus on
Markov (for each state an optimal action is taken based only on the
current state) Deterministic (MD) strategies. It can be proven [4],
that the desired HD strategy for each state s of MC can be recon-
structed by collecting the sequence of optimal MD actions for each
replica s′ of s along the decision epochs of M′

C . While the two for-
mulations produce the same result, we consider the synthesis prob-
lem of MD strategies, since this formulation allows us to leverage
the results on model-checking of CMDPs described in [11].

As our third contribution, we prove that the problem of determin-
ing the existence of an MD strategy for EMDPs, with total expected
reward higher than a given threshold and constrained to specifica-
tions in PCTL, is NP-complete. This result shows that the problem
complexity does not increase when introducing uncertainties in the
state-transition probabilities with respect to the strategy synthesis
problem for MDPs, which is also NP-complete [13]. We then de-
velop an algorithm to solve the optimization version of the prob-
lem, i.e., maximize the reward. The algorithm is the first sound
and complete synthesis algorithm for EMDPs that can process ar-
bitrary formulas (also with multiple and nested quantitative oper-

ators) for the fragment of PCTL that disallows operators with a
finite time bound. This technique thus represents an improvement
to previously proposed approaches, which were not complete [14]
or could only process one PCTL operator per time [15]. Its key
advantage is the capability of ranking candidate strategies by the
value of their reward. The first proposed strategy that satisfies the
PCTL specification for any resolution of uncertainty is the solu-
tion of the synthesis problem. Although the algorithm worst-case
running time is exponential in the size of the EMDP, this capabil-
ity may allow considerable speed-ups in practical scenarios. These
results hold also for Interval-MDPs (IMDPs) and for the dual prob-
lem of cost minimization (not considered in the paper). Further, the
proposed algorithm can be applied to a wider range of applications,
e.g., semi-autonomous car driving.

The rest of the paper is organized as follows. Section 2 gives
background on CMDPs and PCTL. Section 3 presents related work.
In Section 4, we describe the proposed algorithm for the synthesis
of constrained optimal strategies for EMDPs. We then give details
of the EMDP model used to synthesize energy-pricing strategies
in smart grids with renewable sources in Section 5, and present
experimental results in Section 6. Lastly, we conclude and discuss
future directions of research in Section 7.

An extended version of this paper is available at [12].

2. PRELIMINARIES
For a given vector v, we will use:

1
T
v =

∑

i v[i] =
∑

i vi

to represent the sum of all the elements of the vector.

Definition 2.1. A Probability Distribution (PD) over a finite set
Z of cardinality n is a vector µ ∈ R

n satisfying 0 ≤ µ ≤ 1 and
1

Tµ = 1. The element µ[i] represents the probability of realization
of event zi. We call Dist(Z) the set of distributions over Z.

2.1 Convex Markov Decision Process (CMDP)

Definition 2.2. CMDP. A labeled finite CMDP, MC is a tuple
MC = (S, S0, A,Ω,F ,A,X , L), where S is a finite set of states
of cardinality N = |S|, S0 is the set of initial states, A is a finite
set of actions (M = |A|), Ω is a finite set of atomic propositions,

F is a finite set of convex sets of transition PDs, A : S → 2A is a
function that maps each state to the set of actions available at that
state, X = S ×A→ F is a function that associates to state s and
action a the corresponding convex set Fa

s ∈ F of transition PDs,
and L : S → 2Ω is a labeling function.

The set Fa
s = Distas(S) represents the uncertainty in defining a

transition distribution for MC given state s and action a. We call
f
a
s ∈ Fa

s an observation of this uncertainty. Also, fas ∈ R
N and we

collect the vectors f
a
s , ∀s ∈ S into an observed transition matrix

F a ∈ R
N×N . Abusing terminology, we call Fa the uncertainty set

of the transition matrices, and F a ∈ Fa. Fa
s is interpreted as the

row of Fa corresponding to state s. Finally, fa
sisj

= f
a
si
[j] is the

observed transition probability from si to sj under action a. The
data-type of a ∈ A(si) can be different from the one of b ∈ A(sj),
if si 6= sj . We will use this property in the case study presented in
Section 5.

To model uncertainty in state transitions, we make the following
assumptions:

Assumption 2.1. Rectangular Uncertainty. Fa can be factored
as the Cartesian product of its rows, i.e., its rows are uncorrelated.
Formally, for every a ∈ A, Fa = Fa

s0 × · · · × Fa
sN−1

.
This assumption will allow us to consider one state transition at

a time and it eases the development of the synthesis algorithm.



Assumption 2.2. CMDP Semantics. CMDPs model nondetermin-
istic choices made from a convex set of uncountably many choices.
Each time a state is visited, a transition distribution within the set is
adversarially picked, and a probabilistic step is taken accordingly.
(The same semantics is used for IMDPs in [16].)

A transition between state s to state s′ in a CMDP occurs in three
steps. First, an action a ∈ A(s) is chosen nondeterministically.
Secondly, an observed PD f

a
s ∈ Fa

s is chosen. The selection of fas
models uncertainty in the transition. Lastly, a successor state s′ is
chosen randomly, according to the transition PD f

a
s .

A path π in MC is a finite or infinite sequence of the form

s0
f
a0
s0s1−−−→ s1

f
a1
s1s2−−−→, · · · , with fai

si,si+1
> 0 ∀i ≥ 0, si ∈ S,

ai ∈ A(si). We indicate with Πfin (Πinf ) the set of all finite (in-

finite) paths of MC . πs[i] (πa[i]) is the ith state (selected action)
along the path and, for finite paths, last(π) is the last state visited
in π ∈ Πfin. Πs = {π | π[0] = s} is the set of paths starting in s.

The algorithm presented in Section 4 can be applied both to the
interval and ellipsoidal models of uncertainty [11] (and to a mix of
them), but in this paper we will focus on the latter one since it is
more suitable for the application analyzed in Section 5. This model
is a second-order approximation of the likelihood model of uncer-
tainty (likelihood models are often used when transition probabil-
ities are determined experimentally), and it is more accurate than
a linear one [17]. The transition frequencies associated to action
a ∈ A are collected in matrix Ha. Uncertainty in each row of Ha

can be described by the likelihood region gas :

gas = {fas ∈ R
N|

∑

s′ h
a
ss′ log(f

a
ss′)≥β

a
s } (1)

where βa
s < βa

s,max =
∑

s′ h
a
ss′ log(h

a
ss′) represents the uncer-

tainty level. The second-order approximation of gas is [17]:

gas ≈ {fas ∈ R
N|

∑

s′
(fa

ss′
−ha

ss′)
2

ha
ss′

≤(Ka
s )

2} (2)

with Ka
s = 2(βa

s,max−β
a
s ) ≥ 0 representing the uncertainty level.

We then write the approximation of gas in conic form, and intersect
it with the probability simplex, to obtain the uncertainty set:

Fa
s = {fas ∈ R

N | fas ≥ 0,1T
f
a
s = 1, (3)

‖Ea
s (fas − h

a
s) ‖2 ≤ 1, Ea

s ≻ 0}

with Ea
s = (Ka

s )
−1 × diag

(

(ha
ss0)

−0.5, · · · , (ha
ssN

)−0.5
)

≻ 0
positive definite. Note that the conic representation is crucial to
enhance the scalability of the algorithmic approach presented in
Section 4, because convex solvers process conic constraints more
efficiently than generic quadratic constraints.

Definition 2.3. Ellipsoidal-MDP (EMDP). An EMDP is a CMDP
where every uncertainty set Fa

s ∈ F is expressed using Set (3).

We determine the size R of the CMDP MC as follows. MC

has N states, O(M) actions per state and O(N2) transitions for
each action. Let Da

s denote the number of constraints required to
express the rectangular uncertainty set Fa

s , and D = max
s∈S,a∈A

Da
s .

The overall size of MC is thus R = O(N2M +NMD).
To illustrate our results, we will use the EMDP MC in Fig. 1,

with S = {s0 · · · s3}, S0 = {s0}, A = {a, b}, Ω = {ϑ, abs},
A : {s0, s1} → {a, b} ; {s2, s3} → {a}, L : {s0, s2} → ϑ ;
{s3} → abs. The parameters of the uncertainty ellipsoids are shown
next to each transition.

2.1.1 Strategies and Nature
To analyze quantitative properties, we need a probability space

over infinite paths [18]. However, a probability space can only
be constructed once nondeterminism and uncertainty have been re-
solved. We call each possible resolution of nondeterminism a strat-
egy, which chooses an action in each state of MC .
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Fig. 1: Example EMDP.

Definition 2.4. Strategy. A randomized strategy for MC is a func-
tion σ = Πfin × A → [0, 1], with

∑

A(last(π)) σ(π, a) = 1, and

a ∈ A(last(π)) if σ(π, a) > 0. We call Σ the set of all strategies
σ of MC .

Conversely, we call a nature [17] each possible resolution of un-
certainty, i.e., a nature chooses a transition PD for each state and
action of MC .

Definition 2.5. Nature. Given action a ∈ A, a randomized
nature is the function ηa : Πfin × Dist(S) → [0, 1] with
∫

Fa
last(π)

ηa(π, fas ) = 1, and f
a
s ∈ Fa

last(π) if ηa(π, fas ) > 0. We

call Nat the set of all natures ηa of MC .

A strategy σ (nature ηa) is Markovian (M) if it depends only on
last(π). Also, σ (ηa) is deterministic (D) if σ(π, a) = 1 for some
a ∈ A(last(π)) (ηa(π, fa

s ) = 1 for some f
a
s ∈ Fa

last(π)). As
explained in Section 1, we developed a synthesis algorithm for MD

strategies. There are in total I =|As0 | × · · · × |AsN |= O(MN )

MD strategies, collected in the set ΣMD .
After fixing a strategy σ, all the non-determinism in MC is re-

solved. For MD strategies, we obtain the induced Convex Markov
Chain (CMC) Mσ

C = (S, S0,Ω,F ,X , L). Mσ
C has still size R

since the state space S does not change for MD strategies. Further,
the only convex set Fa

s ∈ F of transition PDs available at each
state s ∈ S is the one corresponding to the action a ∈ A(s) such
that σ(s, a) = 1.

2.1.2 Rewards
Rewards allow modeling additional quantitative measures of a

CMDP, e.g., profit. We associate rewards to states and to actions
available in each state.

Definition 2.6. Reward Structure and Path Reward. A re-
ward structure for a CMDP MC is a tuple r = (rs, ra)
comprising a state (action) reward function rs : S → R≥0

(ra : S ×A→ R≥0). Given a (possibly infinite) path π
with horizon T ∈ N ∪ +∞, the path reward for π is
rewr(π, T ) =

∑T

t=0 rs(πs[t]) + ra(πs[t], πa[t]).

In this paper, we will rank the available MD strategies for the
CMDP based on their total expected reward.

Definition 2.7. Total Expected Reward. The total expected reward
for state s ∈ S under strategy σ ∈ ΣMD is defined as:

W
σ
s := min

ηa∈Nat
E
σ,ηa

[rewr(π, T )] (4)



where we minimize across the action range ηa ∈ Nat of the ad-
versarial nature the expected reward over all paths starting from s
with horizon T visited under strategy σ.

We will only consider CMDPs such that W
σ
s exists and it is

finite ∀s ∈ S, ∀σ ∈ ΣMD . These include finite and infinite-
horizon CMDPs (T ∈ N ∪ {+∞}) with zero-reward absorbing
states (ω = abs), as the ones used in Section 5. An extension to
other classes of CMDPs, e.g., with negative rewards, is possible in
some specific cases, but outside the scope of the paper. For more
details, see [4]. Finally, according to Assumption 2.2, we can sub-
stitute ηa ∈ Nat with f

a

s ∈ Fa
s , and only consider MD natures.

2.2 Probabilistic Computation Tree Logic
We use Probabilistic Computation Tree Logic (PCTL), a proba-

bilistic logic derived from CTL which includes a probabilistic op-
erator P [2] and a reward operator R [19], to express properties of
CMDPs [3]. The syntax of the fragment of the logic in which oper-
ators with a finite time bound are disallowed is defined as follows:

φ ::= True | ω | ¬φ | φ1 ∧ φ2 | P✶p [ψ] | R
r
✶v[ρ] state formulas

ψ ::= X φ | φ1 U φ2 path formulas

ρ ::= C φ rewards

with ω ∈ Ω an atomic proposition, ✶∈ {≤, <,≥, >}, p ∈ [0, 1],
v ∈ R≥0.

Path formulas use the Next (X ) and Unbounded Until (U ) op-
erators. They are evaluated over paths and only allowed as param-
eters to the P operator. Reward formulas use the Cumulative (C )
operator. The size Q of a PCTL formula is defined as the number of
Boolean connectives plus the number of P and R operators in the

formula. We define Pσ,ηa

s [ψ]
def
= Prob

(

{π ∈ Πσ,ηa

s | π |= ψ}
)

the probability of taking a path π ∈ Πs that satisfies ψ under strat-
egy σ and nature ηa. Pσ,max

s [ψ] (Pσ,min
s [ψ]) denotes the maxi-

mum (minimum) probabilityPσ,ηa

s [ψ] across all natures ηa ∈ Nat,
for a fixed strategy σ. An analogous definition holds also for re-
ward properties, which can be expressed also using (multiple) re-
ward structures different from the one used to maximize the total
expected reward. For a CMDP MC , strategy σ, and property φ,
we will use MC , σ |=Nat φ to denote that, when starting from any
initial state s ∈ S0, and operating under σ, MC satisfies φ for any
ηa ∈ Nat. The semantics of the logic is reported in Table 1, where
we write |= instead of σ |=Nat for brevity.

3. RELATED WORK
Related work falls into two main categories: renewable-energy

pricing in smart grids, and strategy synthesis from PCTL specifica-
tions for probabilistic systems.

The integration of renewable energy sources in power grids has
motivated the development of stochastic frameworks to solve the
energy-pricing problem. The work in [20] presents a risk-limiting
optimization framework. That effort focuses on modeling the un-
certainty in energy availability on the supply side, but it does not

Table 1: PCTL semantics for MC .

s |= True
s |= ω iff ω ∈ L(s)
s |= ¬φ iff s 6|= φ

s |= φ1 ∧ φ2 iff s |= φ1 ∧ s |= φ2

s |= P⊳p(⊲p) [ψ] iff P
σ,max(min)
s [ψ] ⊳ p(⊲p)

s |= R⊳v(⊲v) [C φ] iff E
σ,max(min)
s [rewr(π, tφ)] ⊳ v(⊲v)

π |= X φ iff π[1] |= φ

π |= φ1 U φ2 iff ∃i ≥ 0 | π[i] |= φ2 ∧ ∀j < i π[j] |= φ1

rewr(π, tφ) := Σ
tφ
t=0rs(πs[t]) + ra(πs[t], πa[t]),

tφ = min{t | πs[t] |= φ}

consider the problem of controlling user demand through economic
incentives. The effectiveness of demand response in balancing sup-
ply and demand in power grids was studied in [9], and a stochas-
tic framework to optimize operator profits was presented in [10].
We closely follow the optimization setup presented in these works,
but we also constrain the operator risk and the user QoS at syn-
thesis time. Finally, Varaiya et al. argued the need to quantita-
tively constrain the operator risk in [7]. The risk-limiting dispatch
approach proposed in that work is optimal for properties of the
form P≥1 or P≤0, but sub-optimal for properties with satisfaction
threshold p ∈ (0, 1). Further, QoS is not considered.

The problem of strategy synthesis for MDPs from PCTL speci-
fications was first studied in [13]. Strategies are divided into four
categories depending on: 1) whether the transition is chosen deter-
ministically (D) or randomly (R); 2) the choice does (does not) de-
pend on the sequence of previously visited states (Markovian (M)
and History-dependent (H)). Also, it is proven that the four types of
strategies form a strict hierarchy (MD ≺ MR ≺ HD ≺ HR), and
that determining whether it exists an MD/MR (HD/HR) strategy
that meets all specifications is NP-complete (elementary). Kučera
et al. [21] show how to synthesize MR controllers that are robust
to linear perturbations via a reduction to a formula in the first-
order logic of the reals. This work is the closest to ours, albeit
we consider also non-linear models of uncertainties. Also, to the
best of our knowledge, the algorithm has not been applied to any
case study. In [14] and [15] routines for the model-checking of
PCTL properties of MDPs are adapted to the strategy synthesis
problem. These algorithms are polynomial in the model size, but
they are not complete (i.e., there might exist a solution even if none
is reported) [14] or can handle properties with only one quanti-
tative operator [15]. In [22], the synthesis of multi-strategies for
MDPs is studied. This approach can handle only a subset of PCTL
properties and it only considers MDPs with no uncertainties. Fi-
nally, [23] studies two-player games with winning objectives ex-
pressed in PCTL. Also our formulation can be interpreted as a
game, where the controller plays against nature. On the other hand,
following the CMDP semantics defined in Assumption 2.2, we give
nature the power of selecting a different strategy at each execution
step, while [23] aims to analyze the more complex problem of find-
ing the single optimal strategy for nature. Our formulation is useful
to model time-varying processes (e.g., the power generated by the
wind), and an optimal strategy for the controller can be synthesized
algorithmically. The existence of an optimal controller and nature
in the formulation of [23] is instead undecidable in general.

4. CONSTRAINED TOTAL EXPECTED RE-

WARD MAXIMIZATION FOR CMDPS
We formally define the optimization problem under analysis, prove

that its decision problem version is NP-complete, and present an al-
gorithm to solve the former.

Constrained Total Expected Reward Maximization for EMDPs.
Given an EMDP MC , a reward structure r, and a PCTL formula
φ, determine strategy σ∗ for MC such that:

σ∗ = argmax
σ∈ΣMD

φ

W
σ
S0

(5)

where W
σ
S0

is the sum of the expected rewards over all the initial

states s ∈ S0, and ΣMD
φ is the set of Markov-Deterministic strate-

gies for which MC satisfies φ for any ηa ∈ Nat, starting from any

s ∈ S0 and operating under σ ∈ ΣMD
φ .

The same results hold for the dual problem of minimizing the
EMDP total expected cost, after substituting all “max” (“min”) op-
erators with “min” (“max”) in the derivations below.

We will use the following lemmas (the proofs are available in the
references):
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Fig. 2: Lazy algorithm for the constrained optimization.

Lemma 4.1. Complexity of PCTL model-checking for
CMDPs [11]. Verifying that a CMDP MC satisfies a PCTL for-
mula φ is solvable in polynomial time.

Lemma 4.2. Computation of the total expected reward for Con-
vex Markov Chains (CMCs) [17]. Given a CMC, its total ex-
pected reward is computable in polynomial time.

Lemma 4.3. Complexity of PCTL strategy synthesis for
MDPs [13]. The problem of determining the existence of an MD
strategy σ for an MDP M such that M, σ |= φ is NP-complete.

We now prove that the decision problem version of Problem (5)
is NP-complete.

Theorem 4.1. The problem of determining the existence of an MD
strategy σ for an EMDP MC , with total expected reward W

σ
S0

larger or equal to WT and satisfying a specification φ in PCTL,
is NP-complete.

Proof. Given a candidate solution σc, we can in polynomial time:
1) check whether MC , σc |=Nat φ by Lemma 4.1; 2) compute
W

σc
S0

on the induced CMC Mσc
C by Lemma 4.2. σc is a solution if

and only if check 1) passes and W
σc
S0

≥ WT . This proves that the
problem is in NP. To prove NP-hardness, we reduce the problem in
Lemma 4.3 to the one under analysis. We set WT = 0, and de-
scribe transition probabilities with point ellipses, i.e., ellipses with
null axes (Ka

s → +∞, ∀s ∈ S, ∀a ∈ A(s) in Equation (2)).

In the rest of the section, we describe an algorithm to solve Prob-
lem (5). We use a lazy approach based on strategy-iteration, con-
ceptually similar to the ones proposed in [24] and, for non-linear
constraints, [25]. As shown in Fig. 2, the algorithm is split into two
main routines communicating in a loop. At each iteration, the opti-
mization engine (OE) is responsible to generate a candidate strategy
σc. σc maximizes the total expected reward, but it does not neces-
sarily satisfy PCTL property φ, since the OE formulation does not
contain any information about φ. The candidate solution is then
passed to the verification engine (VE) which checks whether MC

satisfies φ for all resolutions of uncertainty, i.e., ∀ηa ∈ Nat, when
operating under σc. If the check passes, σ∗ = σc and the algo-
rithm terminates. Otherwise, the VE generates an additional con-
straint for the OE to prevent the previous σc to be selected again,
and the loop repeats. The novelty of our approach is devising a
mathematical formulation for the OE capable of generating at each
iteration the candidate strategy that maximizes the total expected
reward among those still available (at each iteration in which the
VE reports a failure, the candidate strategy is discarded). The first
candidate strategy that satisfies the PCTL specification becomes the

solution of the synthesis problem. Such a strategy is feasible (sat-
isfies φ) and it has the maximum total reward among strategies that
satisfy φ, so it solves Problem (5) exactly.

In general, there is not guarantee on the uniqueness of the op-
timal strategy σ∗, i.e., multiple strategies with the same expected
reward might exist, each satisfying φ. Since every such strategy
is equivalent from the user perspective, the algorithm just reports
the first one found. Alternatively, all equivalent strategies could be
generated by continuing the iteration between the OE and the VE
until finally a reduction in the expected reward gets detected, and
by reporting all synthesized strategies satisfying φ.

The next subsections give details on the OE and VE and analyze
the algorithm properties.

4.1 Optimization Engine
We start with the classical linear-programming (LP) formulation

to maximize the total expected reward for MDPs [4].

min
x,l

∑

s∈S0
xs

s.t. xs − las = ras + x
T

f
a

s ; ∀s ∈ S, ∀a ∈ A(s) (6)

xs, l
a
s ≥ 0 ∀s ∈ S, ∀a ∈ A(s)

Vector x collects the total expected reward for each state s ∈ S (at
the end of the optimization W

σc
s = xs, ∀s ∈ S), and the cost func-

tion sums the total expected rewards for all the initial states s ∈ S0.
We then set Wσc

S0
=

∑

s∈S0
xs. Variables las are slack variables

for each constraint. Also, ras = rs(s) + ra(s, a), ∀s ∈ S, ∀a ∈ A.
Since the slack variables have negative sign, the slack can only be
negative, i.e., the left-hand side (LHS) can only be larger or equal
than the right-HS (RHS). The “min” operator makes sure that, for
each state, the constraint with the highest RHS has null slack, i.e.,
las = 0. The optimal strategy can then be reconstructed by selecting
the action a ∈ A(s), ∀s ∈ S, corresponding to the constraint with
null slack, e.g., σc(s0, a) = 1 if las0 = 0. Our goal is to modify
such a formulation to allow a sub-optimal solution to be selected, in
case the optimal solution does not satisfy the PCTL specification.
We now describe an equivalent formulation to the original prob-
lem that is more suitable to achieve this goal. We will describe in
Section 4.2 how to add constraints to this formulation to select sub-
optimal solutions in order of optimality. We refer to Problem (7):

max
x,z,l,n

∑

s∈S0
xs

s.t. xs − las + na
s = ras + x

T

f
a

s ; ∀s ∈ S, ∀a ∈ A(s) (7a)

las ≤ Bzas , na
s ≤ Bzas ; ∀s ∈ S, ∀a ∈ A(s) (7b)

z
T

s 1 =Ms − 1; ∀s ∈ S (7c)

xs, l
a
s , n

a
s ≥ 0, zas ∈ {0, 1}∀s ∈ S, ∀a ∈ A(s)

We associate a binary variable zas to each action for every state,
so the problem becomes a Mixed-Integer Linear Program (MILP).
z
aj
si = 0 if action aj is chosen for state si, and Constraint (7c) guar-

antees that only one action can be selected for each state, where
Ms = |A(s)|. For example, σc(s0, a) = 1 if zas0 = 0. We then as-
sociate to each constraint a second slack variable na

s , with sign op-
posite to las . For selected actions, zai

si
= 0, Constraint (7b) makes

sure that z
aj
si = 0 implies l

aj
si = 0 ∧ n

aj
si = 0, so that the cor-

responding Constraint (7a) sets the value of xs.1 For unselected
actions, z

ak
si = 1, variable l

ak
si > 0 (n

ak
si > 0) if selecting ac-

tion ak had resulted in a lower (higher) value of xsi . With these

1 B is a big number with respect to the problem data. It needs to be
higher than the reward computed for any state, i.e., B ≥ xs, ∀s ∈
S, but not excessively high to avoid convergence problems in the
optimizer when solving Problem (7). A suitable value of B can be
found by trial and error.



constraints, any action can be selected. We, finally, change the op-
timization operator to “max”, so that, at the first iteration of the
algorithm, the total expected reward gets maximized.

We now proceed to consider uncertainties in the transition prob-
abilities. Constraint (7a) gets updated to Constraint (8), since the
adversarial nature tries to minimize the expected reward. The new
constraint can be made linear again for an arbitrary uncertainty
model by replacing it with a set of constraints, one for each point
in Fa

s . However, this approach results in infinite constraints if the
set Fa

s contains infinitely many points, as in the cases considered
in the paper, thus making the problem not solvable. We solve this
difficulty for the ellipsoidal uncertainty model using duality. In
Constraint (9), we replace the primal inner problem with its dual,
∀s ∈ S, a ∈ A(s):

xs − las + na
s = ras + min

fa
s
∈Fa

s

x
T

f
a

s (8)

⇓

xs − las + na
s = ras + max

λa

s
∈Da

s (x)
g (λa

s ) (9)

Vector Lagrange multiplier
λ

a
s =

[

λa
1,s, λ

a
2,s,λ

a
3,s

]

Dual cost function
g (λa

s ) = λa
1,s − λa

2,s − h
a

s

TEa
sλ

a
3,s

Dual feasibility set
Da

s (x) = {λa
s | ‖λa

3,s‖2 ≤ λa
2,s, x− λa

1,s1+ Ea
s

T
λ

a
3,s = 0}

The dual problem is convex by construction [26] and has size poly-
nomial in the size R of the EMDP [11]. Since also the primal
problem is convex, strong duality holds, i.e., the primal and dual
optimal solutions coincide, because the primal problem satisfies
Slater’s condition [26] for any non-trivial uncertainty set Fa

s . Any
dual solution underestimates the primal solution. When substitut-
ing the primal problem with the dual in Constraint (9), we can drop
the inner optimization operator because the outer optimization op-
erator will nevertheless aim to find the least underestimate to max-
imize its cost function. We get the full formulation for the OE (the
quantifiers ∀s ∈ S, ∀a ∈ A(s) are equal to Problem (7)):

max
x,λ,l,n,z

∑

s∈S0
xs

s.t. xs − las + na
s = ras + g (λa

s ) ;

las ≤ Bzas , na
s ≤ Bzas ; (10)

z
T

s 1 =Ms − 1;

xs, l
a
s , n

a
s ≥ 0,λa

s ∈ Da
s (x), z

a
s ∈ {0, 1}

For the ellipsoidal model, Problem (10) can be written as Prob-
lem (11), which is a Mixed-Integer Quadratic-Constrained Program
(MIQCP) that we solve using the back-end optimizer Gurobi [27].

max
x,λ,z,l,n

∑

s∈S0
xs

s.t. xs − las + na
s = ras + λa

1,s − λa
2,s − h

a

s

T
Ea

sλ
a
3,s;

las ≤ Bzas , na
s ≤ Bzas ;

z
T

s 1 =Ms − 1; (11)

xs, l
a
s , n

a
s , λ

a
2,s ≥ 0, λa

3,s ≥ 0, zas ∈ {0, 1};

‖λa
3,s‖2 ≤ λa

2,s, x− λa
1,s1+ Ea

s
T
λ

a
3,s = 0

4.2 Verification Engine
After fixing a candidate strategy σc, all the non-determinism in

MC is resolved. The VE has thus the task of checking whether
the induced Ellipsoidal-MC (EMC) Mσc

C = (S, S0,Ω,F ,X , L)
satisfies the PCTL formula φ for all resolutions of uncertainty, i.e.,
∀ηa ∈ Nat. We use the sound and complete verification algo-
rithm presented in [11, 12] (we remember that EMCs are a special

case of CMDPs). If the EMC satisfies φ, then the optimal strat-
egy has been found and σ∗ = σc. Otherwise, the VE needs to
generate an additional constraint to be passed to the OE, so that
the same candidate solution does not get selected anymore. If vec-
tor zc = [zas0 · · · z

a
sN

] collects all the binary decision variables that
were set to zero in the previous round of optimization, i.e., the vari-
ables corresponding to the previously selected actions, we just need
to add constraint:

z
T

c 1 ≥ 1 (12)

so that it is not possible to select the same set of actions again.
As an example, we optimize the total expected reward of the

EMDP in Fig. 1 subject to property φ = P≥0.8[ϑ U abs]. The first
iteration of the OE generates strategy σc1, which selects actions
[b, a, a, a] for states [s0 · · · s3], with W

σc1
s0 = 10.625. The VE,

though, reports Pσc1,min
s0 [ϑ U abs] = 0.207, so the strategy is re-

jected. The VE adds the constraint zbs0 + zas1 + zas2 + zas3 = 1 to
the OE formulation, which generates at the second generation σc2

([a, a, a, a]), with W
σc2
s0 = 10.188. The VE computes the value

Pσc2,min
s0 [ϑ U abs] = 1, and the algorithm terminates reporting
σ∗ = σc2.

4.3 Algorithm Analysis
We prove soundness (if a strategy σ∗ is returned, it indeed opti-

mally solves Problem (5)), completeness (if no solution is returned,

no strategy σ ∈ ΣMD exists such that MC , σ |=Nat φ) and ana-
lyze the runtime performance of the proposed algorithm.

Theorem 4.2. The algorithm presented in this section to solve
Problem (5) is sound, complete and has runtime exponential in the
size R of the EMDP and polynomial in the size Q of the PCTL
specification φ.

Proof. Problem (10) returns the MD strategy σc that maximizes
W

σ
S0

among those still available. By Lemma 4.1, the VE is sound,
so if it returns MC , σc |=Nat φ, indeed σ∗ = σc (exit arrow at
the bottom of Fig. 2). The VE is also complete, so if it returns
MC , σc 6|=Nat φ, the current σc can be discarded. This is done
by generating a constraint of the form of Constraint (12), which
removes only the current σc from the strategies to be explored by
the OE. This proves soundness of the overall algorithm.

Failure of finding a solution is declared only by the OE, when
Problem (10) becomes unfeasible because all available strategies
have previously been discarded by the VE (exit arrow at the top of
Figure 2). This proves completeness.

Finally, the algorithm goes at most through I = O(MN ) itera-
tions (from Section 2, I is the total number of MD strategies, M is
the number of actions, and N the number of states of the EMDP).
Each requires solving an instance of Problem (10) and a verification
check (done in time polynomial in R and Q by Lemma 4.1). Prob-
lem (10) can be solved by branch-and-bound algorithms in time ex-
ponential in the number of binary variables (whose number isMN
and remains constant across iterations) and polynomial in the num-
ber of constraints (whose number is polynomial in R at the first

iteration, and it grows at each iteration limited by I = O(MN )).
The total complexity isO(MN×

(

2MN×poly(MN )+poly(Q))
)

,
exponential in R and polynomial in Q.

The algorithm performs better on problems that do have a fea-
sible solution, arguably the most interesting ones, while the opti-
mization step could be removed if the goal is to prove unfeasibility.
As an alternative, σ∗ could be determined by testing all I avail-
able MD strategies, and selecting the one with the highest reward
among those satisfying φ [13]. We believe (and experimentally
show in Section 6) that our approach can achieve better running
time by decoupling the problem into an optimization and a veri-
fication part and by testing strategies in order of optimality. Fi-
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nally, speed-ups can be obtained by implementing online routines
for integer-constraint simplification and to produce more succinct
certificates of unfeasibility from the VE [24,25]. These routines are
outside the scope of this paper and will be covered in future work.

5. SUPPLY SCHEDULING AND ENERGY

PRICING WITH RENEWABLE SOURCES
We model the pricing and dispatch problem following the sce-

nario sketched in Fig. 3 [7, 10, 28]. More details are available
in [12].

Three agents operate in the system: the network operator, and
two types of users, traditional and opportunistic. Further, three en-
ergy sources are available: non-dispatchable wind, and two dis-
patchable sources, baseline and fast-start generators. We will use
stochastic variables W,Dt, Do to represent wind energy supply
and traditional and opportunistic user demand, respectively.

The network operator takes two kinds of decisions: 1) dispatch
of non-renewable sources, to guarantee that the aggregate energy
supply matches the demand; 2) pricing of energy, to maximize
profits and incentivize users to join or leave the network depend-
ing on energy availability. Traditional and opportunistic users re-
act to pricing decisions on different timescales. Traditional users
only react to day-ahead pricing to decide how much energy they
are willing to purchase, while opportunistic users are capable of
rescheduling in real-time their energy demand, depending on the
energy price, in exchange of lower expected prices.

A 24-hour period gets divided into T1-slots of equal length (e.g.,
T1 = 1h), and each T1-slot into K T2-slots (e.g., T2 = 30min,
K = 2) [10]. The operator maximizes its economic profit by tak-
ing decisions on the two time scales. On day-ahead, for each T1-
slot, it dispatches Q units of baseline energy (unit cost, c1), with
q = Q/K units per T2-slot, and sets the price for traditional users
(u), so that they can decide one day ahead when to schedule their
demand in the following day. The choice of u sets the expected de-
mand of traditional users (E[Dt]). In real-time, for each T2-slot, the
operator first observes the values of traditional-user demand dt and
wind availabilityw. It then sets the price for opportunistic users (v)
to determine the expected demand of opportunistic users (E[Do]).
Third, it dispatches the production of more fast-start energy (unit
cost, c2) or cancels part of the already dispatched baseline energy
(paying only unit cost cp instead of c1), depending on wind avail-
ability and user demand, to balance supply and demand. In real
scenarios, cp < c1 < c2 and wind-energy is assumed to be free for
brevity [10]. The operator thus tries to use as much wind energy
as possible and to dispatch on day-ahead the exact amount of base-
line energy, not to incur in real-time in cancellation costs or in the
extra cost for fast-start supplies. Since more profitable strategies
might imply a higher reliance on the uncertain wind energy or an
increase in energy prices, correct system functionality needs limits
on energy-unbalance risks and QoS guarantees for users.

There are three sources of stochastic behavior: (i) wind-energy
supply (W ), (ii) traditional (Dt) user demand, (iii) opportunistic
(Do) user demand. We thus use a stochastic optimization frame-
work. The result of the optimization should return optimal strate-
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Fig. 4: Sketch of ME (top) and M′
E (bottom). The latter is ME

unfolded across decision epochs. For each EMDP, the initial state
s0 is shown on the left. Each state is represented by the tuple
(w, dt, do) of observations of W,Dt, Do. The pairs (Q, u) rep-
resent the day-ahead decisions about dispatch of baseline energyQ
and energy pricing for traditional users u. Two arrows per decision
depart from each state because in this figure we assumed only two
discretization levels for each quantity (labeled with greek letters
α, β, · · · ). We only show the state graph in the EMDPs related to
decision (Qa, ua), but similar state graphs are present also for the
other decision pairs (Qa, ub), (Qb, ua), (Qb, ub), as hinted by the
dashed arrows departing from s0.

gies about 1) the day-ahead decisions (Q and u) and 2) the real-
time decisions (v) for each possible observation of W and Dt. In
real-time, the actual decision (vobs) will be taken deterministically
among the synthesized ones based on the observed values w and
dt, i.e., the actual wind availability and traditional-user demand.
In summary, we will optimize over one T1-slot (the decision prob-
lem is periodic, so we can run one optimization for each T1-slot
stand-alone), and aim to determine optimal values for Q, u and v.

We use the Ellipsoidal-MDP ME = (S, S0, A,Ω,F ,A,X , L)
sketched in Fig. 4 (top). All quantities are bounded and uniformly
discretized to keep the state and action spaces finite. States s ∈ S
are a tuple s = (w, dt, do), where w, dt, do refer to the observed
values of available wind energy and user demand in that state. We
consider only one T1-slot per time, so we model only one choice
of day-ahead energy dispatch Q and pricing for traditional users
u (at the initial state s0, (Q, u) ∈ A). The process then transi-
tions through K decision epochs, as follows. First, values of wind
energy (w) and traditional user demand (dt) are stochastically cho-
sen according to the corresponding distributions (described below).
Second, for each observation of W and Dt, a decision on v ∈ A is
made and the opportunistic user demand (do) is stochastically cho-
sen. To transition between epochs a new value of wind energy w
(the backward arrow in Fig. 4 (top)) is chosen and the steps repeat.

In general, the optimal decision v at each epoch depends on
previous observations of wind availability (w) and user demand
(dt, do), so v is history-dependent. To synthesize control strategies
using the algorithm in Section 4, we unfold the sequence of deci-
sion epochs in the EMDP M′

E = (S′, S0, A
′,Ω,F ′,A′,X ′, L′)

in Fig. 4 (bottom). In M′
E , we have explicitly marked each quan-

tity with an additional subscript k = 1, · · · ,K to refer to the cor-
responding T2-slot. Each state s ∈ S of ME (apart from the initial
state) has been replicated K times in M′

E , s → s1, s2, · · · , sK .
After K decision epochs, the states transition to an absorbing state
(not shown in Fig. 4). Since now all decision epochs are explicitly



codified in the model, Markov strategies are optimal for M′
E . The

corresponding optimal history-dependent strategy for ME can be
reconstructed for each s ∈ S by collecting the sequence of optimal
decisions returned by the algorithm in the replicas s1, s2, · · · , sK .
In the following we will only consider M′

E . As an additional ad-
vantage, different wind distributions can be used to transition be-
tween different epochs in M′

E (only one distribution could be used
in ME), to account for the time-varying nature of wind availability.
The modeling expressivity is thus increased.

State transition probabilities are computed using the following
stochastic models.

User demand. The demand of both traditional (Dt) and oppor-
tunistic (Do) users is modeled using Gaussian distributions [10],
with Dt ∼ N (αtu

γt , βtE[Dt]), and Do ∼ N (αov
γo , βoE[Do]).

Parameter γt < 0 (γo < 0) is the elasticity of the traditional (op-
portunistic) users, i.e., the ratio of the percentage change of the
expected demand to that of price variations, formally defined as:
γt = u/E[Dt] · ∂E[Dt]/∂u. Parameters αt, αo, βt, βo are fitting pa-
rameters. To compute transition probabilities, we truncate and dis-
cretize the continuous PDs in equally-sized intervals, pick the mid-
dle point of each interval as the discretization value and then inte-
grate the PD across the interval to determine how likely the system
transitions to that discretized value.2

Wind-energy availability. We created a stochastic model of the
available wind energy starting from measured data collected from
the wind farm at Lake Benton, Minnesota, USA [29]. The goal is to
take forecast values into account, while also considering the intrin-
sic inaccuracies of these predictions. First, we compute the (dis-
crete) empirical PD µW of a training set of collected wind-energy
data. Second, we divide a new set of data in T2-slots, and consider
the average value for each new T2-slot as the forecast energy value.
We then scale µW to have such expected value E[Wk], thus obtain-
ing µWk

. Finally, we compute ellipsoidal Sets (3) F ′a
s (collected

in F ′) to represent uncertainty in the transition probability between
two discretized energy levels in two consecutive T2-slots. Transi-
tion frequencies are computed by counting observed transitions in a
training set of data. Using classical results from statistics [17], we
then compute the value of parameter β from Set (1) correspond-
ing to the confidence level CL in the measurements. In particular,
0 ≤ CL ≤ 1 and CL = 1− cdfχ2

d
(2 ∗ (βmax − β)), where cdfχ2

d

is the cumulative density function of the Chi-squared distribution
with d degrees of freedom (d is equal to the number of bins used to
discretize W ). Moreover, an increasing value of parameter β can
be used in the sequence of decision epochs to model the fact that
forecast farther-away in time are less accurate.

We provide the states with thick circles in Fig. 4 (bottom) with
three reward structures, to express the profit and risk of the oper-
ator and the QoS for the users. We choose those states because
the quantities Dt,k, Do,k,Wk are all fully observable in them, thus
allowing the computation of the rewards. We set:

rProfit
s,k [$] = udt,k+vkdo,k−(cp∆k+c1(q−∆k))1

A
∆k≥0

−(c1q−c2∆k)1
B
∆k<0 (13a)

rLoL
s,k [MWh] = max(0, XE[Wk] + Y E[Dt,k +Do,k]−∆k)

(13b)

rQuality
s,k [MWh] = dt,k + do,k (13c)

with ∆k = wk + q − dt,k − do,k representing the surplus of
supply on demand, X and Y defined in the following, and 1 the
indicator function. Reward (13a) subtracts operating costs to the

2For simplicity, we assume that the distributions of Dt and Do

are known with certainty. In fact, these distributions are usually
estimated more accurately than the wind forecast, by analyzing the
history of measured data [10]. Adding uncertainty models also for
these distributions is left as future work.

operator revenue to compute the net profit. Indicator 1A (1B) cor-
responds to the scenario when the sum of day-ahead dispatched
and wind energy is sufficient (insufficient) to cover the demand.
In the latter case, fast-start energy needs to be dispatched in real-
time. Reward (13b) computes the Loss of Load (LoL). In prac-
tical scenarios, the amount of fast-start energy available in real-
time is limited. Often this limit is computed with the formula
FS ≤ XE[W ] + Y E[Dt +Do] (e.g. X = 3%, Y = 10%) [30].
If ∆ + FS < 0 the network incurs in a LoL, with potentially
risky consequences. Reward (13c) accounts for user demand in-
centivized by energy pricing.

Finally, we mark all states with ∆+FS < 0 with the label risk,
and use label abs for the absorbing state, so Ω = {risk, abs}.

The optimal strategy σ∗ = (u∗, Q∗, v∗k), 1 ≤ k ≤ K is the
solution of problem:

W
∗
s0 = max

Q,u
min

fa
s
∈F′a

s

E
σ,fa

s

W E
σ
Dt

max
v1···vK

E
σ
Do
rewrProfit(π,K)

s.t.M′
E , σ

∗ |=Nat φ where: (14)

φ = RrLoL

≤EENSM
[C abs] ∧RrQuality

≥QoSm
[C abs]

∧ P≥1−LoLPM
[¬risk U abs]

In Problem (14), we maximize the expected value of the operator
profit W∗

s0 under the worst-case resolution of uncertainty in the
wind-energy forecast by summing the instantaneous state rewards

rProfit
s along the paths π ∈ Πfin of K steps of M′

E , correspond-
ing to the K T2-slots. By replicating the decision process for each
of the K T2-slots while building model M′

E , every K-step execu-
tion path traverses all decision epochs, so the computed reward, as
introduced in Definition 2.6 and 2.7, will account for the sum of the
contributions of each decision epoch.

According to the semantics defined in Table 1, the PCTL specifi-
cation φ constrains the expected operator risk and user QoS across
the decision horizon. EENSM is the desired maximum value of
Expected Energy Not Served, LoLPM is the maximum allowed
value of Loss of Load Probability (these two properties limit the
risk for the operator), andQoSm is the minimum value of QoS that
needs to be guaranteed to the users.

6. EXPERIMENTAL RESULTS
We implemented the algorithm in Python, and interfaced it with

PRISM [31] as a front-end for entering models and with Gurobi [27]
as the back-end optimizer. Experiments were run on a 2.4 GHz In-
tel Xeon with 32GB of RAM.

In this section, we present experimental results obtained by solv-
ing Problem (14). Our goals are to give insight about the algo-
rithm functionality, compare its scalability to other strategy synthe-
sis approaches, and show that the synthesized energy pricing and
dispatch strategies can achieve better performances than other so-
lutions presented in the literature.

We define the following quantities:

Profit := W
∗
s0

EENS := RrLoL,σ∗,max
s0 [C abs]

QoS := RrQuality ,σ∗,min
s0 [C abs]

1− LoLP := Pσ∗,min
s0 [¬risk U abs]

where the min and max operators refer to the action range of na-
ture Nat. As defined in Section 2.2, these quantities represent the
quantitative values of rewards and satisfaction probability that get
then compared to the corresponding thresholds (EENSM , QoSm,
LoLPM ) in Problem (14) to determine the satisfaction of φ. We
will then normalize the Profit to ProfitM , the maximum com-
puted profit value for each set of experiments. We set T1 = 1h,
T2 = 30min so K = 2, and consider two pricing options both
for traditional and opportunistic users. If not otherwise stated,



Fig. 5: Performance vs. iteration.

Fig. 6: Profit vs. confidence in forecast.

we will use CL = 90%, and discretize the wind energy W in 5
bins, and traditional Dt, opportunistic Do demands and baseline
supply Q in 2 bins. We set QoSm = 80%

∑

k E[Dt,k +Do,k],
LoLPM = 10%, EENSM = 5%

∑

k E[Wk + q]. The other pa-
rameter values were taken from [10].

In Fig. 5, we show the trend of the expected system performance
as a function of the synthesis algorithm iteration. The Profit
monotonically decreases until the proposed candidate strategy σc

meets all specifications. We note that 1−LoLP andQoS (EENS,
not shown, has a trend similar to 1 − LoLP ) instead vary non-
monotonically. Intuitively, this is because the Profit can be in-
creased either by scheduling less baseline energy Q, to reduce can-
cellation costs cp but incurring in a higher risk, or by increasing the

Table 2: Performance Analysis

W bins 5 10 15 20

Profit 1 0.98 0.97 0.965

1− LoLP 0.99 0.99 0.99 0.99

EENS 0.98 0.98 0.98 0.98

QoS 1.01 1.01 1.01 1.01

Runtime 144s 400s 1368s 3289s

#Iter. 223 53 547 332

N + Tr 1343 2719 4115 5591

#MD Strat. (I) 4096 4.2e6 4.3e9 4.4e12
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Fig. 7: Comparison to alternative approaches via Monte Carlo sim-
ulation.

energy price v for opportunistic users, with consequent reduction of
QoS (the peaks of 1 − LoLP are aligned to the valleys of QoS).
By ranking strategies by expected Profit, our algorithm is capa-
ble of selecting the optimal strategy despite the complex parameter
interdependences in the model under analysis.

In Table 2, we compare synthesis results while varying the num-
ber of discretization bins for W (all values are normalized to the
corresponding specification). First, we note that the expected sys-
tem performances do not substantially vary by changing the num-
ber of bins, supporting our choice of 5 bins in the other experi-
ments. Second, runtime results show that the algorithm can handle
in reasonable time problems more than 10× larger than the ones
analyzed in [14], the only other algorithm in the literature capable
of processing arbitrary PCTL formulas (we useN+Tr, the sum of
states and transitions in the EMDP, as a proxy of the model size).
Third, we note that the alternative approach of verifying all the I
MD strategies σ ∈ ΣMD is not practical, due to the exponential
increase of I (defined in Section 2.1.1) with the problem size.

In Fig. 6, we study the effect of different confidence levels CL in
the wind-energy forecast on the expected operator Profit, while
varying the value of wind penetration ηW =

∑K

k=1
E[Wk]/E[Wk + q]

and keeping all constraints constant. At high CL, higher profits
can be expected for increasing ηW (wind energy is assumed free).
On the other hand, for low CL, higher wind penetration creates
more uncertainty thus lowering the expected Profit. The network
operator can use these curves to assess the return of investment in
employing more accurate (and expensive) forecast techniques.

Finally, in Fig. 7 we compare results with two other energy-
pricing formulations proposed in the literature. He et al. [10] solve
the optimization problem without enforcing any constraint. Varaiya
et al. [7] only put limits on the acceptable LoLP (their approach is
not trivially extendable to reward properties expressed using the R
operator) and solve optimally only for LoLP = 0. Comparison is
done by solving the different optimization problems and then run-
ning Monte Carlo simulations (1000 runs) of the controlled system
on test data (different from the training ones) to evaluate its per-
formance (Profit, EENS and QoS). As expected, the uncon-
strained strategy from [10] has higher Profit (up to 5%), but also
up to 12% more EENS and 10% less QoS, compared to our ap-
proach. The strategy from [7] guarantees null EENS, but it has
up to 6% less Profit (due to over constraining EENS) and 10%
less QoS (which is left unconstrained).

As a final remark, we note that runtime may increase exponen-
tially as we tighten the specification thresholds (QoSm, LoLPM ,
EENSM ), since it becomes increasingly more difficult to find a



solution within the exponentially-sized search space. Nevertheless,
the chosen values were tight enough to improve the quality of alter-
native energy pricing and dispatch strategies proposed in the litera-
ture, while maintaining the runtime acceptable for this application.

7. CONCLUSIONS AND FUTURE WORK
We proposed the first sound and complete algorithm for the syn-

thesis of control strategies for MDPs, satisfying properties expressed
in PCTL and robust to uncertainties in the transition probabilities.
We then applied the algorithm to the problem of energy pricing
and dispatch in smart grids with renewables. Results showed that
network-operator risks can be effectively constrained at design time
and that more accurate predictions of the expected profit can be ob-
tained by taking the uncertainty of wind availability into account.

As future work, we plan to investigate techniques to generate
more concise constraints to prove failure of the verification step, in
order to prune more effectively the search space for the optimiza-
tion engine, and to apply the proposed strategy synthesis approach
to further case studies, e.g., semi-autonomous car driving.
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