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ROBUST SUBSPACE CLUSTERING
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Subspace clustering refers to the task of finding a multi-subspace repre-
sentation that best fits a collection of points taken from a high-dimensional
space. This paper introduces an algorithm inspired by sparse subspace clus-
tering (SSC) [In IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR (2009) 2790–2797] to cluster noisy data, and develops some
novel theory demonstrating its correctness. In particular, the theory uses ideas
from geometric functional analysis to show that the algorithm can accurately
recover the underlying subspaces under minimal requirements on their orien-
tation, and on the number of samples per subspace. Synthetic as well as real
data experiments complement our theoretical study, illustrating our approach
and demonstrating its effectiveness.

1. Introduction.

1.1. Motivation. In many problems across science and engineering, a funda-
mental step is to find a lower-dimensional subspace which best fits a collection
of points taken from a high-dimensional space; this is classically achieved via
Principal Component Analysis (PCA). Such a procedure makes perfect sense as
long as the data points are distributed around a lower-dimensional subspace, or
expressed differently, as long as the data matrix with points as column vectors
has approximately low rank. A more general model might sometimes be useful
when the data come from a mixture model in which points do not lie around a
single lower-dimensional subspace but rather around a union of low-dimensional
subspaces. For instance, consider an experiment in which gene expression data
are gathered on many cancer cell lines with unknown subsets belonging to dif-
ferent tumor types. One can imagine that the expressions from each cancer type
may span a distinct lower-dimensional subspace. If the cancer labels were known
in advance, one would apply PCA separately to each group but we here consider
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the case where the observations are unlabeled. Thus, the goal in such an example
would be to separate gene expression patterns into different cancer types if pos-
sible. Finding the components of the mixture and assigning each point to a fitted
subspace is called subspace clustering. Even when the mixture model holds, the
full data matrix may not have low rank at all, a situation which is very different
from that where PCA is applicable.

In recent years, numerous algorithms have been developed for subspace cluster-
ing and applied to various problems in computer vision/machine learning [53] and
data mining [43]. At the time of this writing, subspace clustering techniques are
certainly gaining momentum as they begin to be used in fields as diverse as iden-
tification and classification of diseases [37], network topology inference [23], se-
curity and privacy in recommender systems [56], system identification [6], hyper-
spectral imaging [18], identification of switched linear systems [35, 41], and music
analysis [29] to name just a few. In spite of all these interesting works, tractable
subspace clustering algorithms either lack a theoretical justification, or are guar-
anteed to work under restrictive conditions rarely met in practice. (We note that
although novel and often efficient clustering techniques come about all the time,
establishing rigorous theory for such techniques has proven to be quite difficult.
In the context of subspace clustering, Section 5 offers a partial survey of the exist-
ing literature.) Furthermore, proposed algorithms are not always computationally
tractable. Thus, one important issue is whether tractable algorithms that can (prov-
ably) work in less than ideal situations—that is, under severe noise conditions and
relatively few samples per subspace—exist.

Elhamifar and Vidal [20] have introduced an approach to subspace clustering,
which relies on ideas from the sparsity and compressed sensing literature, please
see also the longer version [22] which was submitted while this manuscript was
under preparation. Sparse subspace clustering (SSC) [20, 22] is computationally
efficient since it amounts to solving a sequence of �1 minimization problems and is,
therefore, tractable. Now the methodology in [20] is mainly geared toward noise-
less situations where the points lie exactly on lower-dimensional planes, and the-
oretical performance guarantees in such circumstances are given under restrictive
assumptions. Continuing on this line of work, [46] showed that good theoretical
performance could be achieved under broad circumstances. However, the model
supporting the theory in [46] is still noise free.

This paper considers the subspace clustering problem in the presence of noise.
We introduce a tractable clustering algorithm, which is a natural extension of SSC,
and develop rigorous theory about its performance; see the results from Sec-
tion 3.1. In a nutshell, we propose a statistical mixture model to represent data
lying near a union of subspaces, and prove that in this model, the algorithm is
effective in separating points from different subspaces as long as there are suffi-
ciently many samples from each subspace and that the subspaces are not too close
to each other. In this theory, the performance of the algorithm is explained in terms
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of interpretable and intuitive parameters such as (1) the values of the principal an-
gles between subspaces, (2) the number of points per subspace, (3) the noise level
and so on. In terms of these parameters, our theoretical results indicate that the per-
formance of the algorithm is in some sense near the limit of what can be achieved
by any algorithm, regardless of tractability.

1.2. Problem formulation and model. We assume we are given data points ly-
ing near a union of unknown linear subspaces; there are L subspaces S1, S2, . . . , SL

of R
n of dimensions d1, d2, . . . , dL. These together with their number are com-

pletely unknown to us. We are given a point set Y ⊂ R
n of cardinality N , which

may be partitioned as Y = Y1 ∪Y2 ∪ · · · ∪YL; for each � ∈ {1, . . . ,L}, Y� is a col-
lection of N� vectors that are “close” to subspace S�. The goal is to approximate
the underlying subspaces using the point set Y . One approach is first to assign
each data point to a cluster, and then estimate the subspaces representing each of
the groups with PCA.

Our statistical model assumes that each point y ∈ Y is of the form

y = x + z,(1.1)

where x belongs to one of the subspaces and z is an independent stochastic
noise term. We suppose that the inverse signal-to-noise ratio (SNR) defined as
E‖z‖2

2/‖x‖2
�2

is bounded above. Each observation is thus the superposition of
a noiseless sample taken from one of the subspaces and of a stochastic per-
turbation whose Euclidean norm is about σ times the signal strength so that
E‖z‖2

�2
= σ 2‖x‖2

�2
. All the way through, we assume that

σ < σ� and max
�

d� < c0
n

(logN)2 ,(1.2)

where σ� < 1 and c0 are fixed numerical constants. To remove any ambiguity, σ is
the noise level and σ� the maximum value it can take on. The second assumption is
here to avoid unnecessarily complicated expressions later on. While more substan-
tial, the first is not too restrictive since it just says that the signal x and the noise z
may have about the same magnitude. (With an arbitrary perturbation of Euclidean
norm equal to two, one can move from any point x on the unit sphere to just about
any other point.)

This is arguably the simplest model providing a good starting point for a theo-
retical investigation. For the noiseless samples x, we consider the intuitive semi-
random model introduced in [46], which assumes that the subspaces are fixed with
points distributed uniformly at random on each subspace. One can think of this
as a mixture model where each component in the mixture is a lower-dimensional
subspace. (One can extend the methods to affine subspace clustering as briefly
explained in Section 2.)
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1.3. What makes clustering hard? Two important parameters fundamentally
affect the performance of subspace clustering algorithms: (1) the distance between
subspaces and (2) the number of samples on each subspace.

1.3.1. Distance/affinity between subspaces. Intuitively, any subspace cluster-
ing algorithm operating on noisy data will have difficulty segmenting observations
when the subspaces are close to each other. We of course need to quantify close-
ness, and Definition 1.2 captures a notion of distance or similarity/affinity between
subspaces.

DEFINITION 1.1. The principal angles θ(1), . . . , θ (d∧d ′) between two sub-
spaces S and S′ of dimensions d and d ′, are recursively defined by

cos
(
θ(i)) = max

ui∈S
max
vi∈S′

uT
i vi

‖ui‖�2‖vi‖�2

with the orthogonality constraints uT
i uj = 0, vT

i vj = 0, j = 1, . . . , i − 1.

Alternatively, if the columns of U and V are orthobases for S and S′, then the
cosine of the principal angles are the singular values of UT V.

DEFINITION 1.2. The normalized affinity between two subspaces is defined
by

aff
(
S,S′) =

√
cos2 θ(1) + · · · + cos2 θ(d∧d ′)

d ∧ d ′ .

The affinity is a measure of correlation between subspaces. It is low when the
principal angles are nearly right angles (it vanishes when the two subspaces are
orthogonal) and high when the principal angles are small (it takes on its maximum
value equal to one when one subspace is contained in the other). Hence, when
the affinity is high, clustering is hard whereas it becomes easier as the affinity
decreases. Ideally, we would like our algorithm to be able to handle higher affinity
values—as close as possible to the maximum possible value.

There is a statistical description of the affinity which goes as follows: sample in-
dependently two unit-normed vectors x and y uniformly at random from S and S′.
Then

E
{(

xT y
)2} ∝ {

aff
(
S,S′)}2

,

where the constant of proportionality is d ∨d ′. Having said this, there are of course
other ways of measuring the affinity between subspaces; for instance, by taking
the cosine of the first principal angle. We prefer the definition above as it offers
the flexibility of allowing for some principal angles to be small or zero. As an
example, suppose we have a pair of subspaces with a nontrivial intersection. Then
| cos θ(1)| = 1 regardless of the dimension of the intersection whereas the value of
the affinity would depend upon this dimension.
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1.3.2. Sampling density. Another important factor affecting the performance
of subspace clustering algorithms has to do with the distribution of points on
each subspace. In the model we study here, this essentially reduces to the num-
ber of points that lie on each subspace.3

DEFINITION 1.3. The sampling density ρ of a subspace is defined as the num-
ber of samples on that subspace per dimension. In our multi-subspace model, the
density of S� is, therefore, ρ� = N�/d�.4

One expects the clustering problem to become easier as the sampling density
increases. Obviously, if the sampling density of a subspace S is smaller than one,
then any algorithm will fail in identifying that subspace correctly as there are not
sufficiently many points to identify all the directions spanned by S. Hence, we
would like a clustering algorithm to be able to operate at values of the sampling
density as low as possible, that is, as close to one as possible.

2. Robust subspace clustering: Methods and concepts. This section in-
troduces our methodology through heuristic arguments confirmed by numerical
experiments while proven theoretical guarantees about the first step of algorithm
follow in Section 3. From now on, we arrange the N observed data points as
columns of a matrix Y = [y1, . . . ,yN ] ∈ R

n×N . With obvious notation, Y = X+Z.

2.1. The normalized model. In practice, one may want to normalize the
columns of the data matrix so that for all i, ‖yi‖�2 = 1 [R-code snippet for renor-
malizing a data point y is: y <-y/sqrt(sum(y ∧ 2))]. Since with our SNR
assumption, we have ‖y‖�2 ≈ ‖x‖�2

√
1 + σ 2 before normalization, then after nor-

malization:

y ≈ 1√
1 + σ 2

(x + z),

where x is unit-normed, and z has i.i.d. random Gaussian entries with vari-
ance σ 2/n.

For ease of presentation, we work—in this section and in the proofs—with a
model y = x + z in which ‖x‖�2 = 1 instead of ‖y‖�2 = 1 (the numerical Section 6
is the exception). The normalized model with ‖x‖�2 = 1 and z i.i.d. N (0, σ 2/n) is
nearly the same as before. In particular, all of our methods and theoretical results
in Section 3 hold with both models in which either ‖x‖�2 = 1 or ‖y‖�2 = 1.

3In a general deterministic model, where the points have arbitrary orientations on each subspace,
we can imagine that the clustering problem becomes harder as the points align along an even lower-
dimensional structure.

4Throughout, we take ρ� ≤ ed�/2. Our results hold for all other values by substituting ρ� with

ρ� ∧ ed�/2 in all the expressions.
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2.2. The SSC scheme. We describe the approach in [20], which follows a
three-step procedure:

I. Compute a similarity5 matrix W encoding similarities between sample
pairs as to construct a weighted graph G.

II. Construct clusters by applying spectral clustering techniques (e.g., [40])
to G.

III. Apply PCA to each of the clusters.

The novelty in [20] concerns step I, the construction of the affinity matrix. In-
terestingly, similar ideas were introduced earlier in the statistics literature for the
purpose of graphical model selection [38]. Now the work [20] of interest here is
mainly concerned with the noiseless situation in which Y = X and the idea is then
to express each column xi of X as a sparse linear combination of all the other
columns. The reason is that under any reasonable condition, one expects that the
sparsest representation of xi would only select vectors from the subspace in which
xi happens to lie in. Applying the �1 norm as the convex surrogate of sparsity leads
to the following sequence of optimization problems:

min
β∈RN

‖β‖�1 subject to xi = Xβ and βi = 0.(2.1)

Here, βi denotes the ith element of β and the constraint βi = 0 removes the trivial
solution that decomposes a point as a linear combination of itself. Collecting the
outcome of these N optimization problems as columns of a matrix B, [20] sets
the N × N similarity matrix W to be Wij = |Bij | + |Bji |. [This algorithm clusters
linear subspaces but can also cluster affine subspaces by adding the constraint
βT 1 = 1 to (2.1).]

The issue here is that we only have access to the noisy data Y; that is, we do
not see the matrix X of covariates but rather a corrupted version Y. This makes the
problem challenging, as unlike conventional sparse recovery problems where only
the response vector xi is corrupted, here both the covariates (columns of X) and
the response vector are corrupted. In particular, it may not be advisable to use (2.1)
with yi and Y in place of xi and X as, strictly speaking, sparse representations
no longer exist. Observe that the expression xi = Xβ can be rewritten as yi =
Yβ + (zi − Zβ). Viewing (zi − Zβ) as a perturbation, it is natural to use ideas
from sparse regression to obtain an estimate β̂ , which is then used to construct
the similarity matrix. In this paper, we follow the same three-step procedure and
shall focus on the first step in Algorithm 1; that is, on the construction of reliable
similarity measures between pairs of points. Since we have noisy data, we shall not
use (2.1) here. Also, we add denoising to step III, check the output of Algorithm 1.
We would like to emphasize early on that the theoretical analysis provided in this

5We use the terminology similarity graph or matrix instead of affinity matrix as not to overload the
word “affinity.”
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Algorithm 1 Robust SSC procedure

Input: A data set Y arranged as columns of Y ∈ R
n×N .

1. For each i ∈ {1, . . . ,N}, produce a sparse coefficient sequence {β̂i} by re-
gressing the ith vector yi onto the other columns of Y. Collect these as columns
of a matrix B.
2. Form the similarity graph G with nodes representing the N data points and
edge weights given by Wij = |Bij | + |Bji |.
3. Sort the eigenvalues δ1 ≥ δ2 ≥ · · · ≥ δN of the normalized Laplacian of G in
descending order, and set

L̂ = N − arg max
i=1,...,N−1

(δi − δi+1).

4. Apply a spectral clustering technique to the similarity graph using L̂ as the
estimated number of clusters to obtain the partition Y1, . . . ,YL̂

.
5. Use PCA to find the best subspace fits ({S�}L1 ) to each of the partitions ({Y�}L1 )
and denoise Y as to obtain clean data points X̂.

Output: Subspaces {S�}L1 and cleaned data points X̂.

paper only concerns the first step—the sparse regression part—of the algorithm.
We do not provide any guarantees for the spectral clustering step.

2.3. Performance metrics for similarity measures. Given the general structure
of the method, we are interested in sparse regression techniques, which tend to
select points in the same clusters (share the same underlying subspace) over those
that do not share this property. Expressed differently, the hope is that whenever
Bij �= 0, yi and yj originate from the same subspace. We introduce metrics to
quantify performance.

DEFINITION 2.1 (False discoveries). Fix i and j ∈ {1, . . . ,N} and let B be
the outcome of step 1 in Algorithm 1. Then we say that (i, j) obeying Bij �= 0 is a
false discovery if yi and yj do not originate from the same subspace.

DEFINITION 2.2 (True discoveries). In the same situation, (i, j) obeying
Bij �= 0 is a true discovery if yj and yi originate from the same cluster/subspace.

When there are no false discoveries, we shall say that the subspace detection
property holds. In this case, the matrix B is block diagonal after applying a per-
mutation which makes sure that columns in the same subspace are contiguous. In
some cases, the sparse regression method may select vectors from other subspaces
and this property will not hold. However, it might still be possible to detect and
construct reliable clusters by applying steps 2–5 in Algorithm 1.
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2.4. LASSO with data-driven regularization. A natural sparse regression strat-
egy is the LASSO:

min
β∈RN

1

2
‖yi − Yβ‖2

�2
+ λ‖β‖�1 subject to βi = 0.(2.2)

Whether such a methodology should succeed is unclear as we are not under a
traditional model for both the response yi and the covariates Y are noisy; see [45]
for a discussion of sparse regression under matrix uncertainty and what can go
wrong. The main contribution of this paper is to show that if one selects λ in a
data-driven fashion, then compelling practical and theoretical performance can be
achieved.

2.4.1. About as many true discoveries as dimension. The nature of the prob-
lem is such that we wish to make few false discoveries (and not link too many
pairs belonging to different subspaces) and so we would like to choose λ large. At
the same time, we wish to make many true discoveries, whence a natural trade off.
The reason why we need many true discoveries is that spectral clustering needs to
assign points to the same cluster when they indeed lie near the same subspace. If
the matrix B is too sparse, this will not happen.

We now introduce a principle for selecting the regularization parameter; our ex-
position here is informal and we refer to Section 3 and the supplemental article [47]
for precise statements and proofs. Suppose we have noiseless data so that Y = X,
and thus solve (2.1) with equality constraints. Under our model, assuming there are
no false discoveries, the optimal solution is guaranteed to have exactly d—the di-
mension of the subspace the sample under study belongs to—nonzero coefficients
with probability one. That is to say, when the point lies in a d-dimensional space,
we find d “neighbors.”

The selection rule we shall analyze in this paper is to take λ as large as possible
(as to prevent false discoveries) while making sure that the number of true discov-
eries is also on the order of the dimension d , typically in the range [0.5d,0.8d].
We can say this differently. Imagine that all the points lie in the same subspace of
dimension d so that every discovery is true. Then we wish to select λ in such a way
that the number of discoveries is a significant fraction of d , the number one would
get with noiseless data. Which value of λ achieves this goal? We will see in Sec-
tion 2.4.2 that the answer is around 1/

√
d . To put this in context, this means that

we wish to select a regularization parameter which depends upon the dimension
d of the subspace our point comes from. (We are aware that the dependence on
d is unusual as in sparse regression the regularization parameter usually does not
depend upon the sparsity of the solution.) In turn, this immediately raises another
question: since d is unknown, how can we proceed? In Section 2.4.4, we will see
that it is possible to guess the dimension and construct fairly reliable estimates.
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2.4.2. Data-dependent regularization. We now discuss values of λ obeying
the demands formulated in the previous section. Our arguments are informal and
we refer the reader to Section 3 for rigorous statements and to the supplemental
article [47]. First, it simplifies the discussion to assume that we have no noise (the
noisy case assuming σ � 1 is similar). Following our earlier discussion, imagine
we have a vector x ∈ R

n lying in the d-dimensional span of the columns of an
n × N matrix X. We are interested in values of λ so that the minimizer β̂ of the
LASSO functional

K(β, λ) = 1
2‖x − Xβ‖2

�2
+ λ‖β‖�1

has a number of nonzero components in the range [0.5d,0.8d], say. Now let β̂eq
be the solution of the problem with equality constraints, or equivalently of the
problem above with λ → 0+. Then

1
2‖x − Xβ̂‖2

�2
≤ K(β̂, λ) ≤ K(β̂eq, λ) = λ‖β̂eq‖�1 .(2.3)

We make two observations: the first is that if β̂ has a number of nonzero compo-
nents in the range [0.5d,0.8d], then ‖x−Xβ̂‖2

�2
has to be greater than or equal to a

fixed numerical constant. The reason is that we cannot approximate to arbitrary ac-
curacy a generic vector living in a d-dimensional subspace as a linear combination
of about d/2 elements from that subspace. The second observation is that ‖β̂eq‖�1

is on the order of
√

d , which is a fairly intuitive scaling (we have d coordinates,
each of size about 1/

√
d). This holds with the proviso that the algorithm operates

correctly in the noiseless setting and does not select columns from other subspaces.
Then (2.3) implies that λ has to scale at least like 1/

√
d . On the other hand, β̂ = 0

if λ ≥ ‖XT x‖�∞ . Now the informed reader knows that ‖XT x‖�∞ scales at most
like

√
(logN)/d so that choosing λ around this value yields no discovery (one can

refine this argument to show that λ cannot be higher than a constant times 1/
√

d as
we would otherwise have a solution that is too sparse). Hence, λ is around 1/

√
d .

It might be possible to compute a precise relationship between λ and the ex-
pected number of true discoveries in an asymptotic regime in which the number of
points and the dimension of the subspace both increase to infinity in a fixed ratio
by adapting ideas from [8, 9]. We will not do so here as this is beyond the scope of
this paper. Rather, we investigate this relationship by means of a numerical study.

Here, we fix a single subspace in R
n with n = 2000. We use a sampling density

equal to ρ = 5 and vary the dimension d ∈ {10,20,50,100,150,200} of the sub-
space as well as the noise level σ ∈ {0.25,0.5}. For each data point, we solve (2.2)
for different values of λ around the heuristic λo = 1/

√
d , namely, λ ∈ [0.1λo,2λo].

In our experiments, we declare a discovery if an entry in the optimal solution ex-
ceeds 10−3. Figure 1(a) and (b) shows the number of discoveries per subspace
dimension (the number of discoveries divided by d). One can clearly see that the
curves corresponding to various subspace dimensions stack up on top of each other,
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FIG. 1. Average number of true discoveries normalized by subspace dimension for values of λ in
an interval including the heuristic λo = 1/

√
d . (a) σ = 0.25. (b) σ = 0.5.

thereby confirming that a value of λ on the order of 1/
√

d yields a fixed fraction of
true discoveries. Further inspection also reveals that the fraction of true discover-
ies is around 50% near λ = λo, and around 75% near λ = λo/2. We have observed
empirically that increasing ρ typically yields a slight increase in the fraction of
true discoveries (unless, of course, ρ is exponentially large in d).

2.4.3. The false-true discovery trade off. We now show empirically that in our
model choosing λ around 1/

√
d typically yields very few false discoveries as well

as many true discoveries; this holds with the proviso that the subspaces are of
course not very close to each other.

In this simulation, 22 subspaces of varying dimensions in R
n with n = 2000

have been independently selected uniformly at random; there are 5, 4, 3, 4, 4 and 2
subspaces of respective dimensions 200, 150, 100, 50, 20 and 10. This is a chal-
lenging regime since the sum of the subspace dimensions equals 2200 and exceeds
the ambient dimension (the clean data matrix X has full rank). We use a sampling
density equal to ρ = 5 for each subspace and set the noise level to σ = 0.3. To
evaluate the performance of the optimization problem (2.2), we proceed by se-
lecting a subset of columns as follows: for each dimension, we take 100 cases
at random belonging to subspaces of that dimension. Hence, the total number of
test cases is m = 600 so that we only solve m optimization problems (2.2) out of
the total N possible cases. Below, β(i) is the solution to (2.2) and β

(i)
S its restric-

tion to columns with indices in the same subspace. Hence, a nonvanishing entry
in β

(i)
S is a true discovery, and likewise, a nonvanishing entry in β

(i)
Sc is false. For

each data point, we sweep the tuning parameter λ in (2.2) around the heuristic
λo = 1/

√
d and work with λ ∈ [0.05λo,2.5λo]. In our experiments, a discovery is

a value obeying |Bij | > 10−3.
In analogy with the signal detection literature, we view the empirical averages

of ‖β(i)
Sc ‖�0/(n− d) and ‖β(i)

S ‖�0/d as False Positive Rate (FPR) and True Positive
Rate (TPR). On the one hand, Figure 2(a) and (b) shows that for values around
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FIG. 2. Performance of LASSO for values of λ in an interval including the heuristic λo = 1/
√

d .
(a) Average number of false discoveries normalized by (n − d) (FPR) on all m sampled data points.
(b) FPR for different subspace dimensions. Each curve represents the average FPR over those sam-
ples originating from subspaces of the same dimension. (c) Average number of true discoveries per
dimension for various dimensions (TPR). (d) TPR vs. FPR (ROC curve). The point corresponding to
λ = λo is marked as a red dot.

λ = λo, the FPR is zero (so there are no false discoveries). On the other hand, Fig-
ure 2(c) shows that the TPR curves corresponding to different dimensions are very
close to each other and resemble those in Figure 2(c) in which all the points belong
to the same cluster with no opportunity of making a false discovery. Hence, taking
λ near 1/

√
d gives a performance close to what can be achieved in a noiseless sit-

uation. That is to say, we have no false discovery and a number of true discoveries
about d/2 if we choose λ = λo. Figure 2(d) plots TPR versus FPR [a.k.a. the Re-
ceiver Operating Characteristic (ROC) curve] and indicates that λ = λo (marked
by a red dot) is an attractive trade-off as it provides no false discoveries and suffi-
ciently many true discoveries.

2.4.4. A two-step procedure. Returning to the selection of the regularization
parameter, we would like to use λ on the order of 1/

√
d . However, we do not know

d and proceed by substituting an estimate. In the next section, we will see that we
are able to quantify theoretically the performance of the following proposal: (1) run
a hard constrained version of the LASSO and use an estimate d̂ of dimension



680 M. SOLTANOLKOTABI, E. ELHAMIFAR AND E. J. CANDÈS

Algorithm 2 Two-step procedure with data-driven regularization
for i = 1, . . . ,N do

1. Solve

β� = arg min
β∈RN

‖β‖�1 subject to ‖yi − Yβ‖�2 ≤ τ and βi = 0.(2.4)

2. Set λ = f (‖β�‖�1).
3. Solve

β̂ = arg min
β∈RN

1

2
‖yi − Yβ‖2

�2
+ λ‖β‖�1 subject to β i = 0.

4. Set Bi = β̂ .
end for

based on the �1 norm of the fitted coefficient sequence; (2) impute a value for λ

constructed from d̂ . The two-step procedure is explained in Algorithm 2. Again,
our exposition is informal here and we refer to Section 3 for precise statements.

To understand the rationale behind this, imagine we have noiseless data—that
is, Y = X—and are solving (2.1), which simply is our first step (2.4) with the
proviso that τ = 0. When there are no false discoveries, one can show that the �1

norm of β� is roughly of size
√

d as shown in Lemma A.2 from the supplemental
article [47]. This suggests using a multiple of ‖β�‖�1 as a proxy for

√
d . To drive

this point home, take a look at Figure 3(a) which solves (2.4) with the same data
as in the previous example and τ = 2σ . The plot reveals that the values of ‖β�‖�1

fluctuate around
√

d . This is shown more clearly in Figure 3(b), which shows that
‖β�‖�1 is concentrated around 1

4

√
d with, as expected, higher volatility at lower

values of dimension.

FIG. 3. Optimal values of (2.4) for 600 samples using τ = 2σ . The first 100 values correspond
to points originating from subspaces of dimension d = 200, the next 100 from those of dimension
d = 150, and so on through d ∈ {100,50,20,10}. (a) Value of ‖β∗‖�1 . (b) Value of ‖β∗‖�1/

√
d .
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FIG. 4. Performance of the two-step procedure using τ = 2σ and f (t) = α0t−1 for values of
α0 around the heuristic α0 = 0.25. (a) False positive rate (FPR). (b) FPR for various subspace
dimensions. (c) True positive rate (TPR). (d) TPR vs. FPR.

Under suitable assumptions, we shall see in Section 3 that with noisy data, there
are simple rules for selecting τ that guarantee, with high probability, that there
are no false discoveries. To be concrete, one can take τ = 2σ and f (t) ∝ t−1.
Returning to our running example, we have ‖β�‖�1 ≈ 1

4

√
d . Plugging this into

λ = 1/
√

d suggests taking f (t) ≈ 0.25t−1. The plots in Figure 4 demonstrate that
this is indeed effective. Experiments in Section 6 indicate that this is a good choice
on real data as well.

The two-step procedure requires solving two LASSO problems for each data
point and is useful when there are subspaces of large dimensions (in the hundreds,
say) and some others of low-dimensions (three or four, say). In some applications
such as motion segmentation in computer vision, the dimensions of the subspaces
are all equal and known in advance [51]. In this case, one can forgo the two-step
procedure and simply set λ = 1/

√
d .

3. Theoretical results. This section presents our main theoretical results con-
cerning the performance of the two-step procedure (Algorithm 2). We defer the
proof of these results to the supplemental article [47]. We make two assump-
tions:
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• Affinity condition. We say that a subspace S� obeys the affinity condition if

max
k : k �=�

aff(S�, Sk) ≤ κ0/logN,(3.1)

where κ0 a fixed numerical constant.
• Sampling condition. We say that subspace S� obeys the sampling condition if

ρ� ≥ ρ�,(3.2)

where ρ� is a fixed numerical constant.

The careful reader might argue that we should require smaller affinity values as
the noise level increases. The reason why σ does not appear in (3.1) is that we as-
sumed a bounded noise level. For higher values of σ , the affinity condition would
read as in (3.1) with a right-hand side equal to

κ = κ0

logN
− σ

√
d�

2n logN
.

3.1. Main results. From here on, we use d(i) to refer to the dimension of the
subspace the vector yi originates from. N(i) and ρ(i) are used in a similar fashion
for the number and density of points on this subspace.

THEOREM 3.1 (No false discoveries). Assume that the subspace attached to
the ith column obeys the affinity and sampling conditions and that the noise level
σ is bounded as in (1.2), where σ� is a sufficiently small numerical constant. In
Algorithm 2, take τ = 2σ and f (t) obeying f (t) ≥ 0.707σ t−1. Then with high
probability,6 there is no false discovery in the ith column of B.

THEOREM 3.2 (Many true discoveries). Consider the same setup as in The-
orem 3.1 with f (·) also obeying f (t) ≤ α0t

−1 for some numerical constant α0.
Then with high probability,7 there are at least

c1
d(i)

logρ(i)
(3.3)

true discoveries in the ith column (c1 is a positive numerical constant).

The above results indicate that the first step of the algorithm works correctly in
fairly broad conditions. To give an example, assume two subspaces of dimension
d overlap in a smaller subspace of dimension s but are orthogonal to each other

6Probability at least 1 − 2e−γ1n − 6e−γ2d(i) − e−√
N(i)d(i) − 23

N2 , for fixed numerical constants
γ1, γ2.

7Probability at least 1 − 2e−γ1n − 6e−γ2d(i) − e−√
N(i)d(i) − 23

N2 , for fixed numerical constants
γ1, γ2.
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in the remaining directions (equivalently, the first s principal angles are 0 and
the rest are π/2). In this case, the affinity between the two subspaces is equal to√

s/d and (3.1) allows s to grow almost linearly in the dimension of the subspaces.
Hence, subspaces can have intersections of large dimensions. In contrast, previous
work with perfectly noiseless data [21] would impose to have a first principal an-
gle obeying | cos θ(1)| ≤ 1/

√
d so that the subspaces are practically orthogonal to

each other. Whereas our result shows that we can have an average of the cosines
practically constant, the condition in [21] asks that the maximum cosine be very
small.

In the noiseless case, [46] showed that when the sampling condition holds and

max
k : k �=�

aff(S�, Sk) ≤ κ0

√
logρ�

logN

(albeit with slightly different values κ0 and ρ�), then applying the noiseless ver-
sion (2.1) of the algorithm also yields no false discoveries. Hence, with the proviso
that the noise level is not too large, conditions under which the algorithm is prov-
ably correct are essentially the same.

Earlier, we argued that we would like to have, if possible, an algorithm provably
working at (1) high values of the affinity parameters and (2) low values of the
sampling density as these are the conditions under which the clustering problem
is challenging. (Another property on the wish list is the ability to operate properly
with high noise or low SNR and this is discussed next.) In this context, since the
affinity is at most one, our results state that the affinity can be within a log factor
from this maximum possible value. The number of samples needed per subspace
is minimal as well. That is, as long as the density of points on each subspace is
larger than a constant ρ > ρ�, the algorithm succeeds.8

We would like to have a procedure capable of making no false discoveries and
many true discoveries at the same time. Now in the noiseless case, whenever there
are no false discoveries, the ith column contains exactly d(i) true discoveries.
Theorem 3.2 states that as long as the noise level σ is less than a fixed numer-
ical constant, the number of true discoveries is roughly on the same order as in
the noiseless case. In other words, a noise level of this magnitude does not fun-
damentally affect the performance of the algorithm. This holds even when there
is great variation in the dimensions of the subspaces, and is possible because λ is
appropriately tuned in an adaptive fashion.

The number of true discoveries is shown to scale at least like dimension over the
log of the density. This may suggest that the number of true discoveries decreases
(albeit very slowly) as the sampling density increases. This behavior is to be ex-
pected: when the sampling density becomes exponentially large (in terms of the

8This is with the proviso that the density does not grow exponentially in the dimension of the
subspace. This is not a restrictive assumption as having exponentially many points from the same
subspace makes the problem especially easy.
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dimension of the subspace) the number of true discoveries become small since we
need fewer columns to synthesize a point. In fact, the d/ logρ behavior seems to be
the correct scaling. Indeed, when the density is low and ρ takes on a small value,
(3.3) asserts that we make on the order of d discoveries, which is tight. Imagine
now that we are in the high-density regime and ρ is exponential in d . Then as the
points gets tightly packed, we expect to have only one discovery in accordance
with (3.3).

Theorem 3.2 establishes that there are many true discoveries. This would not be
useful for clustering purposes if there were only a handful of very large true dis-
coveries and all the others of negligible magnitude. The reason is that the similarity
matrix W would then be close to a sparse matrix and we would run the risk of split-
ting true clusters. Our proofs show that this does not happen although we do not
present an argument for lack of space. Rather, we demonstrate this property em-
pirically. On our running example, Figure 5(a) and (b) shows that the histograms
of appropriately normalized true discovery values resemble a bell-shaped curve.
Note that each true discovery corresponds to a nonzero coefficient which can take
on either a positive or negative value.

As stated numerous times, our theoretical analysis only concerns the first step of
the algorithm. We now wish to explain how these theoretical results relate to com-
plete guarantees for clustering. First, Theorem 3.1 states that clusters that should be
disconnected from each other are, in fact, disconnected so that the algorithm does
not group together points from different subspaces. To guarantee perfect cluster-
ing, it is then sufficient to show that each restriction of the similarity graph to a
subspace is connected. Due to the nature of the random model under study, a sub-
graph resembles an Erdős–Rèyni graph with the probability of having an edge
roughly proportional to the number of true discoveries. As long as there are suf-
ficiently many true discoveries (as shown in Theorem 3.2), such a graph is well
connected—in fact, it has very good expansion properties. Proving that each sub-
graph is indeed connected is a problem we regard as interesting, the main challenge
being caused by the dependencies the algorithm generates. Second, a more quan-
titative characterization of the expansion or connectedness of each subgraph via

FIG. 5. Histograms of the true discovery values from the two step procedure with α0 = 0.25 (mul-
tiplied by

√
d). (a) d = 200. (b) d = 20.
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Cheeger’s constant or the eigenvalue gap may ultimately demonstrate that the al-
gorithm succeeds even in the presence of few false discoveries with small values
of Wij ; please see [27] and references therein.

Finally, we would like to comment on the fact that our main results hold when λ

belongs to a fairly broad range of values. First, when all the subspaces have small
dimensions, one can choose the same value of λ for all the data points since 1/

√
d

is essentially constant. Hence, when we know a priori that we are in such a situa-
tion, there may be no need for the two-step procedure. (We would still recommend
the conservative two-step procedure because of its superior empirical performance
on real data.) Second, the proofs also reveal that if we have knowledge of the di-
mension of the largest subspace dmax, the first theorem holds with a fixed value of λ

proportional to σ/
√

dmax. Third, when the subspaces themselves are drawn at ran-
dom, the first theorem holds with a fixed value of λ proportional to σ(logN)/

√
n.

(Both these statements follow by plugging these values of λ in the proofs of the
supplemental article [47] and we omit the calculations.) We merely mention these
variants to give a sense of what our theorems can also give. As explained earlier, we
recommend the more conservative two-step procedure with the proxy for 1/

√
d .

The reason is that using a higher value of λ allows for a larger value of κ0 in (3.1),
which says that the subspaces can be even closer. In other words, we can func-
tion in a more challenging regime. To drive this point home, consider the noiseless
problem. When the subspaces are close, the equality constrained �1 problem may
yield some false discoveries. However, if we use the LASSO version—even though
the data is noiseless—we may end up with no false discoveries while maintaining
sufficiently many true discoveries.

4. The bias-corrected Dantzig selector. One can think of other ways of per-
forming the first step in Algorithm 1 and this section discusses another approach
based on a modification of the Dantzig selector, a popular sparse regression tech-
nique [15]. Unlike the two-step procedure, we do not claim any theoretical guar-
antees for this method and shall only explore its properties on real and simulated
data.

Applied directly to our problem, the Dantzig selector takes the form

min
β∈RN

‖β‖�1 subject to
∥∥YT

(−i)(yi − Yβ)
∥∥
�∞ ≤ λ and β i = 0,(4.1)

where Y(−i) is Y with the ith column deleted. However, this is hardly suitable
since the design matrix Y is corrupted. Interestingly, recent work [44, 45] has
studied the problem of estimating a sparse vector from the standard linear model
under uncertainty in the design matrix. The setup in these papers is close to our
problem and we propose a modified Dantzig selection procedure inspired but not
identical to the methods set forth in [44, 45].
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4.1. The correction. If we had clean data, we would solve (2.1); this is (4.1)
with Y = X and λ = 0. Let βI be the solution to this ideal noiseless problem.
Applied to our problem, the main idea in [44, 45] would be to find a formulation
that resembles (4.1) with the property that βI is feasible. Since xi = X(−i)β

I
(−i),

observe that we have the following decomposition:

YT
(−i)

(
yi − YβI ) = (X(−i) + Z(−i))

T (
zi − ZβI )

= XT
(−i)

(
zi − ZβI ) + ZT

(−i)zi − ZT
(−i)ZβI .

Then the conditional mean is given by

E
[
YT

(−i)

(
yi − YβI )|X] = −EZT

(−i)Z(−i)β
I
(−i) = −σ 2βI

(−i).

In other words,

σ 2βI
(−i) + YT

(−i)

(
yi − YβI ) = ξ ,

where ξ has mean zero. In Section 4.2, we compute the variance of the j th com-
ponent ξj , given by

E ξ2
j = σ 2

n

(
1 + ∥∥βI

∥∥2
�2

) + σ 4

n

(
1 + (

βI
j

)2 + ∥∥βI
∥∥2
�2

)
.(4.2)

Owing to our Gaussian assumptions, |ξj | shall be smaller than 3 or 4 times this
standard deviation, say, with high probability.

Hence, we may want to consider a procedure of the form

min
β∈RN

‖β‖�1 subject to
∥∥YT

(−i)(yi − Yβ) + σ 2β(−i)

∥∥
�∞ ≤ λ and

(4.3)
β i = 0.

It follows that if we take λ to be a reasonable multiple of (4.2), then βI would obey
the constraint in (4.3) with high probability. Hence, we would need to approximate
the variance (4.2). Numerical simulations together with asymptotic calculations
presented in the supplemental article [47] give that ‖βI‖�2 ≤ 1 with very high
probability. Thus, neglecting the term in (βI

j )2,

E ξ2
j ≈ σ 2

n

(
1 + σ 2)(

1 + ∥∥βI
∥∥2
�2

) ≤ 2
σ 2

n

(
1 + σ 2)

.

This suggests taking λ to be a multiple of
√

2/nσ
√

1 + σ 2. This is interesting
because the parameter λ does not depend on the dimension of the underlying sub-
space. We shall refer to (4.3) as the bias-corrected Dantzig selector, which resem-
bles the proposal in [44, 45] for which the constraint is a bit more complicated and
of the form ‖YT

(−i)(yi − Yβ) + D(−i)β‖�∞ ≤ μ‖β‖�1 + λ.
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FIG. 6. Performance of the bias-corrected Dantzig selector for values of λ that are multiples of
the heuristic λo = √

2/nσ
√

1 + σ 2. (a) False positive rate (FPR). (b) FPR for different subspace
dimensions. (c) True positive rate (TPR). (d) TPR vs. FPR.

To get a sense about the validity of this proposal, we test it on our running exam-
ple by varying λ ∈ [λo,8λo] around the heuristic λo = √

2/nσ
√

1 + σ 2. Figure 6
shows that good results are achieved around factors in the range [4,6].

In our synthetic simulations, both the two-step procedure and the corrected
Dantzig selector seem to be working well in the sense that they yield many true dis-
coveries while making very few false discoveries, if any. Comparing Figure 6(b)
and (c) with those from Section 2 show that the corrected Dantzig selector has
more true discoveries for subspaces of small dimensions (they are essentially the
same for subspaces of large dimensions); that is, the two-step procedure is more
conservative when it comes to subspaces of smaller dimensions. As explained ear-
lier, this is due to our conservative choice of λ resulting in a TPR about half of
what is obtained in a noiseless setting. Having said this, it is important to keep
in mind that in these simulations the planes are drawn at random and as a result,
they are sort of far from each other. This is why a less conservative procedure can
still achieve a low FPR. When subspaces of smaller dimensions are closer to each
other or when the statistical model does not hold exactly as in real data scenarios, a
conservative procedure may be more effective. In fact, experiments on real data in
Section 6 confirm this and show that for the corrected Dantzig selector, one needs
to choose values much larger than λo to yield good results.
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4.2. Variance calculation. By definition,

ξj = 〈
xj , zi − ZβI 〉 + 〈zj , zi〉 − (

zT
j zj − σ 2)

βI
j − ∑

k : k �=i,j

zT
j zkβ

I
k

:= I1 + I2 + I3 + I4.

A simple calculation shows that for �1 �= �2, Cov(I�1, I�2) = 0 so that

E ξ2
j =

4∑
�=1

Var(I�).

We compute

Var(I1) = σ 2

n

(
1 + ∥∥βI

∥∥2
�2

)
, Var(I3) = σ 4

n
2
(
βI

j

)2
,

Var(I2) = σ 4

n
, Var(I4) = σ 4

n

[∥∥βI
∥∥2
�2

− (
βI

j

)2]
and (4.2) follows.

5. Comparisons with other works. We now briefly comment on other ap-
proaches to subspace clustering. Since this paper is theoretical in nature, we shall
focus on comparing theoretical properties and refer to [22, 53] for a detailed com-
parison about empirical performance. Three themes will help in organizing our
discussion.

• Tractability. Is the proposed method or algorithm computationally tractable?
• Robustness. Is the algorithm provably robust to noise and other imperfections?
• Efficiency. Is the algorithm correctly operating near the limits we have identified

above? In our model, how many points do we need per subspace? How large can
the affinity between subspaces be?

One can broadly classify existing subspace clustering techniques into four
categories, namely, algebraic, iterative, statistical and spectral clustering-based
methods.

Methods inspired from algebraic geometry have been introduced for cluster-
ing purposes. In this area, a mathematically intriguing approach is the gener-
alized principal component analysis (GPCA) presented in [54]. Unfortunately,
this algorithm is not tractable in the dimension of the subspaces, meaning that
a polynomial-time algorithm does not exist. Another feature is that GPCA is not
robust to noise although some heuristics have been developed to address this issue;
see, for example, [36]. As far as the dependence upon key parameters is concerned,
GPCA is essentially optimal. An interesting approach to make GPCA robust is
based on semidefinite programming [42]. However, this novel formulation is still
intractable in the dimension of the subspaces and it is not clear how the perfor-
mance of the algorithm depends upon the parameters of interest.
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A representative example of an iterative method—the term is taken from the tu-
torial [53]—is the K-subspace algorithm [52], a procedure which can be viewed as
a generalization of K-means. Here, the subspace clustering problem is formulated
as a nonconvex optimization problem over the choice of bases for each subspace
as well as a set of variables indicating the correct segmentation. A cost function
is then iteratively optimized over the basis and the segmentation variables. Each
iteration is computationally tractable. However, due to the nonconvex nature of
the problem, the convergence of the sequence of iterates is only guaranteed to a
local minimum. As a consequence, the dependence upon the key parameters is not
well understood. Furthermore, the algorithm can be sensitive to noise and outliers.
Other examples of iterative methods may be found in [1, 14, 33, 57].

Statistical methods typically model the subspace clustering problem as a mix-
ture of degenerate Gaussian observations. Two such approaches are mixtures of
probabilistic PCA (MPPCA) [50] and agglomerative lossy compression (ALC)
[34]. MPPCA seeks to compute a maximum-likelihood estimate of the parameters
of the mixture model by using an expected–maximization (EM) style algorithm.
ALC searches for a segmentation of the data by minimizing the code length nec-
essary (with a code based on Gaussian mixtures) to fit the points up to a given
distortion. Once more, due to the nonconvex nature of these formulations, the de-
pendence upon the key parameters and the noise level is not understood.

Many other methods apply spectral clustering to a specially constructed graph
[2, 4, 13, 16, 17, 25, 55, 58]. They share the same difficulties as stated above
and [53] discusses advantages and drawbacks. An approach of this kind is termed
Sparse Curvature Clustering (SCC) [16, 17]; please also see [3, 4]. This approach
is not tractable in the dimension of the subspaces as it requires building a tensor
with N(d+2) entries and involves computations with this tensor. Some theoretical
guarantees for this algorithm are given in [16] although its limits of performance
and robustness to noise are not fully understood. An approach similar to SSC is
called low-rank representation (LRR) [31]. The LRR algorithm is tractable but its
robustness to noise and its dependence upon key parameters is not understood. The
work in [30] formulates the robust subspace clustering problem as a nonconvex ge-
ometric minimization problem over the Grassmanian. Because of the nonconvex-
ity, this formulation may not be tractable. On the positive side, this algorithm is
provably robust and can accommodate noise levels up to O(1/(Ld3/2)). However,
the density ρ required for favorable properties to hold is an unknown function of
the dimensions of the subspaces (e.g., ρ could depend on d in a super polynomial
fashion). Also, the bound on the noise level seems to decrease as the dimension
d and number of subspaces L increases. In contrast, our theory requires ρ ≥ ρ�

where ρ� is a fixed numerical constant. While this manuscript was under prepa-
ration, we learned of [23] which establishes robustness to sparse outliers but with
a dependence on the key parameters that is super-polynomial in the dimension of
the subspaces demanding ρ ≥ C0d

logn. (Numerical simulations in [23] seem to
indicate that ρ cannot be a constant.)
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We note that the papers [32, 44, 45] also address regression under corrupted
covariates. However, there are three key differences between these studies and
our work. First, our results show that LASSO without any change is robust to
corrupted covariates whereas these works require modifications to either LASSO
or the Dantzig selector. Second, the modeling assumptions for the uncorrupted
covariates are significantly different. These papers assume that X has i.i.d. rows
and obeys the restricted eigenvalue condition (REC) whereas we have columns
sampled from a mixture model so that the design matrices do not have much in
common. Last, for clustering and classification purposes, we need to verify that
the support of the solution is correct whereas these works establish closeness to an
oracle solution in an �2 sense. In short, our work is far closer to multiple hypothesis
testing.

Finally, in the data mining literature subspace clustering is sometimes used to
describe a different—although related—problem; see [26, 28, 39].

6. Numerical experiments. In this section, we perform numerical experi-
ments corroborating our main results and suggesting their applications to temporal
segmentation of motion capture data. In this application, we are given sensor mea-
surements at multiple joints of the human body captured at different time instants.
The goal is to segment the sensory data so that each cluster corresponds to the
same activity. Here, each data point corresponds to a vector whose elements are
the sensor measurements of different joints at a fixed time instant.

We use the Carnegie Mellon Motion Capture dataset (available at http://mocap.
cs.cmu.edu), which contains 149 subjects performing several activities (data are
provided in [59]). The motion capture system uses 42 markers per subject. We
consider the data from subject 86 in the dataset, consisting of 15 different trials,
where each trial comprises multiple activities. We use trials 2 and 5, which feature
more activities (8 activities for trial 2 and 7 activities for trial 5) and are, therefore,
harder examples relative to the other trials. Figure 7 shows a few snapshots of each
activity (walking, squatting, punching, standing, running, jumping, arms-up and

FIG. 7. Left: eight activities performed by subject 86 in the CMU motion capture dataset: walking,
squatting, punching, standing, running, jumping, arms-up and drinking. Right: singular values of
the data from three activities (walking, jumping, drinking) show that the data from each activity lie
approximately in a low-dimensional subspace.

http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
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drinking) from trial 2. The right plot in Figure 7 shows the singular values of three
of the activities in this trial. Notice that all the curves have a low-dimensional knee,
showing that the data from each activity lie in a low-dimensional subspace of the
ambient space (n = 42 for all the motion capture data).

We compare three different algorithms: a baseline algorithm, the two-step pro-
cedure and the bias-corrected Dantzig selector. We evaluate these algorithms based
on the clustering error. That is, we assume knowledge of the number of subspaces
and apply spectral clustering to the similarity matrix built by the algorithm. After
the spectral clustering step, the clustering error is simply the ratio of misclassified
points to the total number of points. We report our results on half of the examples—
downsampling the video by a factor 2 keeping every other frame—as to make the
problem more challenging. (As a side note, it is always desirable to have meth-
ods that work well on a smaller number of examples as one can use split-sample
strategies for tuning purposes.)9

As a baseline for comparison, we apply spectral clustering to a standard similar-
ity graph built by connecting each data point to its K-nearest neighbors. For pairs
of data points, yi and yj , that are connected in the K-nearest neighbor graph, we
define the similarities between them by Wij = exp(−‖yi − yj‖2

2/t), where t > 0
is a tuning parameter (a.k.a. temperature). For pairs of data points, yi and yj , that
are not connected in the K-nearest neighbor graph, we set Wij = 0. Thus, pairs of
neighboring data points that have small Euclidean distances from each other are
considered to be more similar, since they have high similarity Wij . We then ap-
ply spectral clustering to the similarity graph and measure the clustering error. For
each value of K , we record the minimum clustering error over different choices of
the temperature parameter t > 0 as shown in Figure 8(a) and (b). The minimum
clustering error for trials 2 and 5 are 17.06% and 12.47%.

For solving the LASSO problems in the two-step procedure, we developed a
computational routine made publicly available [60] based on TFOCS [10] solving

FIG. 8. Minimum clustering error (%) for each K in the baseline algorithm.

9We have adopted this subsampling strategy to make our experiments reproducible. For tuning
purposes, a random strategy may be preferable.
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the optimization problems in parallel. For the corrected Dantzig selector, we use a
homotopy solver in the spirit of [61].

For both the two-step procedure and the bias-corrected Dantzig selector, we
normalize the data points as a preprocessing step. We work with a noise σ in the
interval [0.001,0.045], and use f (t) = α/t with values of α around 1/4 (this is
equivalent to varying λ around 1/λo = 4‖β�‖�1 ) in the two-step procedure. For
the bias-corrected Dantzig selector, we vary λ around λo = √

2/nσ
√

1 + σ 2. Af-
ter building the similarity graph from the sparse regression output, we apply spec-
tral clustering as explained earlier. Figures 9(a) and (b), 10(a) and (b) show the
clustering error (on trial 5) and the red point indicates the location where the min-
imum clustering error is reached. Figure 9(a) and (b) shows that for the two-step
procedure the value of the clustering error is not overly sensitive to the choice of
σ—especially around λ = λo. Notice that the clustering error for the robust ver-
sions of SSC are significantly lower than the baseline algorithm for a wide range of
parameter values. The reason the baseline algorithm performs poorly in this case

FIG. 9. Clustering error (%) for different values of λ and σ on trial 5 using the two-step procedure
(a) 3D plot (minimum clustering error appears in red). (b) 2D cross sections.
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FIG. 10. Clustering error (%) for different values of λ and σ on trial 5 using the corrected Dantzig
selector. (a) 3D plot (minimum clustering error appears in red). (b) 2D cross sections.

is that there are many points that are in small Euclidean distances from each other,
but belong to different subspaces.

Finally a summary of the clustering errors of these algorithms on the two trials
are reported in Table 1. Robust versions of SSC outperform the baseline algorithm.
This shows that the multiple subspace model is better for clustering purposes. The
two-step procedure seems to work slightly better than the corrected Dantzig selec-
tor for these two examples. Table 2 reports the optimal parameters that achieve the
minimum clustering error for each algorithm. The table indicates that on real data,

TABLE 1
Minimum clustering error

Baseline algorithm Two-step procedure Corrected Dantzig selector

Trial 2 17.06% 3.54% 9.53%
Trial 5 12.47% 4.35% 4.92%
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TABLE 2
Optimal parameters

Baseline algorithm Two-step procedure Corrected Dantzig selector

Trial 2 K = 9, t = 0.0769 σ = 0.03, λ = 1.25λo σ = 0.004, λ = 41.5λo

Trial 5 K = 6, t = 0.0455 σ = 0.01, λ = λo σ = 0.03, λ = 45.5λo

choosing λ close to λo also works very well. Also, one can see that in comparison
with the synthetic simulations of Section 4, a more conservative choice of the reg-
ularization parameter λ is needed for the corrected Dantzig selector as λ needs to
be chosen much higher than λo to achieve the best results. This may be attributed
to the fact that the subspaces in this example are very close to each other and are
not drawn at random as was the case with our synthetic data. To get a sense of the
affinity values, we fit a subspace of dimension d� to the N� data points from the �th
group, where d� is chosen as the smallest nonnegative integer such that the partial
sum of the d� top singular values is at least 90% of the total sum. Figure 11 shows
that the affinities are higher than 0.75 for both trials.

7. Discussion and open problems. In this paper, we have developed a
tractable algorithm that can provably cluster data points in a fairly challenging
regime in which subspaces can overlap along many dimensions and in which the
number of points per subspace is rather limited. Our results about the performance
of the robust SSC algorithm are expressed in terms of interpretable parameters.
This is not a trivial achievement: one of the challenges of the theory for subspace
clustering is precisely that performance depends on many different aspects of the
problem such as the dimension of the ambient space, the number of subspaces,
their dimensions, their relative orientations, the distribution of points around each
subspace, the noise level and so on. Nevertheless, these results only offer a starting
point as our work leaves open lots of questions, and at the same time, suggests
topics for future research. Before presenting the proofs, we would like to close by
listing a few questions colleagues may find of interest.

FIG. 11. Box plot of the affinities between subspaces for trials 2 and 5.
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• We have shown that while having the affinities and sampling densities near what
is information theoretically possible, robust versions of SSC that can accom-
modate noise levels σ of order one exist. It would be interesting to establish
fundamental limits relating the key parameters to the maximum allowable noise
level. What is the maximum allowable noise level for any algorithm regardless
of tractability?

• It would be interesting to extend the results of this paper to a deterministic model
where both the orientation of the subspaces and the noiseless samples are non-
random. We leave this to a future publication.

• Our work in this paper concerns the construction of the similarity matrix and
the correctness of sparse regression techniques. The full algorithm then applies
clustering techniques to clean up errors introduced in the first step. It would be
interesting to develop theoretical guarantees for this step as well. A potential
approach is the interesting formulation developed in [7].

• We proposed a two-step procedure for robust subspace clustering. The first step
is used to estimate the required regularization parameter for a LASSO prob-
lem. This is reminiscent of estimating noise in sparse regularization and covari-
ance estimation. It would be interesting to design a joint optimization scheme
to simultaneous optimize the regularization parameter and the regression coeffi-
cients. In recent years, there has been much progress on this issue in the sparse
regression literature; see [11, 19, 24, 48, 49] and references therein. It is an open
research direction to see whether any of these approaches can be applied to auto-
matically learn the regularization parameter when both the response vector and
covariates are corrupted and, in particular, for the purpose of robust subspace
clustering.

• A natural direction is the development of clustering techniques that can prov-
ably operate with missing and/or sparsely corrupted entries (the work [46] only
deals with grossly corrupted columns). The work in [23] provides one possible
approach but requires a very high sampling density as we already mentioned.
The paper [22] develops another heuristic approach without any theoretical jus-
tification.

• Our formulation uses a data-driven modeling approach by regressing each data
point against all others. As noted by Bittorf et al. [12], this type of approach
appears in a number of other factorization problems. In particular, [5] and recent
variations [5, 12] use a convex formulation very similar to SSC for the purpose
of nonnegative matrix factorizations. Exploring the connection between these
factorization problems is an interesting research direction.

• One of the advantages of the suggested scheme is that it is highly parallelizable.
When the algorithm is run sequentially, it would be interesting to see whether
one can reuse computations to solve all the �1-minimization problems more
effectively.
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