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Abstract

Subspace clustering has many applications in com-
puter vision, such as image/video segmentation and pat-
tern classification. The major issue in subspace clustering
is to obtain the most appropriate subspace from the given
noisy data. Typical methods (e.g., SVD, PCA, and Eigen-
decomposition) use least squares techniques, and are sen-
sitive to outliers. In this paper, we present the k-th Nearest
Neighbor Distance (kNND) metric, which, without actually
clustering the data, can exploit the intrinsic data cluster
structure to detect and remove influential outliers as well
as small data clusters. The remaining data provide a good
initial inlier data set that resides in a linear subspace whose
rank (dimension) is upper-bounded. Such linear subspace
constraint can then be exploited by simple algorithms, such
as iterative SVD algorithm, to (1) detect the remaining out-
liers that violate the correlation structure enforced by the
low rank subspace, and (2) reliably compute the subspace.
As an example, we apply our method to extracting layers
from image sequences containing dynamically moving ob-
jects.

1 Introduction

Subspace clustering has many applications in computer
vision, such as image and video segmentation [18], layer
segmentation [12], and pattern classification (see [7]). In
these approaches, the input high-dimensional data are pro-
jected or mapped onto a low dimensional subspace where
the clusters become tighter and easier to identify.

The major issue of subspace clustering is to obtain the
most appropriate subspace from the given noisy data. Tra-
ditional approaches to subspace estimation, such as Sin-
gular Value Decomposition (SVD), Principal Component
Analysis, and Eigen-Decomposition, are based on the least
squares technique, and are therefore sensitive to outliers in
the given data (see [5]).

In previous approaches, outliers are detected using sub-
space constraint itself [19, 5], i.e., inliers must lie in the
subspace, while outliers violate the correlation structure en-
forced by subspace constraint. The subspace is computed
using the following two iterative steps: (1) compute the
subspace model using current set of weighted data; (2) re-
weight each data item based on its distance to the current

subspace model. Such iterative approach is sensitive to ini-
tialization (the weight of each data item, or the subspace
model). Good initialization is required for the algorithm to
converge to a desirable optimal solution. When the rank (di-
mension) of the subspace is unknown, some heuristic meth-
ods are usually included in the iterative process to estimate
the subspace dimension [5], which makes the behavior of
the iterative algorithm more un-predictable.

This paper presents a robust subspace clustering tech-
nique that exploits another data constraint to address the
above difficulty of initialization and rank detection. One
should note that in clustering applications, besides residing
in the subspace, the inliers must also reside in some clusters.
In other words, isolated or sparse data items not in any clus-
ters are considered to be outliers. For convenience we name
such constraint the cluster constraint. We use the kNND
metric (1) to exploit the cluster constraint to detect outliers,
but without actually clustering the data; and (2) to bound
the subspace dimension. By using kNND, we can obtain a
good initial inlier data set that resides in a linear subspace
whose rank (dimension) is upper-bounded. Such subspace
constraint can then be exploited by some simple algorithm,
such as iterative SVD algorithm, to (1) detect the remaining
outliers that violate the correlation structure enforced by the
subspace, and (2) reliably compute the subspace.

As an example, we apply our approach to extracting lay-
ers from image sequences using subspace clustering. Layer
representation has many important applications, including
video compression, motion and scene analysis, and 3D
scene representation [9, 25, 13, 1, 21]. Various approaches
have been proposed for layer extraction [8, 9, 25, 16, 26, 17,
15, 24, 12, 27]. The subspace approach [12] has the advan-
tage of avoiding unstable grouping in high dimensional mo-
tion parameter space. As a grouping approach, it also avoids
the dominant plane assumption and the difficulty of layer
initialization that are typically encountered in layer motion
segmentation. However, there are two unsolved problems
in the subspace-based approach. First, it is not clear how
to guarantee a low-dimensional subspace for a video of dy-
namic scene. Second, the subspace is estimated by SVD
algorithm, which is sensitive to outliers that often exist in
local motion measurements. We will apply our robust sub-
space analysis technique to address these two problems.
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2 Subspace and Clustering
In subspace clustering, the input high dimensional data

are first projected or mapped onto some low dimensional
subspace, where the clusters become tighter and easier to
identify. The major issue in subspace clustering is to obtain
the most appropriate subspace from the given noisy data for
data mapping or projection. In this section we review ex-
isting approaches to obtaining the subspace. We will show
that these approaches are sensitive to outliers.

There are two popular approaches to map the data onto
a low-dimensional subspace: the linear data approximation
approach (e.g., SVD or PCA), and the non-linear spectral
mapping.

2.1 Linear Subspace as Data Approximation

Let WM×N = [m1, · · · ,mN ] be the M × N matrix that
is formed by the input data, where each column mi is an
input data item, M is the dimension of input data, and N is
the number of input data items. We center W by subtracting
its column mean.

The SVD algorithm computes the d-dimensional linear
subspace determined by W:

WM×N = UM×NΣN×NV�N×N (1)

The diagonal elements of Σ are the singular values λi of
W in non-increasing order. The subspace dimension d (the
actual rank of W) is detected by [10]:

dt = arg min
m

(∑m
i=0 λ2

i∑N
i=0 λ2

i

> t

)
(2)

Here 1 − t determines the noise level we want to tolerate.
The first d columns of U in equation (1) form the bases of
the signal subspace. Under Gaussian noise assumption, this
rank d linear subspace approximates W in an optimal way in
the sense of least squares error.

Linear subspace approximation for clustering works best
when the input high dimensional data reside in a low dimen-
sional linear subspace. In clustering applications, assum-
ing Gaussian noises the clusters by themselves enforce an
(L − 1) dimensional linear subspace, where L is the num-
ber of clusters in the input data (see [7], pp.91). Linear
subspace constraint can also be enforced by some intrinsic
physical constraint underlying in the process of data forma-
tion, such as the rank-3 subspace in [23], or the homography
subspace [29].

2.2 Nonlinear Spectral Mapping

While the linear subspace approximation looks for a sub-
space that best preserves the signal energy, the spectral map-
ping [18, 14] seeks a nonlinear subspace such that the data
mapped onto it are optimal clustering.

Spectral mapping [18, 14] starts by first collect-
ing the distance (similarity) between every two data
points to construct the normalized affinity matrix L =

D−1/2SN×ND−1/2. Here S is defined by:

Sij =

{
exp(− (‖mi−mj‖2)

σ2 ) if i �= j
0 if i = j

(3)

where D is a diagonal matrix defined by Dii =
∑

j Sij .
The first K largest eigenvectors of L are stacked in

columns to form the matrix XN×K . Here K is the num-
ber of clusters. Each row of X is normalized to have unit
length so that each row of X is a point on a K-dimensional
sphere. The original data item mi is mapped to the i-th row
of X, i.e., the i-th point on the K-dimensional sphere.

Spectral mapping therefore maps the original M dimen-
sional data points onto the K-dimensional sphere, which is
a (K − 1)-dimensional non-linear space. Such non-linear
low dimensional embedding can greatly improve the clus-
tering structure of the input data, so that some simple clus-
tering algorithm can easily identify the clusters. Note that
spectral mapping requires the knowledge of K, the number
of clusters.

2.3 Basic Subspace Clustering Algorithm

Assuming Gaussian noises, if the given high dimensional
data reside in a low dimensional linear subspace, then pro-
jecting them onto the subspace will make the clustering
structure more discriminative. In [11] we prove that such
linear subspace projection can improve the cluster discrim-
inability by a factor of M

d , where M is the original data
dimension, and d is the subspace dimension. Better clus-
ter discriminability will provide a better affinity matrix for
spectral mapping. Based on above observations, we adopt
the following basic algorithm for subspace clustering:

• Project the data onto the global linear subspace;

• If the number of clusters K is unknown, apply mean
shift algorithm [4] to the projected data to detect the
number of modes to initialize K;

• Use spectral mapping to map the projected low dimen-
sional data onto a K-dimensional sphere.

2.4 Effect of Outliers

The SVD in the linear subspace approximation and the
Eigen-decomposition in the spectral mapping are sensitive
to outliers. One may notice that Equation (3) in the spectral
mapping is one kind of robust distance function. However,
it reduces the effect of one outlier only if such outlier is far
away from all other data points (including other outliers). In
real applications, if two or more outliers are close to each
other, they will have unwanted significant contribution to
the affinity matrix and therefore to the eigen-decomposition
in spectral mapping. Another difficulty in Equation (3) is
the selection of appropriate σ. Without a good σ, the eigen-
system will be either unstable, or effected by outliers.

We use a synthetic example to illustrate the effect of
outliers. We generate two Gaussian clusters (each has 25
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(a) 2D view of 60-D data (d) 2D view of 60-D data
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(b) Spectral mapping (e) Spectral mapping
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(c) Basic Subspace clustering (f) Basic Subspace clustering

Figure 1. The effect of outliers on subspace analysis. (a–
c): Spectral mapping of data without outliers. (d–f): Spec-
tral mapping of data with outliers. See text for details.

points) in 60-D space. The first two dimensions of the 60-
D data are shown in Figure 1(a). These 50 inliers in the
two clusters are shown by � and *. The spectral mapping
of these 60-D inliers is shown in Figure 1(b). The mapped
data look separable, but it is still difficult for simple clus-
tering algorithm to identify the two clusters. Since the two
Gaussian clusters reside in a 1D subspace, we first project
the data onto this subspace, and then apply spectral map-
ping to the projected 1D data. Figure 1(c) shows the spec-
tral mapping of the projected 1D data. As we can see, two
clusters are clearly distinguishable.

Now let us add 10 outliers to the original data set, shown
as o in Figure 1(d). The spectral mapping of the original
60-D data is shown in Figure 1(e). Two clusters and the
outliers are not separable in the mapped data. Figure 1(f)
shows the spectral mapping of the projected 1D data. Due
to outliers the subspace estimated by SVD is incorrect, and
the two clusters are not separable.

3 Robust Subspace Clustering

In subspace clustering applications, there are two con-
straints available to detect the outliers: (1) the global linear
subspace constraint, i.e., the inliers must reside in a low di-
mensional linear subspace; (2) the cluster constraint, i.e.,
the inliers must reside in some clusters instead of being iso-
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(a): Input data; (b): 1D histogram of kNNDs.

Figure 2. Example to illustrate the kNND procedure.
There 41 data points in (a), including: (1) two large clus-
ters each containing 15 data points shown by � and *; (2)
two small clusters each containing 3 data points shown by ×
and +; and (3) five sparse outlier points shown by o.

lated or sparsely distributed.
The subspace constraint has been used for robust sub-

space estimation [19, 5], where the following two steps are
iterated until converge: 1) compute the subspace model us-
ing weighted data; 2) re-weight the data using the distance
between each data item and the current subspace model.
Such iterative method, however, requires good initialization
(the subspace dimension and the set of inliers).

We resolve the above difficulty of initialization by en-
forcing the cluster constraint using kNND metric. Specifi-
cally, we use kNND metric to provide a good initialization
of inlier-outlier classification, and an upper-bound on the
subspace dimension, which are then used by simple itera-
tive algorithms (1) to detect the remaining outliers that vio-
late the subspace constraint and (2) to reliably compute the
subspace.

3.1 kNND for Outlier Detection

We use kNND metric to utilize the intrinsic cluster struc-
ture to detect and remove outliers and small clusters (size
less than k), without actually performing data clustering.
The remaining data reside in a linear subspace with its di-
mension upper-bounded.

The kNND metric for outlier detection is based on the
fact that a data point has small kNND if it is in a clus-
ter with size larger than k; otherwise, its kNND will be
large. Denote xi as the kNND of the i-th data point. The
data points in all clusters with size larger than k will form
the first dominant peak in the one-dimensional histogram
of {xi | i = 1, · · · , N}. Points not in this peak have large
kNNDs, and are removed as outliers. The size of any re-
maining cluster must be larger than k.

We use a simple example in Figure 2 to illustrate the
above kNND procedure. In this example, if we set k = 5,
the two clusters whose sizes are larger than 5 will form the
first peak in the 1D histogram, as shown in Figure 2(b). The
sparse points and the two small clusters will be removed
as outliers since they are not in the first peak of the one-
dimensional histogram.
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The major advantage of using kNND is that it transforms
the high dimensional data to a one-dimensional histogram,
where the outliers are clearly distinguishable from inliers
that form the first dominant peak. Detecting the first peak
in such 1D histogram is easy. We simply smooth the 1D his-
togram and then detect the first peak by looking for the first
and largest local maximum. A good initialization of inlier-
outlier classification can therefore be obtained by labeling
the data items not in the first peak as initial outliers.

We use EM algorithm [6] to refine the final inlier-outlier
classification result by maximizing the likelihoods of the
observed kNNDs, i.e., the normalized 1D histogram of
{xi | i = 1, ..., N}. We model the likelihoods by the mix-
ture distributions of inlier’s and outlier’s kNNDs:

Pr(x) = γf(x, λ) + (1 − γ)
1
v

(4)

Here γ is the mixing parameter. f(x, λ) is the distribution
of inlier’s kNND, which is modelled by Poisson distribu-
tion (see [3]), with λ its only parameter representing the
dense of the data points (the rate of point process). 1

v is the
uniform distribution of outlier’s kNND, where v is deter-
mined by the range of x (i.e., v = max(xi)−min(xi)). By
experiments we have observed that the distribution of out-
lier’s kNND is well approximated by uniform distribution
(see also [20]).

The missing component in the EM algorithm is the in-
dicator for each data item, denoted by ηi ∈ {0, 1}, where
ηi = 1 if the i-th data item is an inlier, and ηi = 0 if the
i-th data item is an outlier. The EM algorithm estimates
the parameters (ηi, γ, λ) by maximizing the likelihood in
Equation (4). It consists of the following iterative E-step
and M-step:

E-step: Estimate the indicator variables:

Pr(ηi = 1 | γ, λ) =
f(xi, λ)

γf(xi, λ) + (1 − γ) 1
v

M-step: Compute the parameters based on the indicators
given in E-step:

γ =
∑N

i=1 ηi

N
, λ =

k
∑N

i=1 ηi

αM

∑N
i=1(xi)Mηi

Here αM = 2πM/2

dΓ(M/2) is a constant in the Poisson dis-
tribution; Γ(·) is the Gamma function; and M is the
data dimension.

Since the initial inliers from the first dominant peak of the
1D histogram provide a good initialization of the missing
component ηi ∈ {0, 1}, the above EM algorithm converges
quickly. The final inlier-outlier classification is based on the
ratio ρ:

ρi =
Pr(ηi = 1 | γ, λ)
Pr(ηi = 0 | γ, λ)

(5)

Point i is marked as an inlier if ρi > 1, or outlier if ρi ≤ 1.

kNND was used to model point process in clutter back-
grounds [3], where the goal was to separate points into two
Poisson processes with different rates λ. It was also used to
determine the window size in kernel density estimation [7],
which can also be used to detect sparse points. We directly
use kNND for outlier detection in subspace clustering ap-
plication, because of its following advantages:
• kNND transforms the high dimensional data into 1D

data, where outliers are clearly distinguishable from
inliers. Therefore kNND implicitly uses the cluster
constraint to detect outliers, but does not actually clus-
ter the data.

• The parameter k is directly related to the expected
cluster size, and therefore can be used to guarantee a
low dimensional subspace (Section 3.2).

• kNND is adaptive to cluster shapes. This is differ-
ent from sparse point detection using kernel-based
density estimation, where the window shape is pre-
determined.

3.2 kNND for Bounding the Dimension of Subspace

Suppose the given data set contains L clusters. Assum-
ing Gaussian noises, the centroids of these L clusters form
an (L − 1)-dimensional linear subspace1 (see [7]). We can
therefore reduce the subspace dimension by reducing the
number of clusters. This is done by applying kNND metric
to remove small clusters with size less than k.

Suppose the number of input data is N . After the kNND
procedure, the size of a survived cluster is expected to be
larger than k. The number of survived clusters, denoted as
L, must be bound by:

L ≤ N

k
The subspace dimension d is then bound by:

d ≤ L − 1 ≤ N

k
− 1

We can assure the subspace dimension to be lower than a
pre-defined value d0 by setting the parameter k as:

k ≥ N

(d0 + 1)
(6)

3.3 Robust Subspace Estimation

Our algorithm for robust subspace estimation consists of
the following four steps:

1. Use kNND to initialize the set of inliers with weights
initialized to 1, and the upper-bound of subspace di-
mension du.

2. Apply SVD and rank detection (Equation (7)) to the
weighted inliers to compute the subspace model.

3. Use subspace constraint to detect the remaining out-
liers and re-weight the inliers (details in Appendix).

1In many computer vision applications L − 1 is usually much smaller
than the input data dimension.
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Figure 3. A synthetic example for comparing subspace
clustering with and without robust analysis using kNND.
(a): First two dimensions of the 60-D synthetic data (with
10 outliers shown by o); (b): Spectral mapping without ro-
bust subspace analysis; (c): The 1-dimensional histogram
of kNNDs (k = 8); (d): Spectral mapping with robust sub-
space analysis.

4. Repeat Step 2 and 3 until converge.

In Step 2, the subspace dimension d (rank of W) can be com-
puted by:

d = min(du, dt) (7)

Here du is the upper-bound of the subspace dimension
guaranteed by kNND according to Equation (6), and dt is
the expected-noise-bound subspace dimension computed by
Equation (2). By enforcing the upper-bound du in the rank
detection, we are guaranteed a global linear subspace con-
straint. Since kNND provides a good initialization of in-
liers, the above iterative procedure will converge quickly to
a desirable subspace model.

Finally, to cluster the spectral-mapped data, we can use
simple clustering algorithms, such as mean shift, k-means,
or a more advance approach in [28]

Figure 3 shows an example of applying our subspace
analysis using synthetic data. We generate two Gaussian
clusters in 60-D space, with 10 outliers. The first two di-
mensions are shown in Figure 3(a). Without robust analysis,
the two clusters and outliers are mixed together in the spec-
tral mapping, as shown in Figure 3(b). Figure 3(c) shows
the histogram of kNNDs. Our algorithm detects all of the
10 outliers not in the first peak. The inliers are projected
onto the resulted 1D subspace. Figure 3(d) shows the spec-
tral mapping of the projected 1D data. Two clusters are
clearly distinguishable.

4 Application: Layer Extraction from Video
We apply our robust subspace analysis technique to layer

extraction. The goal of layer extraction is to segment a
video image into some number of 2D regions (sub-images),
in each of which pixels share the same apparent motion
model. The robust subspace clustering technique will solve
two problems not addressed in previous work [11]: (1) deal-
ing with outliers in subspace estimation; and (2) bounding
the subspace dimension for dynamic scene.

4.1 Subspace Approach to Layer Extraction

We are given F + 1 images {If | f = 0, 1, · · · , F} of a
scene. Select I0 as the reference view. We divide I0 into
small n × n image patches (we use 48 × 48 overlapped
blocks2). For the i-th patch in I0, we can estimate a 2 ×
3 affine transformation (homography) between I0 and any
other view If . The affine transformation3 is reshaped into
a 6-D column vector denoted by mf

i . The measurement
matrix W is constructed by stacking all such column vectors
together in the following way:

W6F×N =




m1
1 · · · m1

N

m2
1 · · · m2

N
...

mF
1 · · · mF

N




6F×N

(8)

where N is the total number of image patches in I0. Each
column in W contains the motions of one n× n image patch
across all images. We center the data in W by subtracting
their column mean.

The subspace-based layer extraction approach [12] is
based on the fact that the rank of W is no more than three,
given a static scene (or equivalently a scene containing a
single moving body). The SVD algorithm is used in [12] to
compute the low rank subspace. The high dimensional data
points (each column in W is a 6F-dimensional data point)
are projected onto this subspace, in which they are clustered
into layers.

There are two problems that remained unsolved in [12].
First, the SVD algorithm is sensitive to outliers, which are
regions of motion outliers. It is widely known that local
motion measurements often contain outliers due to various
reasons, such as lighting change, motion or depth discon-
tinuity, and/or non-rigid motions. Second, it is not clear
in [12] how to bound the subspace dimension for dynamic
scene. For dynamic scene, the rank of W is scene dependent.
We can show that [11]:

d = rank(W) ≤ min(4B − 1, L − 1) (9)

Here B is the number of independently moving objects, and
L is the number of different planes in the scene. In general

2Overlapped blocks can effectively deal with occlusions.
3We scaled the elements in the parameters of affine transformation so

that the motion parameter space is approximately isotropic [25]. Such scal-
ing does not change the rank of W [12].
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we do not know B and L.

4.2 Layer Extraction Algorithm

Our robust subspace clustering technique in Section 3.3
can be directly applied to address these two problems. Here
we just point out how to bound the subspace dimension us-
ing Equation (6). Suppose the image size (pixel number) is
w. Since each image patch contains n2 pixels, according
to Equation (6), to bound the subspace dimension below d0

we set the k to be:

k ≥ w

(d0 + 1)n2
(10)

Our overall subspace-based layer extraction algorithm
consists of the following major steps: (1) robustly compute
the low dimensional subspace from W, and project the mea-
surement data onto the subspace; (2) cluster the projected
inliers into initial layers, which are large layers; (3) pro-
gressively extract the previously excluded small layers, and
refine layers using layer competition.

The layer competition in the Step 3 simply assigns an im-
age region r to the initial layer (cluster) that best describes
the motions of r. To utilize the spatial coherence existing
in a single image, we assign homogeneous color regions in-
stead of individual pixels to layers. The assumption we use
here is that each homogeneous color region corresponds to
a planar patch in the scene. Such assumption is generally
valid for images of natural scenes, and has been used in
motion analysis and stereo [2, 26, 22]. We use color over-
segmentation [4] to assure the validity of the assumption.

Note that small layers are removed by kNND procedure
at the very beginning. It is widely known that motion mea-
surements of small layers are not stable, since they tend to
have non-rigid or other complex motions, as well as depth
discontinuity at layer boundaries. It is therefore desirable
for any layer extraction algorithm to exclude them at the
beginning for the extraction of larger layers. Once the large
initial layers are available, the well-established progressive
techniques [8, 16] can be applied to extract these previously
excluded small layers.

4.3 Experimental Results

We show the experimental results on several real video
sequences of dynamic and static scenes. See the comple-
mentary movie files for more results. In all experiments,
we set k = 8 in kNND procedure to bound the subspace
dimension to be no more than three, and set t = 95% in
Equation (2) and (7) rank detection.

4.3.1 Mobile & Calendar Sequence

In this standard MPEG sequence, the calendar is moving
upward, the train is pushing the ball, and the camera is
zooming and tracking the train. The input to our algorithm
is a 5-frame image sequence, with the middle frame chosen
as the reference image, which is shown in Figure 4(a).

Due to outliers in local motion estimations, the direct
spectral mapping, without detecting outliers, results in in-
correct layer segmentation, as shown in Figure 4(b) and (c).
Our robust subspace analysis technique has detected those
patches of motion outliers, as shown in Figure 4(e). As we
can see, these patches contain either multiple motions or lit-
tle texture, and their local motion estimations are unstable
and become motion outliers. For example, in Figure 4(e),
Patch A contains little texture and Patch B contains two dif-
ferent motions. By removing these detected motion out-
liers, our algorithm obtains a 2D linear subspace of R

24, as
shown in Figure 4(f). As a result, the spectral mapping of
the low dimensional data has tight cluster structure that are
easily identifiable, as shown in Figure 4(g). The final layer
extraction result is shown in Figure 4(h). Four layers (back-
ground, calendar, train, and ball) are correctly extracted.

4.3.2 Walking-Person Sequence

This sequence is taken by a hand-held video camera, where
three persons are walking in front of a building. Figure 5(a)
show the middle frame in this 5-frame sequence.

Our algorithm correctly extracts five layers from this se-
quence, including the ground, the building wall, and the
three walking persons. See the caption in Figure 5 for more
details.

4.3.3 Static Scenes

We apply our algorithm to two sequences of static scenes,
but without using the knowledge that the scenes are static.

In the standard MPEG flower garden sequence, the cam-
era is translating to the right. Figure 6(a) shows one image
of the input sequence. Our algorithm extracts four layers:
the ground, the house in the background, the tree trunk, and
the tree branch.

The stop-sign sequence is taken by a hand-held video
camera. It has a cluttered background. Figure 6(c) shows
one frame. Our algorithm outputs four layers: the ground,
the stop sign, the building on the left, and the tree on the
right. Note that the building wall behind the tree does not
contain enough textures, and is assigned to the tree layer.

5 Conclusion
We exploit both subspace constraint and cluster con-

straint to detect outliers in high dimensional data for robust
subspace estimation. The kNND metric is simple and ef-
fective for exploiting the cluster constraint without actually
clustering the data. This is important since it is a chick-and-
egg problem if one wants to detect outliers by clustering
high dimensional noisy data. The parameter k in kNND can
be used to bound the subspace dimension to assure global
linear subspace constraint on the data. Such subspace con-
straint is then used by simple iterative algorithms to detect
the remaining outliers and to estimate the final subspace.
Since kNND provides a good initial inlier set, the itera-
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(e) patches of motion outliers (f) robust subspace estimation (g) our spectral mapping (h) final layer segmentation

Figure 4. Layer extraction result of mobile sequence. Our algorithm derives a good 2D subspace (of R
24) by excluding the outliers

in the local motion estimations and small layers. The remaining initial large layers (the background and the calendar) become tight
clusters in the spectral mapping of the projected low dimensional inlier data. Given such large initial layers, the well-established
progressive technique [8, 16] is applied to extract the small layers (train and ball), which are previously excluded by robust subspace
clustering. (b): spectral mapping without robust subspace analysis; (c): layer extraction result of clustering the spectral-mapped data
in (b); (d): 1D histogram of kNND and the result of inlier-outlier classification; (e) excluded outliers, which are patches containing
either discontinuous motions or small layers (ball and train); (f): 2D subspace by our algorithm, where ∗ and � are inliers, and × are
detected outliers projected onto this subspace; (g): spectral mapping after projecting inliers onto the 2D subspace, where 2 clusters
(corresponding to the two initial layers of background and calendar) are easily identifiable; (h): final layer extraction result, where
four layers (background, calendar, train, and ball) are correctly extracted.

(a) one input image (b) patches of motion outliers (c) final layer segmentation

Figure 5. Layer extraction result of Walking-person sequence. The walking persons have non-rigid motions and their motion
estimations are not reliable. Five layers are extracted, including three walking persons, ground, and building wall. The ground and
build wall are extracted as large initial layers. The walking persons are progressively extracted against the large initial layers.

(a) flower garden sequence (b) four layers extracted from (a) (c) stop-sign sequence (d) four layers extracted from (c)

Figure 6. Layer extraction from static scenes. We do not need the assumption of static scene.
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tive algorithm will converge quickly to a desirable solution.
Given cleaned data and a good linear subspace, the spectral
mapping can be applied to further improve the cluster struc-
ture. We apply our robust subspace clustering technique to
extracting layers from image sequences, and show promis-
ing results.

In our clustering applications, we treat all components in
each data point equally. Dealing with intra-sample outliers
is future work (Our technique provides a good initialization
to apply the techniques in [19, 5]).

Appendix: Subspace Constraint for Data Weighiting
Assuming Gaussian distribution for measurement noises, the d

dimensional signal space is optimally approximated by the sub-
space defined by the first d columns of U in equation (1), which
form the bases of the signal subspace US . The data can then be
decomposed into the signal component and the noise component:

WM×N = (US | U⊥)

(
ΣS

Σ⊥

)
(VS | V⊥)�

= USΣSV
�
S + U⊥Σ⊥V

�
⊥ = S + N

The noise component N is assumed to follow zero-mean Gaussian
distribution with sampled covariance matrix C:

C =
1

N − 1
U⊥Σ

2
⊥U

�
⊥ (11)

The noise component in the i-th data point is ni = U⊥Σ⊥v⊥i,
where v�

⊥i is the i-th row of V⊥ (a (M − d)-vector). The Maha-
lanobis distance z2

i of ni is:

z2
i = n�

i C
−1ni = (N − 1)

M−d∑
p=1

v2
⊥i,p (12)

z2
i follows χ2 distribution [10], with (M−d) degrees of freedom4.

A data point is marked as an outlier if its z2
i is outside of the p-th

confidence interval of the corresponding χ2 distribution. In this
paper we set p = 95%. The inliers are weighted based on the
Mahalanobis distance z2

i (e.g., wi = exp(−z2
i )).
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