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Robust Superpixel Tracking
Fan Yang, Student Member, IEEE, Huchuan Lu, Senior Member, IEEE,
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Abstract— While numerous algorithms have been proposed
for object tracking with demonstrated success, it remains a
challenging problem for a tracker to handle large appearance
change due to factors such as scale, motion, shape deformation,
and occlusion. One of the main reasons is the lack of effective
image representation schemes to account for appearance varia-
tion. Most of the trackers use high-level appearance structure
or low-level cues for representing and matching target objects.
In this paper, we propose a tracking method from the perspec-
tive of midlevel vision with structural information captured in
superpixels. We present a discriminative appearance model based
on superpixels, thereby facilitating a tracker to distinguish the
target and the background with midlevel cues. The tracking
task is then formulated by computing a target-background
confidence map, and obtaining the best candidate by maximum
a posterior estimate. Experimental results demonstrate that our
tracker is able to handle heavy occlusion and recover from
drifts. In conjunction with online update, the proposed algorithm
is shown to perform favorably against existing methods for
object tracking. Furthermore, the proposed algorithm facilitates
foreground and background segmentation during tracking.

Index Terms— Visual tracking, superpixel, appearance model,
midlevel visual cues.

I. INTRODUCTION

T
HE recent years have witnessed significant advances

in visual tracking with the development of efficient

algorithms and fruitful applications. Examples abound, rang-

ing from algorithms that resort to low-level visual cues to

high-level structural information with adaptive models to

account for appearance variation as a result of object motion

[1]–[14]. While low-level cues are effective for feature track-

ing and scene analysis, they are less effective in the context

of object tracking [15]–[17]. On the other hand, numerous

works have demonstrated that adaptive appearance models

play a key role in achieving robust object tracking [1]–[3],
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Fig. 1. Four challenges encountered in tracking. The results by our tracker,
IVT [3], VTD [12], PROST [18], Frag [5], and PDAT [8] methods are
represented by yellow, red, white, green, cyan, and magenta rectangles.
Existing trackers are not able to effectively handle heavy occlusion, large
variation of pose and scale, and non-rigid deformation, while our tracker
gives more robust results.

[5], [12], [18], [19]. In recent years, mid-level visual cues

have been applied to numerous vision problems including

object segmentation [20]–[22], recognition [20], [23], pose

estimation [24]. Nevertheless, much less attention is paid to

exploit mid-level visual cues for visual tracking in complex

scenes. To account for large appearance variation, it is of great

interest to develop adaptive appearance model based on mid-

level visual cues.

In this paper,1 we exploit effective and efficient mid-level

visual cues for object tracking with superpixels (see Fig. 1).

We present a discriminative appearance model based on super-

pixels, thereby facilitating a tracker to distinguish the target

and the background with mid-level cues. The tracking task is

then formulated by computing a target-background confidence

map, and obtaining the best candidate by maximum a posterior

estimate. During the training stage, the segmented superpix-

els are grouped for constructing a discriminative appearance

1Preliminary results of this work were presented in [25].
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model to distinguish foreground objects from cluttered back-

grounds. In the test phase, a confidence map at superpixel

level is computed using the appearance model to obtain the

most likely target location with maximum a posteriori (MAP)

estimates. The appearance model is constantly updated to

account for variation caused by change in both the target

and the background. We also include a mechanism to detect

and handle occlusion in the proposed tracking algorithm for

adaptively updating the appearance model without introducing

noise. Experimental results on various sequences show that the

proposed algorithm performs favorably against existing state-

of-the-art methods. In particular, our algorithm is able to track

objects undergoing large non-rigid motion, rapid movement,

large variation of pose and scale, heavy occlusion and drifts.

As a by-product, we show that our algorithm is able to carry

out foreground/background segmentation during tracking.

II. RELATED WORK AND PROBLEM CONTEXT

In this section, we discuss the related online tracking algo-

rithms and put our work in proper context. Online appearance

models have been developed and applied to object tracking

in recent years. In [1], an adaptive mixture model is pro-

posed to deal with appearance change where the responses

of wavelet filters are modeled with three components. While

this method is able to track objects with illumination change

and brief occlusion, this generative model considers pixels

within the target region independently and does not exploit

discriminative classifiers for separating foreground objects and

the background. A kernel-based tracking algorithm that selects

discriminative features to separate the foreground objects,

modeled as a blob, and the background has shown to be

effective in object tracking [2]. In [3], an incremental visual

tracker (IVT) with adaptive appearance model that aims to

account for appearance variation of rigid or limited deformable

motion is presented. Although it has been shown to perform

well when target objects undergo lighting and pose variation,

this method is less effective in handling heavy occlusion or

non-rigid distortion as a result of the adopted holistic appear-

ance model. The ensemble tracker [26] formulates the task

as a pixel-based binary classification problem. Although this

method is able to differentiate between target and background,

the pixel-based representation is rather limited and thereby

constrains its ability to handle heavy occlusion and clutter.

Numerous algorithms have being proposed using local and

multiple representation schemes to account for appearance

change and occlusion. The fragment-based (Frag) tracker [5]

aims to solve partial occlusion with a representation based

on histograms of local patches. The tracking task is carried

out by combining votes of matching local patches using a

template. Nevertheless, the template is not updated and thereby

it is not expected to handle appearance change due to large

variation in scale and shape deformation. In [7], an algorithm

extends multiple instance learning to an online setting for

object tracking. While it is able to reduce drifts, this method

is not able to handle large non-rigid shape deformation. The

ℓ1 tracker [11] first applies sparse representation to visual

tracking with designed trivial templates to handle occlusions.

Based on the templates, the ℓ1 tracker poses the tracking prob-

lem as finding the image region with minimal reconstruction

error using ℓ1 minimization. With a generative formulation, the

ℓ1 tracker does not exploit the appearance information from

the background and thus it is ineffective in handling heavy

occlusion. The visual tracking decomposition (VTD) approach

effectively extends the conventional particle filter framework

with multiple motion and observation models to account for

appearance variation caused by change of pose, lighting and

scale as well as partial occlusion [12]. Nevertheless, as a

result of the adopted generative representation scheme, this

tracker is not equipped to distinguish target and background

patches. Consequently, background pixels within a rectangular

template are inevitably considered as parts of foreground

object, thereby introducing significant amount of noise in

updating the appearance model.

Object tracking can also be posed as a detection problem

with local search. The PROST method [18] extends the

tracking-by-detection framework with multiple modules for

reducing drifts. Although this tracker is able to handle certain

drifts and shape deformation, it is not clear how this method

can be extended to handle targets undergoing non-rigid motion

or large pose variation. In [13], a binary classifier is learned by

using the structure of unlabeled data with positive and negative

constraints. This classifier is used as an object detector for

object tracking with online update. As a tracking-by-detection

approach, this algorithm can re-detect the object when it dis-

appears, so it is able to handle occlusion to some extent but not

able to deal with pose and scale change well. More recently, a

structured output tracking (Struck) method [14] is proposed by

adopting kernelized structured output support vector machine

to avoid the labeling ambiguity when updating the classifier

during tracking. With simple low-level features, this method

is less effective in handling scale change and occlusion.

Compared with high-level appearance models and low-

level features, mid-level visual cues have been shown as

effective representations containing sufficient information of

image structure. In particular, superpixels have been applied to

image segmentation and object recognition with demonstrated

success [20], [23], [24], [27], [28]. These methods are able

to segment images into numerous superpixels with evident

boundary information of object parts from which effective

representations can be constructed. In [22], a tracking method

based on superpixels is proposed, which regards tracking task

as a figure/ground segmentation across frames. However, as it

processes every entire frame individually with Delaunay trian-

gularization and conditional random filed for region matching,

the computational complexity is rather high. Furthermore, it

is not designed to handle complex scenes including heavy

occlusion and cluttered background as well as large lighting

change. Similarly, a non-parametric formulation is presented

to model foreground and background classes for localizing

and segmenting objects [21] in image sequences. We note

that these methods are mainly developed for figure-ground

separation and unlikely to perform well in cluttered scenes

with large illumination change.

In addition to superpixels, several segmentation-based track-

ing algorithms have been proposed. In [29], a probabilistic
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tracking method using a bag-of-pixels representation and rigid

transformation is proposed. Segmentation is used to obtain

the object shape and estimate the probabilistic distributions

of the foreground and background regions, and the tracking

process is based on low-level pixel features. Similarly, an

algorithm based on modeling the foreground and background

regions with a mixture of Gaussians is proposed [30] where

the target location is estimated by updating a level set function.

However, only pixel features drawn from the mixture of

segments are used rather than the mid-level segments. In [31],

an offline segmentation and tracking algorithm is proposed to

separate the moving object from the background by solving an

optimization problem. Image data is represented by a multi-

label Markov random field model and the optimization is

carried out when the whole sequence is available. Recently,

the Hough-based tracking (HT) algorithm [32] is developed

for handling non-rigid objects based on online random forests

and Hough voting of detected regions with verification from

the support of foreground regions. Different from our work that

constructs an appearance model by directly using superpixels

as features, segmentation is used to coarsely separate the target

from the background and update the classifiers [32].

In this work, we propose a tracking method from the

perspective of mid-level vision with structural information

captured in superpixels. By incorporating both appearance

and spatial information, we construct a novel superpixel-based

appearance model to separate the target from the background,

thereby facilitating the proposed algorithm to handle heavy

occlusion and recover from drifts for robust object tracking.

III. PROPOSED ALGORITHM

We present details of the proposed image representation

scheme and tracking algorithm in this section. Our algorithm is

formulated within the Bayesian framework in which the max-

imum a posterior estimate of the state given the observations

up to time t is computed by

p(X t |Y1:t ) = αp(Yt |X t )
∫

p(X t |X t−1)p(X t−1|Y1:t−1)d X t−1,
(1)

where X t is the state at time t , Y1:t denotes all the observations

up to time t , and α is a normalization term. In this work,

the target state is defined as X t = (Xc
t , X sx

t , X
sy
t ), where Xc

t

represents the center location of the target, X sx
t and X

sy
t denote

its scale in x-axis and y-axis, respectively. As demonstrated by

numerous works in the object tracking literature, it is critical

to construct an effective observation model p(Yt |X t ) and an

efficient motion model p(X t |X t−1).

In our formulation, a robust discriminative appearance

model is constructed which, given an observation, computes

the likelihood of it belonging to the target or the background.

Thus the observation estimate of a certain target candidate X t

is proportional to its confidence:

p(Yt |X t ) ∝ Ĉ(X t ), (2)

where Ĉ(X t ) represents the confidence of an observation at

state X t being the target. The state estimate of the target

X̂ t at time t can be obtained by the MAP estimate over the

N samples at each time t . Let X
(l)
t denote the l-th sample of

the state X t ,

X̂ t = argmax

X
(l)
t

p(X
(l)
t |Y1:t ) ∀ l = 1, . . . , N. (3)

In the following, the superpixel-based discriminative appear-

ance model for tracking is introduced in Section III-A, fol-

lowed by construction of the confidence map based on this

model in Section III-B. The observation and motion models

are presented in Section III-C, and then the update scheme.

A. Superpixel-Based Discriminative Appearance Model

To construct an appearance model for both the target and the

background, prior knowledge regarding the label of each pixel

can be learned from a set of m training frames. That is, for a

certain pixel at location (i, j) in the t-th frame pi xel(t, i, j),

we have:

yt (i, j) =

{

1 if pixel(t, i, j) ∈ target

−1 if pixel(t, i, j) ∈ background,
(4)

where yt (i, j) denotes the label of pi xel(t, i, j). Assume that

the target object can be represented by a set of superpixels

without significantly destroying the boundaries between target

and background (i.e., only few superpixels contain almost

equal amount of target pixels and background pixels), prior

knowledge regarding the target and the background appearance

can be modeled by

yt(r) =

{

1 if sp(t, r) ∈ target

−1 if sp(t, r) ∈ background,
(5)

where sp(t, r) denotes the r -th superpixel in the t-th frame,

and yt(r) denotes its corresponding label. However, such prior

knowledge is not at our disposal in most tracking scenarios,

and one feasible way to achieve this is to infer prior knowledge

from a set of samples, {X t }
m
t=1, prior to the tracking process

starts. We present a method to extract similar information as

Eq. 5 from a small set of samples.

First, we segment the surrounding region of the target in

the t-th training frame into Nt superpixels. The surrounding

region is a square area centered at the location of target

Xc
t , and its side length is equal to λs[S(X t )]

1
2 , where S(X t )

represents the area size of target area X t . We use squared

region for simplicity and it works well in practice although

rectangular or more sophisticated regions can be used at the

expense of using a larger state space. The parameter λs is a

constant parameter, which controls the size of this surrounding

region, and is set to 3 in all experiments. Therefore, the

surrounding region is large enough to cover the entire object

in the last frame and include sufficient background region

around the object for better discrimination. Each superpixel

sp(t, r) (t = 1, . . . , m, r = 1, . . . , Nt ) is represented

by a feature vector f r
t (See Fig. 2(a)–(c)). The mean shift

clustering algorithm, with a single parameter controlling the

bandwidth of the kernel function, has been shown to better

capture the relationship among superpixels rather than other

methods (e.g., k-means). Thus, in this work we apply the mean

shift clustering algorithm on the feature pool F = { f r
t |t =

1, . . . , m; r = 1, . . . , Nt } and obtain n different clusters.
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Fig. 2. Illustration of confidence map for state prediction. (a) A new frame at time t . (b) Surrounding region of the target in the last frame, i.e., at state

X
(1)
t . (c) Superpixel segmentation from (b). (d) The computed confidence map of superpixels using Eq. 8 and Eq. 7. The superpixels colored with red indicate

strong likelihood of belonging to the target, and those colored with dark blue indicate strong likelihood of belonging to background. (e) the confidence map
of the entire frame. (f), (g) and (h), (i) show two target candidates with high and low confidence, respectively.

In the feature space, each cluster clst (i) (i = 1, . . . , n) is

represented by its cluster center fc(i), its cluster radius rc(i)

and its own cluster members { f r
t | f r

t ∈ clst (i)}.

As every cluster clst (i) corresponds to its own image region

S(i) in the training frames (image regions that superpixel

members of cluster clst (i) cover), we count two scores for

each cluster clst (i), S+(i) and S−(i). The former denotes

size of cluster area S(i) overlapping the target area at state X t

in the corresponding training frames, and the latter denotes

the size of S(i) outside the target area. Intuitively, the ratio

S+(i)/S−(i) indicates the likelihood that superpixel members

of clst (i) appear in the target area. Consequently, we assign

each cluster a target-background confidence value between

1 and −1 to indicate whether its superpixel member belonging

to the target or the background.

Cc
i =

S+(i) − S−(i)

S+(i) + S−(i)
, ∀ i = 1, . . . , n. (6)

where larger positive values indicate high confidence to assign

the cluster to target and vice versa.

Our superpixel-based discriminative appearance model is

constructed based on four factors, cluster confidence Cc
i ,

cluster center fc(i), cluster radius rc(i) and cluster members

{ f r
t | f r

t ∈ clst (i)}, which are used for determining the cluster

for a certain superpixel as described in the following sections.

By applying the confidence values of each cluster to super-

pixels in the training frames, similar prior knowledge as Eq. 5

can be learned from a set of training images.

The merits of the proposed superpixel-based discriminative

appearance model are illustrated in Fig. 4 and Section IV.

Namely, few background superpixels that appear in the target

area (as a result of drifts or occlusions) are likely to be clus-

tered into the same group with other background superpixels.

Thus the background pixels within the target region (enclosed

by a rectangle) have negligible effect to our appearance model

during training and update.

B. Confidence Map

When a new frame arrives, we first extract a surrounding

region2 of the target and segment it into Nt superpixels (See

Fig. 2(b) and (c)). To compute a confidence map for the

current frame, we evaluate every superpixel and compute

its confidence value. The confidence value of a superpixel

2A square area centered at Xc
t−1 with side length λs [S(Xt−1)]

1
2 .

depends on two factors: the cluster it belongs to, and the

distance between this superpixel and the corresponding cluster

center in the feature space. The rationale for the first criterion

is that if a certain superpixel belongs to cluster clst (i) in

the feature space, then the target-background confidence of

cluster clst (i) indicates how likely it belongs to the target or

background. The second term is a weighting term that takes

the distance metric into consideration. The farther the feature

of a superpixel f r
t lies from the corresponding cluster center

fc(i) in feature space, the less likely this superpixel belongs

to cluster clst (i). The confidence value of each superpixel is

computed as follows:

Cs
r = w(r, i) × Cc

i , ∀ r = 1, . . . , Nt , (7)

and

w(r, i) = exp(−λd ×
|| f r

t − fc(i)||2
rc(i)

),

∀ r = 1, . . . , Nt , i = 1, . . . , n,
(8)

where w(r, i) denotes the weighting term based on the distance

between f r
t (the feature of sp(t, r), the r -th superpixel in the

t-th frame) and fc(i) (the feature center of the cluster that

sp(t, r) belongs to). The parameter rc(i) denotes the cluster

radius of cluster clst (i) in the feature space, and λd is a

normalization term (set to 2 in all experiments). By taking

these two terms into account, Cs
r is the confidence value for

superpixel r at the t-th frame, sp(t, r).

We obtain a confidence map for each pixel on the entire

current frame as follows. Every pixel in the superpixel sp(t, r)

is assigned with confidence Cs
r , and every pixel outside this

surrounding region with confidence value −1. Fig. 2(a)–(e)

show the steps how the confidence map is computed with a

new frame arriving at time t . This confidence map is computed

based on our appearance model described in Section III-A. In

turn, the following steps for identifying the likely locations of

the target in object tracking are based on this confidence map.

C. Observation and Motion Models

The motion (or dynamical) model is assumed to be Gaussian

distributed,

p(X t |X t−1) = N (X t ; X t−1,�), (9)

where � is a diagonal covariance matrix whose elements are

the standard deviations for location and scale, i.e., σc and σs .

The values of σc and σs dictate how the proposed algorithm

accounts for motion and scale change.
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Fig. 3. Confidence map. Four target candidate regions corresponding to states X
(i)
t , i = 1, . . . , 4 are shown both in warped image and the confidence map.

These candidates’ confidence regions Mi , i = 1, . . . , 4 have the same canonical size (upper right) after normalization. Based on Eq. 10, candidate X
(1)
t , X

(2)
t

have similar positive confidence C1, C2, and X
(3)
t , X

(4)
t have similar negative confidence C3, C4. However, candidate X

(2)
t covers less target area than X

(1)
t ,

and X
(4)
t covers more background area than X

(3)
t . Intuitively, target-background confidence of X

(1)
t should be higher than X

(2)
t , while confidence of X

(4)
t

should be lower than X
(3)
t . These two factors are considered in computing confidence map as described in Section III-C.

We normalize all these candidate image regions into

canonical sized maps {Ml}
N
l=1 (the size of the target corre-

sponding to X t−1 is used as the canonical size). We denote

vl(i, j) as the value at location (i, j) of the normalized

confidence map Ml of X
(l)
t , and then we accumulate vl(i, j)

to obtain the confidence Cl for the state X
(l)
t ,

Cl =
∑

(i, j )∈Ml

vl(i, j). (10)

However, this target-background confidence value Cl does not

take scale change into account. In order to make the tracker

robust to the scale change of the target, we weigh Cl with

respect to the size of each candidate as follows:

Ĉl = Cl × [S(X
(l)
t )/S(X t−1)], ∀ l = 1, . . . , N, (11)

where S(X t−1) represents the area size of target state X t−1

and S(X
(l )
t ) represents the area size of a candidate state X

(l)
t .

For the target candidates with positive confidence values (i.e.,

indicating they are likely to be targets), the ones with larger

area size should be weighted more. For the target candidates

with negative confidence values, the ones with larger area size

should be weighted less. This weighting scheme ensures our

observation model p(Yt |X
s
t ) is adaptive to scale change. Fig. 3

illustrates this weighting scheme.

We normalize the final confidence of all targets {Ĉl}
N
l=1

within the range of [0, 1] for computing likelihood of X
(l )
t

for our observation model:

p(Yt |X
(l)
t ) = Ĉl , ∀ l = 1, . . . , N, (12)

where Ĉl denotes the normalized confidence value for each

sample. With the observation model p(Yt |X
(l)
t ) and the motion

model p(X
(l)
t |X t−1), the MAP state X̂ t can be computed with

Eq. 3. Fig. 2 (f)–(i) show two samples and their corresponding

confidence maps. As shown in these examples, the confidence

maps facilitate the process of determining the most likely

target location.

D. Online Update With Occlusion and Drifts

We apply superpixel segmentation to the surrounding region

of the target (rather than the entire image) for efficient and

effective object tracking. An update scheme with sliding

window is adopted, in which a sequence of H frames is stored

during the tracking process. For every U frames, we add a new

frame into this sequence, and delete the oldest one. That is,

this process retains a record of the past H × U frames. For

each frame in this sequence, the estimated state X̂ t and the

result of superpixel segmentation are saved. We update the

appearance model with the retained sequence every W frames

in the same way as that of the training phase described in

Section III-A.

With the proposed discriminative appearance model using

mid-level cues, we present a simple but efficient method

to handle occlusion in object tracking. The motivation is

that the confidence values of target estimates in the retained

sequence capture the most recent appearance information of

the target object in a short period which can be used to

measure the quality of current MAP estimate. For a state X
(l)
t

at time t , its confidence Cl (from Eq. 10) is bounded within a

range, [−S(X
(l)
t ), S(X

(l)
t )]. The upper bound indicates that all

pixels in the image region corresponding to X
(l)
t are assigned

with the highest confidence of belonging to the target, and

conversely the lower bound indicates that all pixels belong to

the background. We compute an occlusion indicator, Ot , and

determine whether it is above a threshold θo to detect heavy

or full occlusions:

Ot = µC −
max({Cl}

N
l=1)

S(X t−1)
, (13)

where µC is the average of normalized confidence (from

Eq. 10) of the target estimates in the retained sequence of

H frames. The denominator is a normalization term to ensure

the range of the second term is [−1,1]. The formula reflects

the difference between the normalized confidence Cl of the

MAP estimate of current frame and the average normalized

confidence of targets in the retained sequence. Without any

prior information, the average of confidence of previous target

estimates in a short period is the most reliable value. There-

fore, large difference indicates a small confidence value of the

current MAP estimate which is likely caused by occlusion.

If the confidence Cl of the MAP estimate at the current frame
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Fig. 4. Recovering from drifts. (a) A target object with tracking drifts. (b) The surrounding region of the target is segmented into superpixels. (c) Clustering
results of (b) in the feature space and the target-background confidence of each cluster. (d) The confidence map in a new frame computed with clustering
results. (e) The MAP estimate of the target area where the tracker recovers from drifts. This illustration shows even if our tracker experiences drifts during
tracking (See (a)), our appearance model obtains sufficient information from surrounding background area by update, and provides the tracker with more
discriminative strength against drifts than holistic appearance models.

is much less than the average of normalized confidence of the

retained sequence, it means that the candidate region is very

likely to belong to background area, and a heavy occlusion is

deemed to occur.

As the target object is considered being occluded, the target

estimate X t−1 of the last frame is considered as the target

estimate X̂ t for the current frame. Furthermore, instead of

deleting the oldest frame when we add one new frame to

the end of the retained sequence, we delete the k-th (e.g.,

k = 8, k < H ) frame of the sequence. In this manner, our

tracker does not remove all appearance information of target

object when long-duration occlusion occurs, and meanwhile

does not continue to learn from occluded examples. Without

this update mechanism, our tracker may update with wrong

examples when the target object is occluded or un-occluded.

As demonstrated by our experiments presented in Section IV,

robust tracking results can be obtained with this scheme.

The confidence map with update is also used to recover

from drifts in our algorithm. Fig. 4 illustrates how the proposed

method recovers from drifts using the information from super-

pixels and the confidence map. As the superpixel segmentation

is carried out at frame t (within the image regions where the

target appears at frame t − 1), the computed confidence map

provides strong evidence where the target will appear, thereby

correcting potential drifts from inaccurate state estimate at

frame t − 1. The main steps of the proposed algorithm are

summarized in Fig. 5.

IV. EXPERIMENTS

We present the experimental setups and extensive empir-

ical results using challenging image sequences as well as

observations in this section. Our algorithm is implemented in

MATLAB and runs at 5 frames per second on a 3.4 GHz

CPU with 12 GB memory. The most time-consuming part

is due to the use of the mean shift clustering algorithm.

The MATLAB source code and datasets are available at

http://www.umiacs.umd.edu/∼fyang/spt.html.

A. Experimental Setups

We use a normalized histogram in the HSI color space as the

feature for each superpixel. The HSI color space reduces the

effect of lighting change on pixels and empirically shows more

discriminative ability in distinguishing different superpixels

Fig. 5. Main steps of the proposed superpixel tracking algorithm.

than other color spaces. Therefore, the superpixels using HSI

color space can better differentiate the foreground from the

background. The SLIC algorithm [28] is applied to extract

superpixels where the spatial proximity weight and number of

superpixels are set to 10 and 300, respectively. The bandwidth

of the mean shift clustering [33] is set to 0.18. We note that

the bandwidth needs to be wide enough to separate superpixels

from the target and background into different clusters. The

parameters of segmentation (i.e., number of superpixels and

spatial proximity weight) and clustering (i.e., bandwidth of

kernel function) are empirically determined from the results

on a randomly selected sequence and fixed for all the test

videos.

To collect a training dataset in the initialization step, the

target regions in the first 4 frames are either located by
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an object detector or manually cropped. The parameters

(H , U , and W ) are empirically determined and fixed for all

test sequences (i.e, they are set to 15, 1, and 10 in all the

experiments). The parameters, σc and σs , of Eq. 9 are set to

7.6 and 7 in anticipation of the fastest motion speed or scale

change of the target objects. In occlusion detection, µC is

set to 0.5 for simplicity. The occlusion detection threshold θo

is empirically defined as 0.515 and fixed for all sequences.

The update parameters and the occlusion detection threshold

are important to the proposed tracker since they control how

much new information can be used for updating the tracker.

We evaluate the proposed algorithm on 12 challenging

sequences where 6 of them have been tested extensively in

prior work [5], [8], [12], [18] and the others are collected on

our own. These sequences include most challenging factors

in visual tracking: complex background, moving camera, fast

movement, large variation in pose and scale, half or full

occlusion, shape deformation and distortion (see Figs. 1, 8, 9).

The proposed superpixel-based tracking (SPT) algorithm

is evaluated against several state-of-the-art tracking methods,

including the IVT [3], Frag [5], MIL [7], ℓ1 [11], PROST [18],

VTD [12], TLD [13], Struck [14] and HT [32] tracking

methods. Since we use color features in our method, we com-

pare the SPT method with two popular color-based trackers,

the mean shift tracker with adaptive scale (MS) [34] and

the adaptive color-based particle filter (PF) [35] method. In

addition, our work can be easily extended to segment salient

foreground target from background, and the relevant results

are presented in Section IV-C.

B. Empirical Results

We first evaluate our algorithm with the sequences used

in prior works: singer1 and basketball from the VTD

method [12], transformer from the PDAT tracker [8], lemming

and liquor from the PROST algorithm [18], and woman from

the Frag approach [5]. We then test on 6 sequences from our

own dataset: bolt, bird1, bird2, girl, surfing1 and racecar.

Experimental results show that the proposed method with

fixed parameters performs well in all sequences with various

challenging factors for object tracking. For fair comparisons,

we carefully adjust the parameters of every tracker with the

code provided by the authors and present the best results

from 5 runs, or taken directly from the presented results

in prior works. All the tracking results can be found at

http://www.umiacs.umd.edu/∼fyang/spt.html.

Effectiveness of occlusion handling: We first demonstrate the

effectiveness of the proposed appearance model in handling

occlusions using an example shown in Fig. 6. In this sequence,

we aim to track the kitesurfer in the sequence surfing1 whose

appearance varies significantly due to occlusion and pose

change. In Fig. 6(a), we show a plot of occlusion indicator

Ot (from Eq. 13) with four representative results. The plot

of occlusion indicator Ot describes different situations during

tracking. When the target object is visible (frame #17 and

#68), the value of Ot is low to ensure normal updates as no

occlusion occurs. In contrast, the value of Ot is high when the

target object is occluded. In frame #113, the target object is

partially occluded by the wave and the indicator value is larger

than those in frame #17 and #68. When the object is heavily

occluded (frame #38), the indicator value is larger than the

predefined threshold and the appearance model is not updated

with the current observation. With this update mechanism,

our tracker overcomes the problem of accumulating errors in

model update which leads to tracking failure.

In Fig. 6(b), the corresponding confidence maps of local

regions are shown in the first row. The target object can

be easily identified when there is no occlusion. The HSI

color distributions of the pixels within the corresponding

local regions are presented in the second row where pixels

belonging to the foreground and background are represented

by red and blue points, respectively. It is clear that when

heavy occlusion occurs, there are few foreground pixels and

many background ones. Due to the discriminative formulation

of the proposed superpixel-based appearance model which

adaptively learns both the foreground and the background,

our method can better find the target object which is salient

in the confidence map. Our appearance model also implicitly

utilizes the spatial information to ensure tracking accuracy. In

this sequence, the color distributions of frame #68 and #113

are similar in terms of foreground and background pixels.

However, the scenes and object appearances are very different

since some of the identified foreground pixels in frame #113

are from another surfer next to the target surfer. In this case,

color distributions alone do not carry sufficient information

for object tracking. Fig. 6(b) shows the spatial distributions

of distance to the region center for foreground pixels (i.e., the

spread of the foreground pixels). For tracking, our algorithm

favors the sample with a large amount of foreground pixels

close to the center of the local region (i.e., compact potential

target region). The histogram modes show that a significant

number of foreground pixels appear at a distance from the

center of the local region in frame #113 compared to those

in frame #68 although they exhibits similar patterns in the

color distributions. Since the foreground pixels close to the

object center are usually more important than others which

usually can be enclosed by convex shapes, the pixels away

from the region center are weighted less in our algorithm

(See Eq. 7). By learning the color features of both foreground

and background and utilizing spatial information, the proposed

appearance model is able to deal with challenging factors in

object tracking, as shown in the following sections.

The proposed occlusion handling process requires a proper

threshold θo to be defined empirically. While the proposed

occlusion handling mechanism performs well in most sce-

narios (as shown in the experiments on different scenarios

using a fixed threshold), it is likely to fail when objects are

fully occluded for a long period of time, which is a common

problem for almost all online tracking algorithms.

Comparison with color-based trackers: We compare the

proposed SPT algorithm with two color-based trackers,

the mean shift tracker with adaptive scale (MS) [34] and the

adaptive color-based particle filter (PF) tracker [35]. As shown

in Fig. 7, the PF tracker does not perform well when objects
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Fig. 6. Illustration of effective occlusion handling and proposed appearance model. (a) Plot of occlusion indicator (Eq. 13) with four representative tracking
examples, which contain partial or severe occlusions. The plot indicates whether the target object is occluded or not. (b) First row: the corresponding confidence
maps of the four examples, where red color indicates high probability of a pixel belonging to the foreground while blue color indicates high probability of
a pixel belonging to the background. Second row: the corresponding HSI color distributions. The axes represent three color channels and pixels belonging
to foreground and background are shown in red and blue points. Third row: histograms of spatial distributions of foreground pixels. The x-axis and y-axis
indicate the distance of a pixel to the center of the local region and the number of pixels lying within a small distance range. Note that the histograms are
significantly different for frame #68 and #113 although they have similar color distributions (best viewed on high-resolution display).

appear in cluttered backgrounds, with drastic movements or

under heavy occlusion. While it performs well in the girl

and racecar sequences, it fails in all other videos. The MS

tracker does not perform well when the target object undergoes

a large appearance change due to non-rigid motion, lighting

change and heavy occlusion (Fig. 7). While this MS tracker

is designed to account for scale change, it is less effective in

dealing with lighting variation and occlusion.

On the other hand, the discriminative appearance model

based on mid-level representation of our SPT method alle-

viates negative influences from noise and background clutters.

Consequently, our tracker is able to track objects undergoing

heavy occlusion, non-rigid deformation and lighting change in

cluttered backgrounds (Fig. 7).

Comparison with other state-of-the-art trackers: The quan-

titative comparisons are presented in Tables I and II. Table II

shows quantitative comparisons based on evaluation metric of

the PASCAL VOC object detection [36], which is also used

in other tracking algorithm [18]. For fair comparisons, we use

elliptical target area for the mean shift tracker and the adaptive

color-based particle filter tracker, and rectangular bounding

box for the HT tracker to calculate the metric used in PASCAL



YANG et al.: ROBUST SUPERPIXEL TRACKING 1647

Fig. 7. Tracking results with comparisons to color-based trackers. The results
by the MS tracker, the PF method and our algorithm are represented by yellow
ellipse, blue ellipse and red rectangles. The proposed tracker is able to handle
cluttered background (girl and basketball), pose change (liquor, bolt, bird2
and surfing1), scale change (singer1 and racecar), heavy occlusion (lemming,
liquor, woman, bird1, surfing1 and racecar), shape deformation (transformer)
and lighting condition change (singer1).

TABLE I

CENTER LOCATION ERROR

VOC tests. In addition, the tracking error plots in terms of

center position are shown in the supplementary document.

We note that the results on two sequences are taken directly

from [18] as the source code is not available for evaluation.

Figs. 8 and 9 show some screenshots of the tracking results.

For clarity of presentation, only the top four trackers with the

lowest center location errors are shown and more results are

presented in the supplementary document. In the following,

we evaluate these algorithms in terms of challenging factors

in object tracking.

TABLE II

NUMBER OF SUCCESSFULLY TRACKED FRAMES

Fig. 8. Tracking results on the public datasets by the IVT, Frag, MIL, PROST,
VTD, TLD, Struck, HT and SPT methods. The best four trackers in terms of
errors of center location are shown.

Tracking drifts: While trackers based on holistic appearance

models are able to track objects in many scenarios, they are

less effective in handling drifts. The main reason is that these

trackers typically focus on learning target appearance rather

than the background (i.e., with a generative approach). Not

equipped to discriminate the foreground from the background,

these trackers usually do not recover from drifts as a result of

accumulated tracking errors.
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Fig. 9. Tracking results on our own datasets by the IVT, Frag, MIL, VTD,
ℓ1, TLD, Struck, HT and SPT methods. The best four trackers in terms of
errors of center location are shown.

In the basketball sequence, the IVT and ℓ1 trackers drift

away from the target object when it undergoes non-rigid

shape deformation and large pose change. Although with the

mechanism of learning and classifying the features of both

foreground and background, the MIL, Frag, TLD, HT and

Struck trackers do not accurately locate the target object

all the time. These tracking algorithms drift to background

area for that they are not designed to account for non-rigid

shape deformation and large pose change. Although the VTD

tracker achieves the second best results in this sequence, its

tracking results are not as accurate as ours. The reason is

that it does not distinguish the target from the background,

and considers some background pixels as parts of the target,

thereby rendering inaccurate tracking results. In contrast, the

discriminative appearance model of our tracker utilizes back-

ground information effectively and alleviates the tracking drift

problem throughout this sequence. Similarly, the results from

the bolt and girl sequences show that the proposed SPT tracker

is able to recover from tracking drifts.

Fig. 9 shows the results using the bird2 sequence. All other

trackers except for the MIL, ℓ1, HT and the proposed SPT

methods have the tracking drift problem throughout the entire

sequence. In addition, the SPT algorithm performs better than

the MIL and ℓ1 trackers in terms of accuracy. Although the

HT method produces the lowest center location error, the

proposed SPT tracker performs favorably in terms of the count

of successfully tracked frames.

Pose variation and scale change: We evaluate all the trackers

on sequences where objects undergo large pose and scale

changes. First, we compare the performance of trackers in

terms of handling large pose change. The lemming sequence

in Fig. 8 shows that the IVT, MIL and PROST algorithms

perform well as the methods with holistic appearance models

are effective for tracking rigid targets (one component of

the PROST method uses a static template) when there is no

large change in scale and pose (e.g., out-of-plane rotation).

However, their holistic appearance models are not effective in

accounting for appearance change due to large pose change.

On the other hand, our tracker is more robust when the

target object undergoes pose variation due to the use of

mid-level appearance model, and outperforms other trackers

as the proposed discriminative appearance model learns the

difference between the target and background with updates. In

contrast, the VTD, TLD, Struck and HT algorithms, which use

low-level features (i.e., Haar-like features, edge information,

intensity values or gradients of pixels) rather than mid-level

features, do not perform well even though these methods

update the templates or use multiple classifiers (i.e., VTD,

Struck and HT methods).

In the bolt sequence of Fig. 9, the appearance of the athlete

changes significantly due to fast motion and camera view

change. Most trackers fail to locate the athlete throughout

the entire sequence except the VTD and SPT algorithms.

In addition, the SPT method performs better than the VTD

method in terms of the accuracy and successfully tracked

frames. The surfing1 sequence of Fig. 9 shows the results on

where the appearance of the kitesurfer changes significantly

due to fast motion, change of scale and pose, as well as

occlusion. Despite large appearance change, the SPT algorithm

is able to track the target object while the other methods do

not perform well right in the beginning or the middle of the

sequence.

We evaluate the tracking algorithms in terms of handling

scale change. In the singer1 sequence of Fig. 8, the target

object undergoes large scale change due to camera movements.

We note that this video is rather challenging as there also

exists large lighting variation. Without adaptive scale change,

the results of the Frag, MIL and Struck methods are less

accurate although the targets are located within the tracking

windows. The VTD, ℓ1 and SPT methods adapt the tracking

windows well according to the change of the target size,

and perform equally well. In the surfing1 sequence where

the target object undergoes significant scale change, the SPT

tracker outperforms all other evaluated trackers except the

TLD method.

The target vehicle in the racecar sequence undergoes large

scale change due to zooming movements of the camera. In

addition to scale change and occlusions, this sequence is

rather challenging as the aspect ratio of the racecar appears

differently due to object motion and camera movements.

Our SPT tracker is able to keep track of the racecar with

tracking windows adjusted to the appearance change, thereby

generating accurate results (Table I). In contrast, other trackers

do not handle the scale and aspect ratio change well although

they use several trackers or multiple classifiers.
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These experimental results show that the foreground target

object can be better separated from the background with

the proposed discriminative mid-level representation scheme,

thereby enabling the proposed SPT algorithm to achieve high

tracking accuracy.

Shape deformation: The transformer sequence in Fig. 8

shows one example when drastic shape deformation occurs,

tracking algorithms using holistic appearance models or blobs

are unlikely to perform well (e.g., IVT, MIL, Frag and VTD).

Other trackers such as the ℓ1, TLD and Struck methods

also generate inaccurate results and their tracking windows

cover a small portion of the object with a few number of

successfully tracked frames. Designed to handle non-rigid

objects, the HT tracker is able to track the target object in

this sequence. Nevertheless, tracking results are less accurate

(Tables I and II).

The kitesurfer in the surfing1 sequence also undergoes

large deformation as he performs acrobatic movements. As

mentioned above, the SPT method performs well in locating

the kitesurfer in this sequence, which shows the robustness

of the SPT method in dealing with both pose change and

shape deformation at the same time. Our appearance model

utilizes information of both target and background on local

mid-level cues, and distinguishes target parts from background

blocks precisely. As we cluster superpixels with similar HSI

color features rather than modeling the holistic appearance

of objects, the proposed tracker is not sensitive to the shape

changes. When large shape deformation occurs, our tracker

still can find the object as long as there exist a sufficient

amount of superpixels belonging to the foreground cluster for

finding their distinct characteristics. Thus, the proposed SPT

tracker is able to generate the most accurate results.

Occlusion: As shown in Fig. 8, the target in the liquor

sequence undergoes heavy occlusions several times. Since our

superpixel-based discriminative appearance model is able to

alleviate influence from background pixels and exploits both

the target and background appearance, our tracker is able to

detect and handle heavy occlusions accordingly (see Fig. 6 for

more illustration). Although the PROST method may recover

from drifts after occlusion, it does not succeed all the time.

Furthermore, the other trackers fail as they are not able to

handle large appearance change due to heavy occlusion or

recover from drifts.

In the woman sequence of Fig. 8, the woman is partially

occluded by sedans of different colors. Only the Struck and

SPT methods successfully keep track of the woman and

generate more accurate results than the other trackers. In

the girl sequence of Fig. 9, the girl is occluded by another

person for a few frames, which results in short-term full

occlusion. However, the SPT method is able to track this girl

and generates the best results in terms of accuracy and success

rate. Other trackers drift away from the girl or only track the

girl with inaccurate windows.

In the surfing1 and racecar sequences, the short-term full

occlusions also occur. The kitesurfer and the racecar are

occluded by waves and trees, respectively. The SPT method

performs well in handling such full occlusions as it quickly

finds the object again after the occlusion without drifting.

Among all other evaluated algorithms, only the TLD method

locates the surfer in the surfing1 sequence and only the

PF tracker keeps track of the racecar in the entire racecar

sequence. The TLD method re-detects the object in the frame

when the tracking fails and handles the occlusion problem to

some extent. In addition, the success of the PF method in the

racecar sequence can be attributed to the fact that the target

object can be distinguished from the background with adaptive

color-based appearance model and particle filters. However,

this adaptive method does not work well in other sequences

due to the limitation of the generative color-based representa-

tion (which does not exploit background information).

The bird1 sequence of Fig. 9 contains long time full

occlusion where the bird is occluded by the cloud for nearly

60 frames. It is challenging for a tracker to find the bird

again after such a long-term full occlusion, in addition to large

pose change as it swings its wings. Only the proposed SPT

algorithm is able to keep track of the bird. Because of the

adaptive update strategy, the appearance model is not updated

when heavy occlusion occurs and thus alleviates the potential

problem of introducing inaccurate background information

during updates.

Camera motion: The surfing1 sequence of Fig. 9 contains

significant camera shake in several frames as it is acquired by

another person on a boat. The SPT method tracks the kitesurfer

well despite the challenging factors including large pose and

scale change, camera shake, fast motion, as well as occlusion.

C. Segmentation

Since superpixels are commonly used in segmentation,

we demonstrate that the proposed discriminative appearance

model can be used to separate the target object from the back-

ground in a frame. In this section, we present experimental

results to show that video segmentation is also achieved as a

by-product of the proposed tracking method.

Fig. 10 shows the tracking results of foreground and back-

ground segmentation from the liquor sequence where the

original images, the confidence maps of the corresponding

local regions (obtained using the appearance model), the

foreground/background segmentation results and the tracking

results are presented. The segmentation results are generated

by adopting a simple adaptive threshold on the confidence

map.

The segmentation results at frame #278 show that the

target appearance is well modeled by our appearance model

as the bottle is separated from the background. A simple

adaptive threshold on the confidence map (second row) on

the local region of the target object generates segmentation

result (third row). We note that the target is well segmented

from the rectangular region with only few pixels from the

background. In fact, the parts of the target object are salient

in the confidence map, which demonstrate the effectiveness of

the proposed discriminative appearance model.

Frames #768 and #1287 of Fig. 10 show examples where

the target object is partially and fully occluded. The confidence

maps (second row) show that the proposed appearance model
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Fig. 10. Results of foreground/background segmentation and tracking
across frames on sequence liquor. First row: original images. Second row:
confidence maps of corresponding local regions, which is obtained by using
the appearance model. Third row: the segmentation results. Fourth row: the
final tracking results of each frame.

Fig. 11. Results of foreground/background segmentation and tracking
across frames on sequence racecar. First row: original images. Second row:
confidence maps of corresponding local regions, which is obtained by using
the appearance model. Third row: the segmentation results. Fourth row: the
final tracking results of each frame.

gives high confidence to the superpixels belonging to target

object when the object is visible in the scene. On the other

hand, the proposed confidence map gives low confidence

values to superpixels of the same region when heavy occlusion

occurs. In addition, the proposed appearance model is not

updated with the occluding superpixels when occlusion is

detected. The corresponding segmentation results also indicate

that the foreground object is not visible in such cases. Since the

target object is considered heavily occluded, the tracking

window remains at the same position (fourth row) until it

reappears in the scene.

The results at frame #1453 shows one example that our

tracker is robust to pose change of the target object. With

the proposed adaptive method, our tracker updates the the

superpixel clusters and the discriminative appearance model,

thereby dealing with pose change with accurate tracking and

segmentation results when the bottle is rotated numerous

times. Note that the appearance of the target is much different

from that in previous frames (as a result of fast spinning), and

our method is able to track and segment the object well (only

a few superpixels belonging to the target are missing).

Fig. 11 shows another video segmentation results of the

racecar sequence. Although the size of the racecar is small,

especially there are only a number of pixels in frame #445,

our method is able to find representative parts of the car and

segment it from the background for tracking.

V. CONCLUSION

In this paper, we propose a robust tracker based on a

discriminative appearance model and superpixels. We show

that the use of superpixels provides flexible and effective mid-

level cues, which are incorporated in an appearance model

to distinguish the foreground target and the background. The

appearance model is constructed by clustering a number of

superpixels into different clusters. During tracking, we seg-

ment a local region around the target into superpixels and

assign them confidence values to form a confidence map by

computing the distance between a superpixel and the clusters.

The proposed appearance model is used for object tracking to

account for large appearance change due to shape deforma-

tion, occlusion and drifts. Numerous experimental results and

evaluations demonstrate the SPT tracker performs favorably

against existing state-of-the-art algorithms in the literature in

handling various situations, such as large variation of pose and

scale, shape deformation, occlusion and camera shake.

We demonstrated that the SPT method is able to segment the

target objects out during tracking. These segmentation results

can be further improved by refinement processes or labeling

methods with spatio-temporal information. As the most time

consuming part of the proposed algorithm is the mean shift

clustering method, we will explore other efficient and effective

alternatives. As simple HSI color features are used in the

proposed tracking method, better features can be incorporated

to further improve the tracking results.
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