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This letter addresses the robustness problem when learning a large mar-
gin classifier in the presence of label noise. In our study, we achieve
this purpose by proposing robustified large margin support vector ma-
chines. The robustness of the proposed robust support vector classifiers
(RSVC), which is interpreted from a weighted viewpoint in this work,
is due to the use of nonconvex classification losses. Besides the robust-
ness, we also show that the proposed RSCV is simultaneously smooth,
which again benefits from using smooth classification losses. The idea
of proposing RSVC comes from M-estimation in statistics since the pro-
posed robust and smooth classification losses can be taken as one-sided
cost functions in robust statistics. Its Fisher consistency property and
generalization ability are also investigated. Besides the robustness and
smoothness, another nice property of RSVC lies in the fact that its so-
lution can be obtained by solving weighted squared hinge loss–based
support vector machine problems iteratively. We further show that in
each iteration, it is a quadratic programming problem in its dual space
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and can be solved by using state-of-the-art methods. We thus propose an
iteratively reweighted type algorithm and provide a constructive proof
of its convergence to a stationary point. Effectiveness of the proposed
classifiers is verified on both artificial and real data sets.

1 Introduction and Motivation

Over the past two decades, support vector machines for classification (SVC)
have become prevalent tools in analyzing categorical data owing to their
significant empirical successes in applications and also being amenable to
theoretical analysis. The development of SVC has also fostered the devel-
opment of statistical learning theory.

The key to SVC is to find a hyperplane (classifier) by introducing hard
margins for separable data and soft margins for linearly nonseparable data,
the purpose of which is to separate data as far as possible from the hy-
perplane. To deal with the nonlinear case, one applies the kernel trick in
SVC and seeks the hyperplane in the feature space. The hyperplane learned
from SVC that is based on the hinge loss also depends on the instances
that are misclassified. However, in real-world applications, it may be the
case that the real data set contains outliers. Here “outliers” refers to the in-
stances that are far away “from the pattern set by the majority of the data”
(Hampel, Ronchetti, Rousseeuw, & Stahel, 2011) and are “often very hard
to identify in high-dimensional data sets due to the curse of dimensional-
ity” (Steinwart & Christmann, 2008). Therefore, the fact that misclassified
instances contribute to the hyperplane together with the contaminated data
makes the learned classifier unreliable. To illustrate this, we carry out a toy
example with the artificial Two Moons data set.

In the left panel of Figure 1, the two-dimensional data set and a classifier
trained by support vector machine with the squared hinge loss (L2-SVM)
are plotted, where the data set is not contaminated. It can be seen from
Figure 1 that in this case, an ideal classifier can be obtained to separate the
two classes perfectly. To show the influence of outliers, we then flip 10% of
its labels. The contaminated data set and the obtained classifier by using the
same method are plotted in the right panel of Figure 1. We can see that in
this case, the obtained classifier has many wiggles, and obviously outliers
have a significant influence on the resulting classifier.

1.1 Robustification of Support Vector Machine for Classification.
Outliers in the context of supervised learning have two implications. The
first is data points with extreme explanatory variables—the so-called lever-
age points. The second implication of outliers is data points with extreme
response variables, which are also of interest in this study. Outliers added
in the right panel of Figure 1 belong to the second case. From Figure 1,
we see that outliers can ruin the resulting classifier. In light of this, various
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Figure 1: (Left) Plots of the Two Moons data set and the classifier trained
by L2-SVM. The data set is not contaminated by outliers. (Right) Plots of the
contaminated Two Moons data set and the classifier trained by L2-SVM with
a gaussian kernel. The regularization parameter and the kernel bandwidth are
tuned on a tuning set. The data set is contaminated by outliers, with 10% of its
labels being flipped.

robust classification methods have been proposed to mitigate their effect.
Roughly, there are three main approaches to dealing with outliers in clas-
sification problems: the data cleaning approach, the robust algorithm ap-
proach, and the robust model approach (Frénay & Verleysen, 2014).

In our study, we are mainly interested in the robust model approach to
classification problems. One of the main strategies of introducing robustness
to a classification model is applying a robust classification loss. A variety of
studies in this line can be found in the literature. Here, we mention only sev-
eral of them. For example, Shen, Tseng, Zhang, and Wong (2003) proposed a
family of truncated nonconvex loss functions and applied them to the binary
classification problem. By decomposing a nonconvex loss into the difference
of two convex loss functions, Krause and Singer (2004) also addressed the
robust classification problem. Wu and Liu (2007), Collobert, Sinz, Weston,
and Bottou (2006), and Huang, Shi, and Suykens (2014) studied support
vector machines on the basis of the truncated hinge loss and showed that
the truncation operation could bring robustness and also sparser classifiers.
Masnadi-Shirazi and Vasconcelos (2009) discussed the design of loss func-
tions in classification problems and introduced a new robust classification
loss. Park and Liu (2011) suggested using a truncated logistic loss to obtain
robust probabilistic classifiers. Some special loss criteria were considered
in Takeda, Fujiwara, and Kanamori (2014) and Kanamori, Fujiwara, and
Takeda (2014) to produce robust classifiers. We notice that most of these
methods are nonconvex. This is because researchers have realized that the
enhanced robustness of learning machines that are based on nonconvex
loss functions can be obtained from a breakdown viewpoint in the context
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of regression (Kanamori et al., 2014) as well as classification (Shen et al.,
2003; Reid & Williamson, 2010; Long & Servedio, 2010). Moreover, it has
been also shown that nonconvexity approaches can provide scalability ad-
vantages over convexity (Collobert et al., 2006) in support vector machines
for classification.

1.2 Smooth Support Vector Machines for Classification. Besides the
robustness of support vector machines for classification, another important
property in practice that one usually expects is its smoothness. It is obvious
that due to using the nonsmooth hinge loss, SVC is not smooth. Therefore,
more frequently, it is trained from its dual. Chapelle (2007) proposed train-
ing SVC in the primal by smoothing the nonsmooth hinge loss. In fact, in
the literature of learning for classification, various smoothing techniques
have been applied to SVC. For instance, Lee and Mangasarian (2001) pro-
posed smooth SVM by replacing the hinge loss with a smooth enough loss.
Wang, Zhu, and Zou (2007) studied a support vector classification problem
by using a smooth variant of the hinge loss.

We also notice that a truncation operation applied to the loss function
can deliver robustness to the model in classification problems. However,
this operation also results in nondifferentiable loss functions, such as trun-
cated hinge loss and truncated logistic loss. To the best of our knowledge,
support vector machines for classification that are simultaneously robust
and smooth have not been frequently employed. This is in fact our main
reason for conducting this study.

1.3 Our Approach and Contributions. In this letter, we aim to de-
sign a large margin support vector classifier that is simultaneously ro-
bust and smooth. Our approach and contributions can be summarized as
follows:

• We introduce a family of robust and smooth classification loss func-
tions. Based on these classification loss functions, we then propose
robust support vector machines for classification (RSVC) in repro-
ducing kernel Hilbert space (RKHS).

• We show that RSVC has some connections with the weighted L2-
SVM. Moreover, we show that solving RSVC can be done by solving
an iteratively reweighted L2-SVM. The weighted L2-SVM can be ef-
ficiently solved in the dual via quadratic programming and also can
be solved in the primal easily due to its smoothness.

• We interpret the robustness of RSVC from a weighted viewpoint and
also study its Fisher consistency property and generalization ability.

• We provide an iteratively reweighted algorithm to solve RSVC and
also prove its convergence. To our knowledge, we are the first to
provide results that study the convergence of iteratively reweighted
algorithms with noneven loss functions.
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Figure 2: (Left) Plots of the Two Moons data set and a classifier trained by
L2-SVM. The data set is not contaminated by outliers. (Right) Plots of the con-
taminated Two Moons data set and two classifiers. The data set is contaminated
by outliers with 10% of its labels being flipped. The dashed blue curve is the
classifier trained from L2-SVM. The dotted red curve stands for the classifier
obtained from the proposed approach—RSVC.

To give a brief preview of the effectiveness of our approach, we again
perform an artificial simulation on the contaminated Two Moons data set.
The classifier obtained from RSVC is plotted in the right panel of Figure 2
with the dotted red curve. The dashed blue curve in the right panel is again
obtained from L2-SVM, which is plotted for comparison. The left panel of
Figure 2 is the same as that in Figure 1 and is plotted for comparison. It is
easy to see from Figure 2 that the proposed robust classifier can be resistant
to outliers and performs as well as the one in the left panel of Figure 2.

This paper is organized as follows. In section 2, we revisit classifica-
tion losses and their robust or smooth variants. We then propose a family
of robust and smooth classification losses that we use to formulate RSVC
and study its connection with L2-SVM. Section 3 studies the properties of
RSVC including its Fisher consistency, generalization ability, and robust-
ness. Algorithms and related convergence analysis are given in section 4. In
section 5, we illustrate the iteratively reweighted procedure of RSVC step
by step with a toy example and then validate RSVC with UCI benchmark
data sets. We conclude in section 6.

2 Proposed Robust Support Vector Machine for Classification

In this section, we present formulations of the proposed robust support
vector classifiers. As noted, the robustness comes from the nonconvex
and smooth classification loss functions. To better illustrate our method,
we first revisit frequently employed classification loss functions and their
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Figure 3: (Left) Plots of the hinge loss (dotted curve) and the truncated hinge
loss (dotted-dashed curve). (Right) Plots of the logistic loss (dotted curve) and
the truncated logistic loss (dotted-dashed curve).

robust or smooth variants. We then introduce a family of robust and smooth
classification losses that we use to formulate the proposed robust classifiers.

2.1 Loss Functions for Classification and Their Robust or Smooth
Variants. In regression problems, loss functions are used to measure the
goodness of fit. As a binary-valued regression problem, probably the most
intuitive loss function for classification is the misclassification loss. Mathe-
matically, let X ⊂ R

d be the input space, Y = {−1,+1} be the output space,
and f : X → Y be a binary-valued classifier. For any (x, y) ∈ X × Y , the
misclassification loss φ0 is defined as

φ0(y, f (x)) =
{

0, if y f (x) ≥ 0,

1, if y f (x) < 0.

This misclassification loss φ0 is nonconvex and not continuous. In the statis-
tical machine learning literature, various classification loss functions have
been proposed to serve as continuous and convex surrogates of the misclas-
sification loss. Here we mention two typical classes of such surrogate clas-
sification losses. The first class is loss functions for producing probabilistic
classifiers—for example, the logistic loss. The second class is margin-based
classification loss functions, typical examples of which include hinge loss,
Huberized hinge loss (Chapelle, 2007; Wang et al., 2007), squared hinge
loss, and least squares loss.

A direct approach that delivers robustness to the model is applying the
truncation operation to the classification losses. For instance, in the machine
learning literature, the truncated hinge loss (Wu & Liu, 2007; Huang et al.,
2014) and the truncated logistic loss (Park & Liu, 2011) have been proposed
and drawn much attention (Wu & Liu, 2007; Brooks, 2011; Huang et al.,
2014). The two truncated loss functions are plotted in Figure 3.
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In Figure 3, the truncation operation leads to nonsmooth loss functions.
However, some effort has been made to smoothen the hinge loss. A typical
smoothened hinge loss is called Huberized hinge loss (Chapelle, 2007; Wang
et al., 2007), which again is not robust to outliers due to its convexity and so
penalizes the wrong misclassified instances at least linearly. As mentioned
in section 1, support vector machines that are based on simultaneously
robust and smooth classification losses have not been well developed. We
therefore proceed by introducing a family of robust and smooth margin-
based classification losses.

2.2 A Family of Nonconvex and Smooth Classification Losses. We
first recall the following definition on margin-based classification loss from
Steinwart and Christmann (2008):

Definition 1. A loss function φ : Y × R → R
+ is said to be a margin-based

classification loss if there exists a representing function ϕ : R → R
+ such that

φ(y, t) = ϕ(yt), y ∈ Y, t ∈ R, ϕ′(0) exists and ϕ′(0) < 0.

For any t ∈ R, let us denote t+ := max{t, 0}. In this letter, we are inter-
ested in margin-based classification loss functions that satisfy the following
assumptions:

Assumption 1. Suppose that φ is a margin-based classification loss that
satisfies the following conditions:

1. There exists a representing function ϕ : R
+ → R

+ such that φ(y, t) :=
ϕ((1 − yt)+) and ϕ(0) = 0.

2. ϕ is nondecreasing and continuously differentiable.
3. lims→+∞ ϕ′(s) = 0.
4. ψ(0) := lims→0+ ψ(s) exists and is finite, where ψ(s) := ϕ′(s)/s.

In definition 1, the first condition implies that the classification loss does
not penalize instances that are correctly classified. Conditions 2 and 3 en-
sure that the penalization on the misclassified instances grows sufficiently
slowly. As will be shown later, condition 4 is set to ensure that a certain
relation between RSVC and L2-SVM holds. It should be noted that loss
functions that satisfy the above assumption are nonconvex. Two typical
classification losses that satisfy assumption 1 are as follows:

Example 1. A first example of the robust and smooth classification loss ℓσ

that satisfies assumption 1 is

ℓσ (y, t) = σ 2(1 − exp(−(1 − yt)2
+/σ 2)), y ∈ Y, t ∈ R,

where σ > 0 is a scale parameter.
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Figure 4: (Left) Plots of the loss function φ
σ
(y, t) in example 2 with respect

to yt for different σ values: σ = 0.4 (dashed curve), σ = 0.6 (dotted-dashed
curve), and σ = 0.8 (dotted curve). (Right) Plots of the loss function ℓ

σ
(y, t)

in example 1 with respect to yt for different σ values: σ = 0.4 (dashed curve),
σ = 0.6 (dotted-dashed curve), and σ = 0.8 (dotted curve).

Example 2. A second example of the robust and smooth classification loss
φσ that satisfies assumption 1 is

φσ (y, t) = σ 2 log(1 + (1 − yt)2
+/σ 2), y ∈ Y, t ∈ R,

where σ > 0 is a scale parameter.

In the above two loss functions, the positive scale parameter σ controls
the influence of the residual 1 − yt for any y ∈ Y and t ∈ R. Plots of the
above two classification loss functions with different σ values are provided
in Figure 4. It is easy to see from that figure that the larger σ is, the more
the ℓσ loss penalizes the residual 1 − yt. Moreover, the Taylor expansion of
ℓσ with respect to yt shows that when σ is sufficiently large, there holds

ℓσ (y, t) ≈ (1 − yt)2
+, y ∈ Y, t ∈ R.

Therefore, when σ goes to infinity, the ℓσ loss tends to the squared hinge
loss, which is frequently employed for pursuing margin-based classifiers.
Similar observations can be made for the classification loss φσ .

2.3 Formulations of the Proposed Robust Support Vector Classifiers.
We now formulate the proposed robust support vector classifiers. We start
with assuming that z = {(xi, yi)}m

i=1 is a set of independent and identically
distributed realizations of (X,Y) that takes values in X × Y with X ⊂ R

d

and Y = {−1,+1}. Let φ be a margin-based classification loss that satisfies
assumption 1.
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We first consider the linear classifier f with f (x) = θ⊤x + b, x ∈ X , θ ∈ R
d

and b ∈ R. Based on the above assumptions and notations, the proposed
robust support vector classifier can be obtained by solving the following
minimization problem,

(θz, bz) = argmin
θ∈Rd,b∈R

1

m

m
∑

i=1

φ(yi, θ
⊤xi + b) + λ‖θ‖2

2, (2.1)

where λ > 0 is a regularization parameter.
The nonlinear classifier is obtained through the kernel mapping. To this

end, let us assume that K : X × X → R is a Mercer kernel and HK is a
reproducing kernel Hilbert space induced by K, which is the closure of
the linear span of the set of functions {Kx := K(x, ·) : x ∈ X } with the inner
product 〈·, ·〉H

K

= 〈·, ·〉K satisfying 〈Kx,Ky〉. Denote HK = HK + R. Then

the proposed kernel-based robust support vector machine for classification
can be formulated as

fz = argmin
f∈H

K

1

m

m
∑

i=1

φ(yi, f (xi)) + λ‖ f‖2
K. (2.2)

Noticing that the minimization problem, equation 2.2, works in an RKHS,
and the penalty term is strictly monotonically increasing with respect to
‖ f‖K, one can then apply the representer theorem (Schölkopf, Herbrich, &
Smola, 2001) to the optimization problem, equation 2.2. Consequently, the
optimization problem, equation 2.2, can be reduced to a finite-dimensional
optimization problem, and the solution fz takes the form

fz(x) =
m

∑

i=1

αz,iK(xi, x) + bz, αz,i ∈ R, bz ∈ R, ∀ x ∈ X ,

where αz = (αz,1, . . . , αz,m)⊤. In what follows, without specification, our
discussions will be concentrated on the kernel-based machine (see equation
2.2), which also apply to its linear counterpart, equation 2.1.

2.4 Connection with L2-SVM. We now show that there is an interesting
relation between RSVC and L2-SVM.

Proposition 1. Let the loss function φ in equation 2.2 be a margin-based clas-
sification loss with the representing function ϕ and satisfy assumption 1. Then
any stationary point of the minimization problem, equation 2.2, can be obtained by
solving an iteratively reweighted L2-SVM.
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Proof. From the discussion in section 2.3, we know that one can apply the
representer theorem to the optimization problem, equation 2.2. As a result,
solving the minimization problem, equation 2.2, can be reduced to solving
the following finite-dimensional minimization problem,

min
α∈Rm,b∈R

1

m

m
∑

i=1

φ(yi, K
⊤
i α + b) + λα⊤

Kα.

Since ϕ is the representing function of φ, we know from assumption 1 that
the previous formula can be rewritten as

min
α∈Rm,b∈R

1

m

m
∑

i=1

ϕ((1 − yiK
⊤
i α − yib)+) + λα⊤

Kα,

where for i = 1, . . . , m, Ki = (K(x1, xi), . . . ,K(xm, xi))
⊤, and K = (K1, . . . ,

Km)⊤.
Note that the minimization problem is nonconvex because of the non-

convexity of ϕ. Therefore, in general, only a stationary point of the above
minimization problem can be expected. Let (α⋆, b⋆) be one of its stationary
points and further denote

R(α, b) := 1

m

m
∑

i=1

ϕ((1 − yiK
⊤
i α − yib)+) + λα⊤

Kα.

Obviously the following two equations hold

∇αR(α⋆, b⋆) = 0,

∇bR(α⋆, b⋆) = 0.

After simple computations, we obtain the following equation system,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

m

m
∑

i=1

ωi(1 − yiK
⊤
i α⋆ − yib

⋆)+yiKi − λKα⋆ = 0,

m
∑

i=1

ωi(yi − K
⊤
i α⋆ − b⋆) = 0,

(2.3)

where for i = 1, . . . , m, the weight ωi is given by

ωi = 1

2
ψ((1 − yiK

⊤
i α⋆ − yib

⋆)+).
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For i = 1, . . . , m, let us denote ωk
i as the weight at the kth iteration with

ωk
i = 1

2
ψ((1 − yiK

⊤
i αk − yib

k)+).

As will be proved in theorem 2 (see section 4.3), the solution to the equation
system 2.3 can be obtained by solving the following iteratively reweighted
L2-SVM problem,

min
α∈Rm,b∈R

1

m

m
∑

i=1

ωk
i (yi − K

⊤
i α − b)2

+ + λα⊤
Kα,

where ωk
i is as above and updated in each iteration. The proof of proposition

1 is completed.

As a result of proposition 1, we see that solving the minimization problem
in RSVC can be carried out by solving an iteratively reweighted L2-SVM
problem. As we will show, this observation can be useful since it directly
brings us a computational algorithm for solving RSVC. In what follows, we
restrict our discussions to the loss ℓσ in example 1 for convenience. However,
most of our observations also apply to other margin-based classification
losses that satisfy assumption 1 (e.g., the φσ loss in example 2). It should be
mentioned that in the literature, the iteratively reweighted technique has
been applied in classification problems. For instance, by assigning instance-
wise weights in each iteration, the influence of outliers can be weakened,
as done in Suykens, De Brabanter, Lukas, and Vandewalle (2002). Similar
techniques have been also employed in Wu and Liu (2013).

3 Properties of the Proposed Classifier

In this section, we investigate the properties of RSVC that include the Fisher
consistent property, generalization ability, and robustness property.

Note that in RSVC, we use a generic classification loss φ as a surrogate of
the misclassification φ0. A classification loss φ is said to be Fisher consistent
(Lin, 2004; Zhang, 2004; Bartlett, Jordan, & McAuliffe, 2006; Steinwart, 2005)
(also termed as classification calibrated) if the classifier obtained by using
the surrogate loss φ preserves the sign of the Bayes rule (Lin, 2002). The
generalization ability of a classifier refers to the ability that it can generalize
on future observations, a key property when assessing a learning machine.
By applying statistical learning arguments, we show that RSVC is Fisher
consistent and its generalization bounds can be established. An important
motivation of investigating RSVC lies in its robustness. In this section, we
show that RSVC has some connections with M-estimation in statistics, and
we then interpret its robustness from a weighted viewpoint.
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3.1 Fisher Consistency and Generalization Ability. To study the Fisher
consistency and the generalization ability of RSVC, we need to introduce
several notations. We assume that z is drawn from an unknown probability
distribution ρ on X × Y . Let f : X → R be any measurable function and
sgn( f (x)) as the function that takes the value of 1 if f (x) ≥ 0 and −1 oth-
erwise, for any x ∈ X . When f is taken as a classifier, the misclassification
error is given by

R(sgn( f )) = Eφ0(Y, sgn( f (X))),

where the expectation is taken over the joint distribution ρ. Denoting M

as the function set of measurable functions from X to R, the function that
minimizes the misclassification error is Bayes’ rule, which is denoted as

fc = argmin
f∈M

R(sgn( f )).

Therefore, Bayes’ rule is essentially the optimal classifier when the under-
lying distribution is known. When the surrogate loss function ℓσ is used,
the optimal classifier f σ

ρ over the function class M is given by

f σ
ρ = argmin

f∈M

∫

X×Y

ℓσ (y, f (x))dρ.

When the classifier f σ
ρ preserves the sign of fc, we say that the classification

loss ℓσ is Fisher consistent. In fact, recall that ℓσ is a margin-based classifi-
cation loss and satisfies that ℓσ (y, t) = ϕ(yt) for all y ∈ Y, t ∈ R, and ϕ′(0)

exists with ϕ′(0) < 0. Following conclusions drawn in Lin (2004), we know
that ℓσ is Fisher consistent.

We now move on to investigate the generalization ability of RSVC. Quan-
titatively, let us denote Ez( fz) and E( fz) as the empirical risk and expected
risk, respectively, that are defined as

Ez( fz) = 1

m

m
∑

i=1

ℓσ (yi, fz(xi)), and E( fz) =
∫

X×Y

ℓσ (y, fz(x))dρ.

Then the generalization ability of RSCV can be cast as the convergence of
Ez( fz) to E( fz) with fz produced by equation 2.2 when the sample size m
tends to infinity. Following a learning theory analysis, we obtain:

Theorem 1. Let ℓσ be a margin-based classification loss given in example 1. Let
fz be produced by RSVC, equation 2.2, that is associated with ℓσ . Then for any
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0 < δ < 1, with confidence 1 − δ, there holds

E( f
z
) − E

z
( f

z
) ≤ 4σ√

mλ
+

√

8 ln(1/δ)

m
.

Theorem 1 can be proved by applying results in Mendelson (2003) and
Bartlett and Mendelson (2003); we leave the proof to the appendix. Im-
proved convergence rates may be derived by employing advanced learn-
ing theory techniques, such as data-dependent complexity measurements
(Cucker & Zhou, 2007; Steinwart & Christmann, 2008).

The generalization bound established in theorem 1 indicates the learn-
ability of RSVC when the parameters λ and σ are properly chosen. It should
be noted that the generalization bound established in theorem 1 shows that
it is dependent with the scale parameter σ . In fact, a refined analysis shows
that the larger σ is, the sharper the generalization bound in theorem 1 will
be. On the other hand, as we show in section 2.2, ℓσ approaches the squared
hinge loss when σ is large enough. Therefore, the larger σ is, the less robust-
ness RSVC possesses. Extended discussions concerning this are detailed in
the following section.

3.2 Relating RSVC to M-Estimation. In the robust statistics liter-
ature, M-estimation refers to generalized maximum likelihood estima-
tion, a general robust estimation method coined in Huber (1964). The
M-estimator is usually defined to be a solution to a certain equation system
obtained from the derivative of the likelihood objective function (Huber,
1964). Moreover, pursuing an M-estimator can be cast as finding a critical
point of some objective functions.

More explicitly, an M-estimator of the parameter θ is the solution to the
following minimization problem,

min
θ

m
∑

i=1

L(ei | θ ),

where ei is residual and L(·) is a loss function that is nonnegative, symmet-
ric, and nondecreasing. Frequently employed cost functions include least
square loss and Huber’s loss.

In this letter, the idea of investigating margin-based classification losses
that satisfy assumption 1 comes from classical M-estimation. It is easy to
see that the loss functions that satisfy assumption 1 can be taken as one-
sided cost functions in M-estimation. Specifically, conditions 2 and 3 in
assumption 1 ensure that penalization on the misclassified instances grows
sufficiently slowly, akin to the redescending property of cost functions in
redescending M-estimation in robust statistics (Andrews & Hampel, 2015).
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To illustrate this, we consider the two loss functions ℓσ and φσ given in
examples 1 and 2, respectively. In fact, the loss function ℓσ in example 1, a
variant of which has been also investigated empirically in Singh, Pokharel,
and Principe (2014), can be taken as a one-sided ℓ̃σ loss where

ℓ̃σ (y, t) = σ 2(1 − exp(−(y − t)2/σ 2)), y ∈ Y, t ∈ R.

It is easy to see that the empirical risk minimization scheme based on
the above ℓ̃σ is an M-estimation. Some information-theoretic interpretation
related to the loss function ℓ̃σ can be found in Liu, Pokharel, and Principe
(2007) and a learning theory analysis toward this loss is given in Feng,
Huang, Shi, Yang, and Suykens (2015) recently. Regarding the φσ loss in
example 2, it can be seen as a one-sided Cauchy loss φ̃σ given by

φ̃σ (y, t) = σ 2 log(1 + (1 − yt)2/σ 2), y ∈ Y, t ∈ R.

The φ̃σ has been also applied to the compressed sensing (Suykens, Sig-
noretto, & Argyriou, 2014) and tensor completion (Yang, Feng, & Suykens,
in press) to enhance the robustness in estimation.

Besides the robustness property, another merit of M-estimation is that
in most cases, an iteratively reweighted least squares algorithm can be
performed to produce an M-estimator. As we show below, the proposed
RSVC also inherits this property. Therefore, based on the above discussion,
we see that RSVC can, in a sense, be taken as a one-sided M-estimation that
is tailored for classification.

3.3 Robustness of RSVC from a Weighted Viewpoint. In section 3.2,
we showed that RSVC has some connections with M-estimation in statistics
and so may enjoy the robustness property. From the literature, we know
that the robustness of a learning scheme can be quantitatively measured
by using various robustness notions, such as influence function (Hampel,
1971), breakdown point (Donoho & Huber, 1983), and sensitivity curve
(Hampel et al., 2011).

Note that RSVC is a kernel-based learning scheme, and solving RSVC
amounts to finding a function in the reproducing kernel Hilbert space HK.
Within the kernel-based learning setup, the robustness property of learn-
ing machines has been investigated in Christmann and Steinwart (2004),
Steinwart and Christmann (2008), Christmann, Van Messem, and Steinwart
(2009), De Brabanter et al. (2009), and Debruyne, Christmann, Hubert, and
Suykens (2010) for cases with convex loss functions. For instance, Christ-
mann and Steinwart (2004) studied the robustness of kernel-based classi-
fication problem with a hinge loss. By introducing tools from functional
analysis, they showed the robustness of learned classifier by proving the
existence and boundedness of its influence function. Note, however, that
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RSVC is nonconvex due to the use of a nonconvex loss function φ. In this
case, there may be more than one local optimum of RSVC, and hence a
quantitative robustness characterization is not easy to be obtained.

Instead of using quantitative robustness notions, we will show that RSVC
also enjoys the robustness property from a weighted viewpoint by following
steps in the proof of proposition 1. To this end, let us assume that the loss

function in RSVC is the ℓσ loss given in example 1 and (α̂, b̂) is one of its
stationary points. From the proof of proposition 1, we know that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

m

m
∑

i=1

Ki exp

(

−
(yi − K

⊤
i α̂ − b̂)2

+
σ 2

)

(yi − K
⊤
i α̂ − b̂)+ + λKα̂ = 0,

m
∑

i=1

(yi − K
i

⊤α̂ − b̂)+ = 0.

(3.1)

Here, again the solution to equation system 3.1 can be obtained by solving
the following iteratively reweighted L2-SVM problem,

min
α∈Rm,b∈R

1

m

m
∑

i=1

exp(−(yi −K
⊤
i αk −bk)2

+/σ 2)(yi −K
⊤
i α − b)2

+ + λα⊤
Kα,

where (αk, bk) denotes the solution in the kth iteration and the quantity

exp(−(yi − K
⊤
i αk − bk)2

+/σ 2), for i = 1, . . . , m,

stands for the weight that is updated in each iteration.
To see the robustness of RSVC, again we denote ωi = exp(−(yi − K

⊤
i α̂ −

b̂)2
+/σ 2) for i = 1, . . . , m and f̂z(xi) = K

⊤
i α̂ + b̂ as the obtained classifier from

RSVC. Let us now consider misclassified instances: {xi : yi f̂z(xi) < 0}. The

magnitude | f̂z(xi)| can be interpreted as the extent that the learned label

of xi deviates from its input label yi. The larger | f̂z(xi)| is, the more likely
that the observed instance pair (xi, yi) tends to be an outlier. However, from

equation 3.1, we see that the value of ωi decreases with an increase of | f̂z(xi)|
for misclassified instance xi. That is, ℓσ can downweight the influence of
instances that are far away from their labels. This explains the robustness
of RSVC from a weighted viewpoint.

4 Computational Algorithm and Convergence Analysis

In this section, we are concerned with the computational aspects of RSVC.
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Equation

4.1 An Iteratively Reweighted Algorithm. From previous sections, we
know that to solve RSVC, one can solve an iteratively reweighted L2-SVM.
Therefore, the algorithm we propose is an iteratively reweighted one given
in algorithm 1.

The convergence analysis of algorithm 1 will be provided in section 4.3.
The nice aspect of the reduction from RSVC to an iteratively reweighted
L2-SVM lies in the fact that in each iteration, the weighted L2-SVM
subproblem is convex and can be efficiently implemented. Moreover, as
shown in section 4.2, the dual of weighted L2-SVM is a quadratic pro-
gramming and can be solved optimally with various off-the-shelf soft-
ware packages, including Matlab quadprog and CVX (Grant & Boyd,
2014, 2008), as well as SMO-type algorithms (Platt, 1999). It should be
also remarked that the proposed algorithm 1 is a direct benefit of the
relation between RSVC and L2-SVM, as indicated in proposition 1. As
an iteratively reweighted algorithm, it can be employed to interpret the
robustness of RSVC as it downweights the influence of outliers in each
iteration.

In algorithm 1, it is reduced to a quadratic programming in each iteration.
However, thanks to the smoothness of RSVC, one may apply other first-
order optimization algorithms to solve this problem in the primal as well
as in the dual. It should be noted that algorithm 1 is proposed to solve the
kernel-based RSVC, equation 2.2. In fact, when a linear RSVC, equation
2.1, is of interest, one may also solve RSVC easily in the primal by using
many conventional algorithms (e.g., gradient descent), benefiting from its
smoothness. In this case, one may consider the feature size and instance
size of the observations to decide whether RSVC should be solved in the
primal or the dual. However, this is not always the case when the primal
problem is nonsmooth.
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4.2 Dual Formulation of Weighted L2-SVM. Weighted L2-SVM is solv-
able via quadratic programming. Therefore, to illustrate this point, we de-
rive the dual formula of the weighted L2-SVM in this section.

Let µ = (μ1, . . . , μm)⊤ be a fixed weight vector. The primal of weighted
L2-SVM can be expressed as

min
w,b,ξ

JP(w, ξ) = 1

2
w

⊤
w + C

2

m
∑

k=1

μkξ
2
k

such that yk(w
⊤φ(xk) + b) ≥ 1 − ξk, k = 1, . . . , m, (4.1)

whereC := 1
mλ

, φ(x) denotes the implicit feature map of x via a Mercer kernel
K with K(x, x′) = 〈φ(x),φ(x′)〉, for x, x′ ∈ X and the classifier is assumed to
take the form y(x) = sgn(w⊤φ(x) + b) in the primal space.

Proposition 2. Let the primal formulation of weighted L2-SVM be given in
equation 4.1. The dual formulation of weighted L2-SVM can be written as

max
α

m
∑

k=1

αk − 1

2

m
∑

k,l=1

αkαl yk yl

(

K(xk, xl ) +
δkl

Cμk

)

subject to
m

∑

k=1

αk yk = 0, αk ≥ 0, k = 1, . . . , m, (4.2)

where δkl is the Kronecker’s delta function, which takes the value 1 for k = l and
the value 0 otherwise. Moreover, the offset b can be determined by

yk

(

m
∑

l=1

αl yl

(

K(xk, xl ) +
δkl

Cμk

)

+ b

)

− 1 = 0, when αk > 0,

for k = 1, . . . , m.

Proof. Recalling the primal formula of weighted L2-SVM in equation 4.1
and introducing Lagrange multipliers αk ≥ 0, νk ≥ 0 for k = 1, . . . , m, the
Lagrangian of equation 4.1 takes the following form:

L(w, b, ξ;α, ν) = JP(w, ξ) −
m

∑

k=1

αk(yk(w
⊤φ(xk) + b) − 1 + ξk). (4.3)

The solution of weighted L2-SVM is

max
α,ν

min
w,b,ξ

L(w, b, ξ;α, ν).
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The KKT conditions yield

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂L

∂w

= 0 ⇒ w =
m

∑

l=1

αlylφ(xl ),

∂L

∂ξk

= 0 ⇒ Cμkξk − αk = 0,

∂L

∂b
= 0 ⇒

m
∑

l=1

αlyl = 0,

αk(yk(w
⊤φ(xk) + b) − 1 + ξk) = 0, k = 1, . . . , m,

yk(w
⊤φ(xk) + b) − 1 + ξk ≥ 0, k = 1, . . . , m,

αk ≥ 0, k = 1, . . . , m.

Substituting them into formula 4.3, we obtain the following dual form of
weighted L2-SVM:

max
α,ν

m
∑

k=1

αk − 1

2

m
∑

k,l=1

αkαlykylK(xk, xl ) − 1

2C

m
∑

k=1

α2
k

μk

,

such that
m

∑

k=1

αkyk = 0, αk ≥ 0, k = 1, . . . , m.

Introducing Kronecker’s delta function, we obtain the desired dual formula,
equation 4.2, for weighted L2-SVM. Concerning the offset b, from KKT
conditions we know that

yk(w
⊤φ(xk) + b) − 1 + ξk = 0, when αk > 0, for k = 1, . . . , m.

Therefore, the offset b can be computed by using the above equation for any
training data point with αk > 0. This completes the proof of proposition 2.

4.3 Convergence Analysis. In this section, we provide the convergence
analysis of algorithm 1, which is motivated by the idea in half-quadratic
minimization methods (Geman & Yang, 1995; Nikolova & Ng, 2005). How-
ever, we note that the analysis concerning the convergence of the half-
quadratic minimization methods cannot be tailored to our case due to the
noneven property of the loss function ℓσ . We therefore introduce the fol-
lowing auxiliary lemma:

Lemma 1. Let h(t) = σ 2(1 − exp(−(1 − t)2
+)/σ 2). Then h can be expressed as
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h(t) = inf
ω∈R

+

ω(1 − t)2
+ + σ 2̺(ω), (4.4)

where

̺(ω) =

⎧

⎪

⎨

⎪

⎩

1, ω = 0,

1 − ω + ω log ω, 0 < ω ≤ 1,

0, ω > 1.

(4.5)

Moreover, if we denote

ω⋆ = argmin
ω∈R

+

ω(1 − t)2
+ + σ 2̺(ω),

we then have

ω⋆ = exp(−(1 − t)2
+)/σ 2.

Proof. We note first that the continuous function ̺ is convex. To see this,
we compute the first derivative of ̺:

̺′(ω) =
{

ln ω, 0 < ω ≤ 1,

0, ω > 1.

The nondecreasing property of ̺′ on the interval (0,+∞) reveals the con-
vexity of ̺.

To verify equation 4.4, we first consider the case when t ∈ (−∞, 1) when
we have h(t) = σ 2(1 − exp(−(1 − t)2/σ 2)). The minimum of the right-hand
side of equation 4.4 must occur either at a stationary point ω0 of g(ω) with

g(ω) = ω(1 − t)2 + σ 2̺(ω),

or at ω = 0. With simple computations, we see that

g′(ω) =
{

(1 − t)2 + σ 2 ln ω, 0 < ω ≤ 1,

(1 − t)2, ω > 1.

As a result, g′(ω0) = 0 if and only if ln ω0 = −(1 − t)2/σ 2, for any t < 1.
As a result, we obtain

ω0 = exp(−(1 − t)2/σ 2), for any t < 1.
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Moreover, from the definition of g, we know that

g(ω0) = σ 2(1 − exp(−(1 − t)2)/σ 2) and g(0) = σ 2.

Consequently, when t ∈ (−∞, 1), there holds

inf
ω∈R+

g(ω) = σ 2(1 − exp(−(1 − t)2)/σ 2),

and the minimum is achieved at ω = ω0.
Now let us discuss the case when t ∈ [1,+∞). From the definition of φ,

we know that h(t) = 0. In fact, it is easy to see that infω≥0 g(ω) = 0 at ω = 1,
and consequently we have verified equation 4.4 for t ∈ [1,+∞).

From the above discussions, we see that

ω⋆ = exp(−(1 − t)2
+)/σ 2.

Recall that the representer theorem ensures that the minimization prob-
lem, equation 2.2, can be reduced to the following finite-dimensional mini-
mization problem:

min
α∈Rm,b∈R

1

m

m
∑

i=1

σ 2(1 − exp(−(yi − K
⊤
i α − b)2

+/σ 2)) + λα⊤
Kα.

From lemma 1, we know that the above minimization problem can be
further rewritten as

min
ω∈Rm

+,α∈Rm,b∈R

1

m

m
∑

i=1

ωi(yi − K
⊤
i α − b)2

+ + σ 2

m

m
∑

i=1

̺(ωi) + λα⊤
Kα,

where the function ̺ is defined in equation 4.5. This observation enables us
to prove the convergence of algorithm 1.

Theorem 2. Let {(αk, bk)}k≥1 be the sequence generated in algorithm 1. Then
every limit point of {(αk, bk)}k≥1 must be a stationary point of RSVC.

Proof. For notation simplification, we denote

Q(α, b,ω) = 1

m

m
∑

i=1

ωi(yi − K
⊤
i α − b)2

+ + σ 2

m

m
∑

i=1

̺(ωi) + λα⊤
Kα.
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From algorithm 1 and the above discussions, we know that

ωk+1 = argmin
ω∈Rm

+

Q(αk, bk,ω) and (αk+1, bk+1) = argmin
α∈Rm,b∈R

Q(α, b,ωk+1).

Due to the positive definiteness of K, we know that Q(α, b,ω) is coercive
with respect to α. It is easy to see that, Q(α, b,ω) is also coercive with respect
to b. Therefore, the sequences {αk}k≥1 and {bk}k≥1 are bounded. Recalling that

ωk+1 = (ωk+1
1 , . . . , ωk+1

m )⊤ with

ωk+1
i = argmin

ω∈R+

ω(yi − K
⊤
i αk − bk)2

+ + σ 2̺(ω)

= exp(−(yi − K
⊤
i αk − bk)2

+/σ 2), i = 1, . . . , m,

we also see the boundedness of {ωk}k≥1. As a result, the sequence {(αk, bk,

ωk)}k≥1 has limit points.

Suppose that {(αk
l , bk

l ,ωk
l )}l≥1 is a sub-sequence that converges to (α⋆,

b⋆,ω⋆) as l → ∞. We further denote

(αω⋆ , bω⋆ ) = argmin
α∈Rm,b∈R

Q(α, b,ω⋆), and ωα⋆ = argmin
ω∈Rm

+

Q(α⋆, b⋆,ω).

This, in connection with the definitions of ωk
l
+1, αk

l
+1, and bk

l
+1, implies

Q(αk
l , bk

l ,ωα⋆ ) ≥Q(αk
l , bk

l ,ωk
l
+1) ≥ Q(αk

l
+1, bk

l
+1,ωk

l
+1)

≥Q(αk
l+1 , bk

l+1 ,ωk
l+1 ).

The definition of (αk
l , bk

l ) also tells us that there holds

Q(αω⋆ , bω⋆ ,ω
k

l ) ≥ Q(αk
l , bk

l ,ωk
l ).

By letting l → +∞ in the above two inequalities, we see that

Q(αω⋆ , bω⋆ ,ω
⋆) ≥ Q(α⋆, b⋆,ω⋆) and Q(α⋆, b⋆,ωα⋆ ) ≥ Q(α⋆, b⋆,ω⋆).

From the definitions of αω⋆ and ωα⋆ , we have

(α⋆, b⋆) = argmin
α∈Rm,b∈R

Q(α, b,ω⋆) and ω⋆ = argmin
ω∈Rm

+

Q(α⋆, b⋆,ω).
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Particularly, the fact that (α⋆, b⋆) = arg minα∈Rm,b∈R
Q(α, b,ω⋆) also implies

∇αQ(α⋆, b⋆,ω⋆) = 0, and ∇bQ(α⋆, b⋆,ω⋆) = 0,

which can be equivalently expressed as

m
∑

i=1

Ki exp(−(yi − K
⊤
i α⋆ − b⋆)2

+/σ 2)(yi − K
⊤
i α⋆ − b⋆)+ + λKα⋆ = 0,

and

m
∑

i=1

(

yi − K
⊤

i
α⋆ − b⋆

)

+ = 0.

This verifies that (α⋆, b⋆) is a stationary point of RSVC. Thus, we have
accomplished the proof of theorem 2.

Note that the above convergence analysis on algorithm 1 is conducted
with respect to the loss function ℓσ and relies on lemma 1. We remark that
when the loss function φσ in example 2 is employed, its convergence to a
stationary point can be also proved via a similar auxiliary lemma given in
section A.2.

5 Experimental Results

We present more experimental results in this section to show the effective-
ness of RSVC by applying algorithm 1. In our experiments, each subproblem
in algorithm 1 is a weighted L2-SVM, and we use quadprog function of Mat-
lab to solve this quadratic programming problem in its dual. The solution to
L2-SVM is chosen as the initial guess of algorithm 1. The stopping criterion
is ‖(αk+1, bk+1) − (αk, bk)‖2 ≤ 10−4. The maximum iteration number is set to
100. All numerical computations are implemented on an Intel i7-3770 CPU
desktop computer with 16 GB of RAM. The supporting software is Matlab
R2013a.

5.1 An Illustrative Example. As shown in algorithm 1, solving RSVC is
carried out by solving an iteratively reweighted L2-SVM. In this section, we
implement an artificial simulation by using the Two Moons data set again
to illustrate this iteration process. This two-dimensional data set contains
a training set and a test set, each of size 200 and binary labeled. Its plot
is given in the left panel of Figure 1, which is scaled to [0, 1] × [0, 1]. To
compare L2-SVM and RSVC, we randomly flip 10% of the labels of the data
set and use the test set for validation. The plot of this contaminated data
set is given in the right panel of Figure 1. In this experiment, the gaussian
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kernel K(x, x′) = exp(− ‖x−x′‖2

2h2 ) and the loss function ℓσ are used. Three
parameters—the scale parameter σ , the regularization parameter C, and
the bandwidth of the gaussian kernel h—are tuned on the test set.

We then train two classifiers with this contaminated data set by applying
L2-SVM and RSVC, respectively. To see the influence of the weights that
are applied to outliers, we plot the classifier obtained after each iteration in
Figure 5. The red dotted curve in each panel presents the classifier obtained
from RSVC at the kth step, where the number k is marked at the bottom-left
corner of each panel. The loosely dashed black curve in each panel stands
for the classifier trained by L2-SVM with the uncontaminated Two Moons
data set, which is taken as the ground truth.

From Figure 5, it can be observed that the influence of the outliers on the
output classifier is weakened after each iteration. Moreover, the algorithm
converges fast since the obtained classifier after the ninth iteration is very
close to the ground truth as shown in the bottom-right panel.

5.2 Experiments on UCI Data Sets. We now validate the effectiveness of
RSVC on UCI data sets (Bache & Lichman, 2013): Monk’s Problem Data Set
(Monks1, Monks2, and Monks3), Spect Heart Data Set (Spect), Haberman’s
Survival Data Set (Haber), Breast Cancer Wisconsin Dataset (Breast), Pima
Indians Diabetes Data Set (Pima), and Ionosphere Data Set (Ionosphere).

In our experiments, we conduct empirical comparisons on the classifi-
cation accuracy and computation time between RSVC and L2-SVM con-
sidering that RSVC can be taken as robustified L2-SVM. We also carry out
numerical comparisons between the classifier obtained from RSVC and that
trained from robust but nonsmooth support vector machines. A well-known
example is the truncated hinge loss–based support vector classifier (TSVC)
proposed in Wu and Liu (2007), which is solved by using the concave-
convex procedure (CCCP) proposed in Collobert et al. (2006).

In our experiments, the variables in each data set are scaled into the
interval [0, 1]. For each data set, we randomly split it into training, tuning,
and test sets, each of which consists of 60%, 20%, and 20% instances of the
data set, respectively.1 As in the toy example, we use the gaussian kernel
and the loss function ℓσ . The parameters C, h, and σ are tuned on the
tuning set. To show the robustness of RSVC, we randomly flip the labels of
the training set with different levels: 0%, 10%, and 20%. The classification
accuracy on test set that is averaged over 20 repetitions is reported in Table
1. We also record the averaged computation time of RSVC and TSVC over
20 repetitions in Table 2.

From experimental results in Tables 1 and 2, we make the following
observations:

1The Monk’s Problem data set and the Spect Heart data set consist of a training set
and a test set. In our experiment, we merge the two sets before splitting.
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Figure 5: Plots of the classifiers trained by RSVC in each iteration. For each
panel, the red dotted curve presents the classifier obtained by solving RSVC
after the kth iteration, where the number k is marked at the bottom-left corner
of each panel. The loosely dashed black curve in each panel is the classifier
trained by L2-SVM on the uncontaminated Two Moons data set and is plotted
for comparison.
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Table 1: Classification Accuracy on Test Data of UCI Data Sets (%).

0% 10% 20%

L2-SVM RSVC TSVC L2-SVM RSVC TSVC L2-SVM RSVC TSVC

Monks1 95.80 95.70 91.80 83.50 89.95 88.95 78.65 88.15 82.70
Monks2 90.17 89.83 90.25 81.42 81.83 82.13 75.00 76.21 74.17
Monks3 95.14 95.68 95.50 95.18 97.09 96.73 91.45 95.14 95.00
Spect 83.43 83.66 82.91 82.76 83.51 83.51 83.28 83.58 83.06
Haber 70.15 70.45 69.92 70.15 70.76 70.53 72.20 73.64 72.88
Breast 97.10 96.85 96.81 95.76 96.39 96.05 94.92 95.80 95.63
Pima 75.65 75.45 75.58 75.39 75.45 74.12 75.58 75.75 75.88

Ionosphere 94.20 93.95 93.00 91.25 91.65 92.70 91.10 91.30 91.90

Note: The best results from the compared methods are in bold.

Table 2: Computation Time on Test Data of UCI Data Sets (in seconds).

0% 10% 20%

RSVC TSVC RSVC TSVC RSVC TSVC

Monks1 0.5637 0.3859 0.5135 0.6032 0.4912 0.7329
Monks2 0.3708 0.1649 0.6430 0.3870 0.4619 0.4876
Monks3 0.3444 0.3112 0.3124 0.4499 0.6114 0.8149
Spect 0.0672 0.1043 0.0824 0.1004 0.0396 0.0739
Haber 0.0984 0.5695 0.0798 0.8318 0.1003 0.5608
Breast 0.2864 0.3382 0.1420 0.3936 0.1650 0.4530
Pima 0.3782 2.5918 0.5136 2.7937 0.4638 2.7533
Ionosphere 0.1023 0.0812 0.0642 0.0930 0.0901 0.1116

Note: The best results from the compared methods are in bold.

• Concerning classification accuracy, we see from Table 1 that in the
absence of flipped labels, the three classifiers L2-SVM, RSVC, and
TSVC perform comparably. More precisely, L2-SVM and RSVC give
slightly more accurate classification results than TSVC.

• Concerning classification accuracy, Table 1 tells us that in the presence
of flipped labels, RSVC always outperforms L2-SVM. We also see that
RSVC can give more accurate classification results than TSVC.

• Concerning computation time, Table 2 shows that in the absence of
flipped labels, the computational costs of RSVC and TSVC are compa-
rable, although RSVC performs far better than TSVC for some specific
cases.

• Concerning computation time, Table 2 also tells us that in the presence
of flipped labels, RSVC can outperform TSVC. Moreover, for some
cases, the computational cost of RSVC can be significantly lower than
that of TSVC, especially when the size of the training data gets large,
according to our experimental experience.
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The above observations drawn from the experimental results indicate
that:

• RSVC is more robust than L2-SVM and also performs comparably to
L2-SVM in the absence of flipped labels. In this respect, RSVC can
be a better choice if robustness is a concern in classification problems
over L2-SVM;

• RSVC can outperform the well-known TSVC in terms of classifica-
tion accuracy and computation time and could be a better choice,
especially when computational cost is an important concern.

Here we remark that in comparison to L2-SVM, the enhancement of the
robustness of RSVC is at the expense of computational cost since we solve
RSVC by solving a reweighted L2-SVM iteratively. However, as shown
in Figure 5, algorithm 1 converges within only a few iterations, so the
computation time for solving RSVC is still acceptable.

6 Conclusion

In this letter, we studied the large margin classification problem in the
presence of label noise. This purpose was achieved by introducing new
robust classification losses. Besides the robustness, another property of the
proposed method is that its associated optimization problem is smooth,
which again benefits from the use of smooth losses. Studies were then
conducted on the proposed robust classifier following two lines. First, we
examined its Fisher consistency property and generalization ability, and
we also interpreted its robustness from a weighted viewpoint. Second, we
were also concerned with its computational aspects. We showed that the
proposed classifier had some close connections with L2-SVM. For instance,
it can be obtained by solving iteratively reweighted L2-SVM problems. An
iteratively reweighted algorithm was then proposed and its convergence
analysis was provided. Simulation studies with toy examples and real data
sets suggest that in comparison to L2-SVM, the proposed method can be
a better choice in real-world applications, especially when robustness is a
major concern.

Appendix A

A.1 Proof of Theorem 1. To prove Theorem 1, we introduce the notion
of Rademacher complexity, which measures the complexity of a function
class.

Definition 2 (Rademacher Complexity). Let ρX be the marginal distribution
of ρ on X . Let X := {x1, . . . , xn} be drawn i.i.d. from ρX and F be a class of
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functions mapping from X to R. Then the empirical Rademacher complexity of F
is defined as

R̂n(F) := E

[

sup
f ∈F

∣

∣

∣

∣

∣

2

n

n
∑

i=1

εi f (xi )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X

]

,

where ε1, . . . , εn are independent uniform {±1}-valued random variables. Then the
Rademacher complexity of F is Rn(F) = ER̂n(F).

Proof of Theorem 1. Recalling that fz is produced by equation 2.2 with the
regularization parameter λ, we have

λ‖ f φ
z ‖2

K ≤ σ 2,

which yields ‖ f φ
z ‖K ≤ σ/

√
λ. On the other hand, due to the Lipschitz con-

tinuity property of φ, we can apply theorem 8 in Bartlett and Mendelson
(2003) and see that for any 0 < δ < 1, there holds

E( f φ
z ) − Ez( f φ

z ) ≤ Rm(H) +
√

8 ln(1/δ)/m,

where the function set H is defined as

H :={h | h(x, y) := φ(y f (x)) − φ(0), f ∈ HK,

‖ f‖K ≤ σ/
√

λ, (x, y) ∈ X × Y}.

Again, the Lipschitz continuity of φ, together with theorem 12 in Bartlett
and Mendelson (2003) yields that

Rm(H) ≤ 2Rm(Fλ) with

Fλ =
{

f
∣

∣

∣
f ∈ HK, ‖ f‖K ≤ σ

√

log(1 + σ−2)/λ

}

.

It follows from Mendelson (2003) that

Rm(Fλ) ≤ 2σ√
mλ

.

Combining the above estimates, we see that for any 0 < δ < 1, there holds

E( f φ
z ) − Ez( f φ

z ) ≤ 4σ√
mλ

+
√

8 ln(1/δ)

m
.
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A.2 An Auxiliary Lemma. The following lemma can be proved analo-
gous to lemma 1:

Lemma 2. Let h(t) = σ 2log(1 + (1 − t)2
+/σ 2). Then h can be expressed as

h(t) = inf
ω∈R

+

ω(1 − t)2
+ + σ 2̺(ω), (A.1)

where

̺(ω) =

⎧

⎪

⎨

⎪

⎩

+∞, ω = 0,

ω − log ω, 0 < ω ≤ 1,

0, ω > 1.

(A.2)

Moreover, denoting

ω⋆ = argmin
ω∈R

+

ω(1 − t)2
+ + σ 2̺(ω),

we then have

ω⋆ = (1 + (1 − t)2
+/σ 2)−1.
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