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Abstract In this paper we consider a variant of the
open shop problem where task durations are allowed
to be uncertain and where uncertainty is modelled us-

ing fuzzy numbers. Solutions to this problem are fuzzy
schedules, which we argue should be seen as predictive
schedules, thus establishing links with the concept of

robustness and a measure thereof. We propose a par-
ticle swarm optimization (PSO) approach to minimise
the schedule’s expected makespan, using priorities to

represent particle position, as well as a decoding algo-
rithm to generate schedules in a subset of possibly ac-
tive ones. Our proposal is evaluated on a varied set of

several benchmark problems. The experimental study
includes a parametric analysis, results of the PSO com-
pared with the state-of-the-art, and an empirical study
of the robustness of taking into account uncertainty

along the scheduling process.

Keywords open shop scheduling; fuzzy durations;

particle swarm optimisation; robustness

1 Introduction

The open shop scheduling problem is a problem with

an increasing presence in the scheduling literature and
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with clear applications in industry—consider for in-
stance testing facilities, where units go through a se-
ries of diagnostic tests that need not be performed in

a specified order and where different testing equipment
is usually required for each test [27]. For a number of
machines m ≥ 3, this problem is NP -complete; in con-

sequence, it is usually tackled via metaheuristic tech-
niques. For makespan minimisation, in [15] two heuris-
tic methods to obtain a list of operation priorities are

described and later used in a list-scheduling algorithm;
[23] proposes a tabu search algorithm; ant colony op-
timisation is hybridised with beam search in [3]; [30]

proposes a solution based on particle swarm optimisa-
tion; ant bee colony optimisation is used in [18] and a
hybrid genetic algorithm is proposed in [1]. These last
three algorithms conform the state-of-the art for open

shop with makespan minimisation.

To enhance the range of applications of scheduling,
part of the research is devoted to incorporating the
uncertainty and vagueness pervading real-world situa-

tions. Part of this uncertainty translates into variability
of input data which can be somehow modelled and an-
ticipated, leading to proactive or robust scheduling [16].

The approaches are diverse and, among these, fuzzy sets
have been used in a wide variety of ways [6],[5]. Far from
being trivial, incorporating uncertainty and extending

heuristic strategies to the resulting setting usually re-
quires a significant reformulation of both the problem
and solving methods. Some heuristic methods have so

far been proposed for fuzzy flow and job shop prob-
lems, where uncertain durations are modelled via fuzzy
sets; among others, in the last years we find genetic al-

gorithms in [12] and [22], a fuzzy-neural approach in
[32], a memetic algorithm combining evolution and lo-
cal search in [28], swarm-based neighbourhood search

in [33] or differential evolution in [17]. However, to the
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best of our knowledge, the open shop problem has re-

ceived little attention in the fuzzy framework: in [21]
fuzzy sets are used to represent flexible job start and
due dates, a possibilistic mixed-integer linear program-

ming method is proposed in [25] for a multiobjective
open shop with setup times, fuzzy processing times and
fuzzy due dates and in [26] a genetic algorithm is pro-

posed to solve the open shop with fuzzy durations, and
in [11] this genetic algorithm is combined with a local
search method.

In the following, we consider the fuzzy open shop
problem with expected makespan minimisation, denoted
O|fuzzpi|E[Cmax] and propose a particle swarm tech-

nique to solve it. The rest of the paper is organized
as follows. In Section 2 we formulate the problem and
associated concepts and introduce a measure of robust-

ness. Then, in Section 3, we describe the main compo-
nents of the particle swarm optimisation (PSO) algo-
rithm proposed to solve the problem. Section 4 includes

a parametric analysis of the PSO, experimental results
to evaluate the competitiveness of our proposal and an
additional analysis of the usefulness of scheduling with

fuzzy durations in order to improve solution robustness.
Finally, in Section 5 we summarise the main conclusions
and propose ideas for future work.

2 Open Shop Scheduling with Uncertain

Durations

The open shop scheduling problem, or OSP in short,

consists in scheduling a set of n jobs J1, . . . , Jn to be
processed on a set of m physical resources or machines
M1, . . . ,Mm. Each job consists ofm tasks or operations,

each requiring the exclusive use of a different machine
for its whole processing time without preemption, i.e.
all operations must be processed without interruption.

In total, there are n×m tasks (nm for short), denoted
{oij , 1 ≤ i ≤ n, 1 ≤ j ≤ m}. A solution to this prob-
lem is a schedule –an allocation of starting times for all

tasks– which is feasible, in the sense that all constraints
hold, and is also optimal according to some criterion.
Here, the objective will be minimising the makespan
Cmax, that is, the time lag from the start of the first

task until the end of the last one, a problem often de-
noted O||Cmax in the literature [14].

2.1 Uncertain Durations

In real-life applications, it is often the case that it is
not known in advance the exact time it will take to
process one operation and only some uncertain knowl-

edge is available, for instance, an interval of possible

durations, or a most likely duration with a certain er-

ror margin. Such knowledge can be modelled using a
triangular fuzzy number or TFN, given by an interval
[n1, n3] of possible values and a modal value n2 in it [7].

For a TFN N , denoted N = (n1, n2, n3), the member-
ship function takes the following triangular shape:

µN (x) =











x−n1

n2−n1 : n1 ≤ x ≤ n2

x−n3

n2−n3 : n2 < x ≤ n3

0 : x < n1 or n3 < x

(1)

In the open shop, we essentially need two operations
on processing times (fuzzy numbers), the sum and the
maximum. These are obtained by extending the corre-

sponding operations on real numbers using the Exten-

sion Principle. However, computing the resulting ex-
pression is cumbersome, if not intractable. For the sake

of simplicity and tractability of numerical calculations,
we follow [8] and approximate the results of these oper-
ations, evaluating the operation only on the three defin-

ing points of each TFN. It turns out that for any pair
of TFNs M and N , the approximated sum M + N ≈
(m1 + n1,m2 + n2,m3 + n3) coincides with the actual

sum of TFNs; this is not necessarily so for the maximum
max{M,N} ≈ (max{m1, n1},max{m2, n2},max{m3, n3}),
although they have identical support and modal value.

The membership function of a fuzzy number can be
interpreted as a possibility distribution on the real num-
bers. This allows to define its expected value [24], given

for a TFN N by E[N ] = 1

4
(n1 +2n2 + n3). It coincides

with the neutral scalar substitute of a fuzzy interval and
the centre of gravity of its mean value [6]. It induces a

total ordering ≤E in the set of fuzzy intervals [8], where
for any two fuzzy intervals M,N M ≤E N if and only
if E[M ] ≤ E[N ].

2.2 Fuzzy Open Shop Scheduling

If processing times of operations are uncertain and such
uncertainty is modelled using TFNs, the resulting sched-

ule is fuzzy in the sense that starting and completion
times for each operation and hence the makespan are
TFNs, where each TFN can be seen as a possibility

distribution on the actual values that the correspond-
ing time may take. However, there is no uncertainty
regarding the order in which operations must be pro-

cessed.
Indeed, a schedule for an open shop problem of size

n×m (n jobs and m machines) may be determined by

a priority vector π = (π1, . . . , πnm) representing a task
processing order, where ∀k, l = 1, . . . , nm 1 ≤ πl ≤ nm
and, if k ̸= l, then πk ̸= πl, that is, π is a permutation of

the set of tasks where each task oij may be represented
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by the number (i− 1)m+ j. The task processing order

represented by the priority vector uniquely determines a
feasible schedule; it should be understood as expressing
partial orderings for every set of tasks requiring the

same machine and for every set of tasks requiring the
same job.

Let us assume that the processing time pij of each

task oij , i = 1, . . . , n, j = 1, . . . ,m is a TFN, so the
problem may be represented by a matrix of fuzzy pro-
cessing times p of size n×m. For a given priority vector

π and a task oij , its starting time Sij(π,p) is the maxi-
mum between the completion times of the task preced-
ing oij in its job according to π, let it be denoted oik,

and the task preceding oij in its machine according to
π, let it be denoted olj :

Sij(π,p) = max(Cik(π,p), Clj(π,p)) (2)

where Cik(π,p) or Clj(π,p) are taken to be zero if oij is
the first task to be processed either in its job or its ma-
chine. Then, its completion time Cij(π,p) is obtained

by adding its duration pij to Sij(π,p):

Cij(π,p) = Sij(π,p) + pij (3)

The completion time of a job Ji will then be the maxi-
mum completion time of all its tasks, that is,

Ci(π,p) = max
1≤j≤m

{Cij(π,p)} (4)

so the fuzzy makespan Cmax(π,p) will be given by the
following:

Cmax(π,p) = max
1≤i≤n

(Ci(π,p)) (5)

In the case where no confusion is possible, we may drop
the priority vector π and the processing times matrix p

and simply write Cmax.
An important issue with fuzzy times is to decide on

the meaning of “optimal makespan”. It is not trivial to

optimise a fuzzy makespan, since neither the maximum
nor its approximation define a total ordering in the set
of TFNs. Using ideas similar to stochastic scheduling,

we follow the approach taken for the fuzzy job shop
in [13]. Given the total ordering provided by the ex-
pected value, we consider that the objective is to min-

imise the expected makespan E[Cmax]. The resulting
problem may be denoted O|fuzzpi|E[Cmax] using the
three-field notation [14].

Let us illustrate the previous definitions with an ex-
ample. Consider a problem of 3 jobs and 2 machines
with the following matrix for fuzzy processing times:

p =





(3, 4, 7) (3, 4, 7)
(2, 3, 3) (4, 5, 6)
(3, 4, 6) (1, 2, 4)





0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time units

Cmax

M1
o11 o21 o31

M2
o22 o32 o12

Fig. 1 Gantt chart of the schedule represented by the prior-
ity vector (1, 4, 6, 3, 5, 2).

Here p21 = (2, 3, 3) is the processing time of task
o21, the task of job J2 to be processed in machine M1.

Figure 1 shows the Gantt chart adapted to TFNs of the
schedule given by the priority vector π=(1, 4, 6, 3, 5,
2). It represents the partial schedules on each machine

obtained from this decision variable. Tasks must be pro-
cessed in the following order: o11, o22, o32, o21, o31, o12.
Given this ordering, the starting time for task o21 will

be the maximum of the completion times of o22 and
o11, which are respectively the preceding tasks in the
job and in the machine:

S21 = max(C22, C11) = max((4, 5, 6), (3, 4, 7)) = (4, 5, 7).

Consequently, its completion time will be

C21 = S21 + p21 = (4, 5, 7) + (2, 3, 3) = (6, 8, 10).

Also, it is easy to see that the makespan is Cmax =
(9, 12, 17), so E[Cmax] = 12.5.

2.3 Robust schedules

A fuzzy schedule does not provide exact starting times
for each task. Instead, it gives a fuzzy interval of pos-
sible values for each starting time, provided that tasks

are executed in the order determined by the schedule.
In fact, it is impossible to predict what the exact time-
schedule will be, because it depends on the realisation

of the tasks durations, which is not known yet. This
idea is the basis for a semantics for fuzzy schedules
from [12] by which solutions to the fuzzy open shop

should be understood as a-priori solutions, also called
baseline or predictive schedules in the literature [16].
These solutions are found when the duration of tasks is

not exactly known and a set of possible scenarios must
be taken into account. When tasks are executed ac-
cording to the ordering provided by the fuzzy schedule

we shall know their real duration and, hence, obtain a
real (executed) schedule, the a-posteriori solution with
deterministic times.

Clearly, fuzzy solution should yield reasonably good

executed schedules in the moment of its practical use.
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Also, the estimates for starting and completion times

and, in particular, for the makespan, should be reason-
ably accurate for each possible scenario of task dura-
tions. This leads us to the concept of solution robust-

ness. As [19] puts it, “Intuitively, a solution can be con-
sidered as robust if it behaves “well” or “not too bad” in
all the scenarios.”. This is the idea underlying a defini-

tion of ϵ-robustness given in [2] for stochastic scheduling
which can be adapted to the fuzzy open shop as follows.

A predictive schedule is considered to be robust if
the quality of the eventually executed schedule is close
to the quality of the predictive schedule. In particular,

a predictive schedule with objective value fpred is ϵ-
robust for a given ϵ if the objective value fexec of the
eventually executed schedule is such that:

(1− ϵ) ≤
fexec

fpred
≤ (1 + ϵ) (6)

or, equivalently,

|fexec − fpred|

fpred
≤ ϵ (7)

That is, the relative error of the estimation made by

the predictive schedule is bounded by ϵ. Obviously, the
smaller ϵ is, the better.

3 Particle Swarm Optimization for the FOSP

Given the complexity of the open shop, different meta-
heuristic techniques have been proposed to solve the
general m-machine problem. In particular, a method

based on particle swarm optimisation has been pro-
posed in [30] which is considered the state-of-the-art
for crisp open shop.

Require: A FOSP instance
Ensure: A schedule for the input instance

1. generate and evaluate the initial swarm.
2. compute gbest and pbest for each particle.
while no termination criterion is satisfied do

for each particle k do

for each dimension d do

3. update velocity vk
d
.

4. update position xk
d
.

5. evaluate particle k.
6. update pbest and gbest values.

return The schedule from the best particle evaluated so
far;

Alg. 1: A generic PSO algorithm

Particle Swarm Optimisation (PSO) is a population-
based stochastic optimisation technique inspired by bird

flocking or fish schooling [20]. In PSO, each position in

the search space corresponds to a solution of the prob-

lem and particles in the swarm cooperate to find the
best position (hence best solution) in the space. Parti-
cle movement is mainly affected by the three following

factors:

– Inertia: Velocity of the particle in the latest itera-
tion.

– pbest: The best position found by the particle.
– gbest: The best position found by the swarm so far

(the best pbest).

The potential solutions or particles fly through the
problem space changing their position and velocity by
following the current optimum particles pbest and gbest.

Algorithm 1 describes the structure of a generic
PSO algorithm. First, the initial swarm is generated
and evaluated. Then the swarm evolves until a termi-

nation criterion is satisfied and in each iteration, a new
swarm is built from the previous one by changing the
position and velocity of each particle following its pbest

and gbest locations.

Following this general structure, we now extend the
successful algorithm from [30] to the fuzzy framework.

3.1 Position Representation and Evaluation

We use a priority-based representation for particle po-

sitions. Thus a schedule is encoded as a priority matrix
Xk = (xk

ij)i=1...n,j=1...m, where xk
ij denotes the priority

of operation oij , the task of job i processed on machine

j. An operation with smaller xk
ij has a higher priority

to be scheduled.

If we represent a FOSP solution as a task processing

order π, which is a permutation of tasks, we can transfer
this permutation to a priority matrix and viceversa. For
instance, given the following solution for a problem of

size 3× 3:

π =
(

o11 o13 o23 o12 o31 o33 o21 o32 o22
)

a particle in the space can be obtained by randomly
setting xij in the interval (p− 0.5, p+ 0.5) where p is
the location of oij in π. Therefore, the operation with
smaller xij has higher priority to be scheduled. The

above permutation list can be transferred to:

Xk =





1.2 4.0 1.7
6.6 9.4 2.7

5.3 7.9 6.4





Decoding of a particle may be done in different ways.
For the crisp job shop and by extension for the open
shop, it is common to use theG&T algorithm [9], which

is an active schedule builder. A schedule is active if one
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task must be delayed for any other one to start earlier.

Active schedules are good in average and, most impor-
tantly, the space of active schedules contains at least an
optimal one, that is, the set of active schedules is domi-

nant. For these reasons it is worth to restrict the search
to this space. In [10] a narrowing mechanism was incor-
porated to the G&T algorithm in order to limit machine

idle times by means of a delay parameter δ ∈ [0, 1], thus
searching over the space of so-called parameterised ac-
tive schedules. In the deterministic case, for δ < 1 the

search space is reduced so it may no longer contain op-
timal schedules and, at the extreme δ = 0 the search
is constrained to non-delay schedules, where a resource

is never idle if a requiring operation is available. This
variant of G&T has been applied in [30] to the deter-
ministic OSP, under the name “parameterized active

schedule generation algorithm”.

In Algorithm 2 we propose an extension of param-
eterised G&T to the case of fuzzy processing times,

denoted pfG&T . It should be noted that, due to the
uncertainty in task durations, even for δ = 1, we can-
not guarantee that the produced schedule will indeed

be active when it is actually performed (and tasks have
exact durations). We may only say that the obtained
fuzzy schedule is possibly active. Throughout the algo-

rithm, Ω denotes the set of the operations that have
not been yet scheduled, Xk the priority matrix, Sij the
starting time of the operation oij and Cij the comple-

tion time of the operation oij .

Let us illustrate the decoding algorithm with an ex-
ample. Consider the problem proposed in subsection

2.2 to illustrate the concept of fuzzy schedule and the
following priority matrix for it:

Xk =





1.2 5.3
2.7 1.7
4.0 6.4





Figure 2 shows the Gantt chart of the partial schedule in
which the operations o11, o22 and o21 have been already
scheduled. In this situation, Ω = {o12, o31, o32}. Table 1

depicts the values of the starting and completion times
of the operations in Ω in this iteration of the algorithm
as well as its expected values. The s∗ and c∗ values are

shown in bold. Considering δ = 1, the conflict set is
O = {o12, o32}. Operation o31 is not contained in the O
set, although it has the highest priority in Ω, because

the possibility that operation o32 can be completed be-
fore the earliest beginning of o31 is 1, so by selecting
o31 before o31 we would generate a non possibly active

schedule. Additionally, reducing the δ value to 0.1, the
set of operations that are candidates to be scheduled is
further restricted to O = {o32} even though o32 is the

lowest-priority operation of Ω.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time units

M1
o11 o21

M2
o22

Fig. 2 Gantt chart of the partial schedule for the example in
Section 2.2 where only o11, o22 and o21 have been scheduled.

Table 1 Partial schedule values.

Oper. Sij E[Sij ] Cij E[Cij ]
o12 (4,5,7) 5.25 (7,9,14) 9.75
o31 (6,8,10) 8.00 (9,12,16) 12.25
o32 (4,5,6) 5.00 (5,7,10) 7.25

Notice that the pfG&T algorithm only uses the pri-
ority vector to break ties among tasks in the conflict

set, so the task processing order in the resulting sched-
ule may differ from that in the particle. Given that the
essence of a particle is the task ordering it represents,

gbest and pbest do not record the actual best positions
found so far, but rather the best operation sequences of
the schedules generated by the decoding operator.

Require: A FOSP instance and a particle position Xk

Ensure: A schedule for the input instance considering the
priorities given by Xk

Ω ← {oij : 1 ≤ i ≤ n, 1 ≤ j ≤ m};
while Ω ̸= ∅ do

c∗ ← minoij∈Ω{E[Cij ]};
s∗ ← minoij∈Ω{E[Sij ]};
O ← {oij : E[Sij ] < s∗ + δ × (c∗ − s∗), oij ∈ Ω};
Choose the operation o∗ij from O with smallest xk

ij ;
Schedule the operation o∗ij ;
Ω ← Ω − {o∗ij};

return The schedule given by {Sij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

Alg. 2: The pfG&T algorithm

3.2 Particle movement and velocity

Particle movement depends not only on its position,
but also on its velocity. For any particle, its velocity is
represented by an array of the same length as the posi-

tion array where all the values are in the set {−1, 0, 1}.
Initially, the values in the array are set at random. Af-
terwards, particle position and velocity are updated de-

pending on gbest and pbest. Traditionally, this updating
depends on distance values. Instead, this PSO considers
whether the position value xk

ij is larger or smaller than

pbestkij (gbestij). Updating is controlled at the begin-
ning of each iteration by the inertia weight w as well as
two other constants 0 ≤ C1, C2 such that C1 +C2 ≤ 1,

representing the probability that the updating is guided
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either by pbest or by gbest. Further detail on the up-

dating process can be found in Algorithm 3.

Require: A particle position Xk and velocity V k, best par-
ticle and swarm positions pbestk and gbest, inertia w and
updating probabilities C1, C2

Ensure: The updated particle position Xk and velocity V k

for each dimension d do

generate random value rand ∼ U(0, 1).
if vk

d
̸= 0 and rand ≥ w then

vk
d
← 0.

if vk
d
= 0 then

generate random value rand ∼ U(0, 1).
if rand ≤ C1 then

if pbestk
d
≥ xk

d
then

vk
d
← 1.

else

vk
d
← −1.

generate random value rand2 ∼ U(0, 1).
xk
d
← pbestk

d
+ rand2 − 0.5.

if C1 < rand ≤ C1 + C2 then

if gbestd ≥ xk
d
then

vk
d
← 1.

else

vk
d
← −1.

generate random value rand2 ∼ U(0, 1).
xk
d
← gbestd + rand2 − 0.5.

else

xk
d
← xk

d
+ vk

d
.

return The updated particle position Xk and velocity V k;

Alg. 3: Particle movement

Position mutation. In order to introduce diversity, af-
ter a particle moves to a new position, we mutate it
with probability pM by choosing an operation and then

randomly changing its priority value xk
d independently

of vkd . As in [30], for a problem of size n×m, if xk
d <

(nm/2), xk
d will take a random value in [mn − n,mn],

and vkd = 1; else, if xk
d > (nm/2), xk

d will take a random

value in [0, n] and vkd = −1.

Diversification strategy. If all particles have the same
pbest solutions, they will be trapped into local optima.
To prevent such situation, a diversification strategy is

adopted that keeps the pbest solutions different. In this
strategy, the pbest solution of each particle is not the
best solution found by the particle itself, but one of the

best N solutions found by the swarm so far, where N
is the size of the swarm. Once any particle generates
a new solution, the pbest solutions will be updated in

certain cases as follows:

– if the makespan of the particle solution equals that
of any pbest solution, replace that pbest solution

with the new particle solution;

– if the makespan of the particle solution improves

the worst pbest solution and is different from all
pbest solutions, set the worst pbest solution to be
the particle solution.

4 Experimental evaluation

We now proceed to empirically evaluate the proposed

method in several steps, using a total of 520 problem in-
stances. First, a parametric analysis will be conducted
to decide on a good parameter-configuration for the

PSO search process as well as for the schedule gen-
eration algorithm pG&T . Then, we present results of
expected makespan minimisation obtained by the PSO

and we compare them with the best results obtained so
far in the literature by a memetic algorithm. Finally,
we shall present some results to illustrate the benefits

in terms of robustness of using fuzzy numbers along
the scheduling process, instead of the more straight-
forward approach of scheduling a crisp problem that
results from defuzzification.

4.1 Experiment setting

For the experimental study we use the test bed given

in [11], where the authors follow [8] and generate a
set of fuzzy problem instances from well-known open
shop benchmark problems [4]. Given a crisp problem

instance, each crisp processing time t is transformed
into a symmetric fuzzy processing time p(t) such that
its modal value is p2 = t and p1, p3 are random val-

ues, symmetric w.r.t. p2 and generated so the TFN’s
maximum range of fuzziness is 30% of p2. The orig-
inal problem instances consist of 6 families, denoted

J3, J4,. . . , J8, of sizes 3 × 3 to 8 × 8, containing 8
or 9 instances each. Ten fuzzy versions of each crisp
problem instance were generated, so in total there are

520 problem instances. The obtained benchmark in-
stances for the fuzzy open shop are available at http:
//www.di.uniovi.es/iscop.

If a lower bound for the expected makespan were

known, the algorithm’s performance may be evaluated
by measuring the distance between the obtained ex-
pected makespan and the lower bound. Thanks to the

symmetry in the TFNs, the optimal solution (if known)
to the crisp problem provides a lower bound, denoted
LBc, for the expected makespan of the fuzzified ver-

sion [8]. An alternative lower bound LBf can be ob-
tained directly from the fuzzy instance as follows:

LBf = E[max{max
j

{
n
∑

i=1

pij},max
i

{
m
∑

j=1

pij}}] (8)
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This lower bound adapts the lower bound proposed

in [31] for crisp problems to the fuzzy setting. The max-
imum of both quantities yield a tighter lower bound for
the expected makespan of the optimal solution:

LB =

{

max(LBf , LBc) if LBc is known

LBf otherwise
(9)

We can now compute the makespan relative error with

respect to LB as follows:

RE =
E[Cmax]− LB

LB
(10)

This relative error will be the basis for evaluating the

obtained results in the remaining of this section.

All the experiments reported in this section, corre-

spond to a C++ implementation running on a PC with
Xeon E5520 processor and 24 GB RAM running Linux
(SL 6.0).

4.2 Parametric analysis

For the PSO we take as initial parameter configura-
tion the values proposed after a parameter analysis for

the crisp OSP in [30]: swarm size N = 60, C1 = 0.7,
C2 = 0.1, mutation probability PM = 1 and inertia
weight w linearly decreasing from 0.9 to 0.3. Regarding

the filtering mechanism of the search space given in the
schedule generator pfG&T , an initial value of δ = 0.25
is adopted. This has been done after some preliminary

experiments consisting in generating random solutions
in the search space with varying values of δ and adopt-
ing the value with better solutions in average.

Starting with this initial configuration, we proceed
to perform a parametric analysis for both the PSO algo-

rithm and the decoding scheme. First, we try different
values for the PSO algorithm’s parameters (in bold we
highlight the values of the starting configuration) as

follows:

– Stopping criterion: A maximum number of itera-

tions MaxIter less or equal than 5000 iterations.
– Guiding constants C1 and C2: all possible pairs of

the values in {0.1, 0.3, 0.5,0.7, 0.9}, provided that

they add up to a maximum of 1.
– Inertia: Linearly decreasing from ωs to ωe, with ωs ∈

{0.5, 0.7,0.9} and ωe ∈ {0.1,0.3, 0.5}.

– Mutation probability: Values in {0, 0.25, 0.50, 0.75,1}.
– Swarm Size N : Values in {60, 80, 100}.

We follow an incremental process in which we test
one of the parameters until it is optimised, then we fix
it and proceed in the same way with the next one, until

all the parameters are fixed.

Table 2 Final value for the stopping criterion MaxIter de-
pending on problem size.

Size MaxIter

3× 3 100
4× 4 100
5× 5 750
6× 6 1500
7× 7 2100
8× 8 2700

0%

2%

4%

6%

8%

10%
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14%

16%

0 1000 2000 3000 4000 5000
R

E
 

Number of iterations 

Avg(Pbest) Gbest

Fig. 3 Evolution along 5000 iterations of E[Cmax] for gbest

(in black) and the average E[Cmax] for pbest (in grey) for j8-

per10-1 instance; convergence is obtained at iteration 2700.

4.2.1 Stopping Criterion MaxIter

First, for each problem size we estimate the number
of iterations MaxIter needed by the algorithm to con-
verge. The procedure to obtain this number of iterations

is as follows: For an arbitrary fuzzy instance of each
original crisp problem, the algorithm is run 10 times
for 5000 iterations. At each iteration, we record the av-

erage makespan of all pbest elements in the swarm and
calculate its relative error w.r.t. the lower bound LB.
Then, we pick the first iteration for which this error will

decrease less than 1% in the next 100 iterations. This
provides us with an stopping iteration for each prob-
lem. Putting together all problems of the same size,

we select the number of iterations in the third quartile
as MaxIter for the group of problem instances of the
same size.The resulting values for MaxIter depending

on problem size can be seen in Table 2. Additionally,
Figure 3 shows the evolution of the expected makespan
for gbest and the average expected makespan for pbest

particles along 5000 iterations of the PSO for problem
instance J8−per10−1; it highlights the first interval of
100 iterations where the error improvement is less than

1%.

4.2.2 Guiding constants C1 and C2

To decide on the values of the remaining parameters,
at each step, the PSO is run 10 times on a random

fuzzy instance from each 8 × 8 original problem and
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the quality of the configuration used is measured us-

ing RE, the relative error w.r.t. the problem’s lower
bound LB, averaged across the 10 runs. First, we test
the guiding probabilities C1 and C2. Table 3 shows the

average across the 8 × 8 problems of the relative er-
ror RE. Two configurations (in bold in the table) per-
form clearly better than the rest: (C1, C2) = (0.7, 0.1)

and (C1, C2) = (0.9, 0.1). Since the latter yields slightly
better results, we take it to be the definite one.

Table 3 Algorithm’s performance with varying guiding con-
stants C1 and C2.

Values RE

C1 = 0.1, C2 = 0.1 2.96%
C1 = 0.1, C2 = 0.3 2.83%
C1 = 0.1, C2 = 0.5 2.81%
C1 = 0.1, C2 = 0.7 2.79%
C1 = 0.1, C2 = 0.9 2.92%
C1 = 0.3, C2 = 0.1 2.63%
C1 = 0.3, C2 = 0.3 2.74%
C1 = 0.3, C2 = 0.5 2.77%
C1 = 0.3, C2 = 0.7 2.80%
C1 = 0.5, C2 = 0.1 2.64%
C1 = 0.5, C2 = 0.3 2.64%
C1 = 0.5, C2 = 0.5 2.74%
C1 = 0.7, C2 = 0.1 2.58%
C1 = 0.7, C2 = 0.3 2.65%
C1 = 0.9, C2 = 0.1 2.56%

4.3 Inertia Weight Bounds ws and we

Regarding the inertia parameter, Figure 4 shows the
average RE obtained using different inertia values lin-

early decreasing in the corresponding intervals [ws, we]
on the X-axis. As above there are two configurations
(ws = 0.9 to we = 0.3 and ws = 0.5 to we = 0.1)

behaving similarly, with slightly better results for the
inertia going from 0.9 to 0.3. However, since there are
two configurations which are similar in terms of quality

both for the guiding constants and the inertia, we have
additionally tested all the combinations of those val-
ues. Table 4 shows the obtained results, which support

taking C1 = 0.9, C2 = 0.1 and w linearly decreasing in
[0.9, 0.3].

Table 4 Algorithm’s performance depending on different
combinations of guiding constants and inertia weights.

Guiding Inertia Weights w

Constants 0.5→ 0.1 0.9→ 0.3
C1 = 0.7, C2 = 0.1 2.590% 2.580%
C1 = 0.9, C2 = 0.1 2.559% 2.557%

2.48%

2.52%

2.56%

2.60%

2.64%

2.68%

R
E

w
s
- w

e

Fig. 4 Algorithm’s performance with varying inertia weight
from ws to we.
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Fig. 5 Algorithm’s performance with varying mutation
probability.

4.3.1 Mutation Probability pM

Having fixed the inertia, we try different mutation prob-
ability values pM . Figure 5 illustrates the importance of

this parameter for the behaviour of the algorithm, with
larger probability values yielding the best results. As it
happens in the crisp version of the PSO, the best option

is to mutate the particles with probability pM = 1.

4.3.2 Swarm Size N

Finally, we test different swarm sizes: 60, 80 and 100.
Here we need to pay attention not only to makespan
values, but also to runtime, this being an important pe-

nalisation factor. Figure 6 shows the distance (bars) and
runtime (line) of each configuration. Clearly, although
the largest swarm size provides the best results in terms

of relative error w.r.t. the lower bound, the improve-
ment does not compensate the increased computation-
time cost. In fact, if we increase the swarm size from

60 to 100, RE decreases 4.3% compared to a 67.3%
increase in runtime. Therefore, we keep N = 60.

4.3.3 Delay Parameter δ

There is another parameter in the algorithm, the de-
lay parameter δ used by the schedule builder (Algo-

rithm 2). Unlike the other parameters, the differences
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Fig. 6 Algorithm’s performance with varying swarm size N .

in algorithm performance caused by variations of δ are a

consequence of changes in the subset of the search space
which is explored, not of changes in the search process
followed by the PSO algorithm. We have tried five pos-

sibilities: δ = 0, which corresponds to exploring the set
of non-delay schedules; δ = 1, to exploring the set of ac-
tive schedules; and δ = 0.25, 0.5, 0.75, to exploring three

proper subsets of the space of active schedules. Table 5
reports the obtained results, suggesting that the best
performance of the PSO is obtained with δ = 0.25.

Table 5 Algorithm’s performance with varying the delay pa-
rameter δ.

Delay value δ RE Std.Dev
0.00 3.44% 2.32
0.25 2.56% 1.96
0.50 2.73% 2.02
0.75 3.32% 2.26
1.00 5.95% 3.38

A summary of the parameter values (exceptMaxIter)
adopted after the parametric analysis can be seen in
Table 6.

4.4 Algorithm’s Evaluation

To our knowledge, the best results obtained so far for

the FOSP have been published in [11]. In that paper,
the GA from [26] is combined with local search using
a new neighbourhood structure, providing a memetic

algorithm (MA) which not only improves on solution
quality but is also more “reliable” in the sense that
there is less variability in solution quality across differ-

Table 6 Parameter values adopted after the parametric anal-
ysis.

Inertia Mutation Guiding const. Delay
w pm C1, C2 δ

from 0.9 to 0.3 1 0.9, 0.1 0.25

Table 7 Comparison between PSO and MA

PSO MA
Problem RE T (s) RE T (s)
Family AoB AoA AoB AoA

J3 0.112 0.112 0.05 0.112 0.112 0.13
J4 0.645 0.757 0.10 0.645 0.799 0.23
J5 0.667 0.687 1.29 0.874 2.234 1.29
J6 0.861 1.019 4.24 0.929 2.698 7.57
J7 1.591 1.971 9.76 2.425 4.710 14.46
J8 2.051 2.693 19.53 3.565 5.807 26.15

ent executions. Thus, in the following we shall evaluate
our PSO in comparison with this MA.

For the experimental evaluation, we shall use the
optimal configuration obtained above with the excep-

tion of the smallest problems (3× 3, 4× 4). Here, since
the search space is small, we take δ = 1 as delay value
for the pfG&T algorithm. This allows to explore the

whole space of active schedules, thus keeping the chance
of finding an optimal solution. For medium size prob-
lems (5× 5, 6× 6) and large problems (7× 7, 8× 8), we

use the best delay value found during the parametric
analysis, that is, δ = 0.25.

To evaluate the performance, we run the proposed
PSO 30 times for each problem instance, recording the

best and average relative error of the expected makespan
with respect to its lower bound across these 30 runs.
Table 7 contains a summary of the results, with aver-

age values across 30 executions on each the 80–90 in-
stances of the same size (detailed results for each prob-
lem, which require 520 rows, can be found at http:

//www.di.uniovi.es/iscop). There are three columns

per method, PSO and MA, showing the Average of the
Best values (AoB), the Average of the Average val-
ues (AoA), and the average runtime in seconds (T (s))

across 30 runs. We can see that the performance of both
PSO and MA is similar on the small (3×3, 4×4) prob-
lem instances. However, differences in solution quality

between the PSO and the MA increase with problem
size, with the PSO obtaining better results. The average
increase in RE value from the PSO to the MA across

all problems is 28% for AoB and 108% for AoA. It is
noticeable that the a maximum increase in the value of
AoB in Table 7 is 74% for problems of size 8× 8.

More detailed results are presented in Table 8, where

each row corresponds to a set of ten fuzzy versions of
each of the original crisp problems of size 8×8. It shows
relative makespan errors w.r.t. the lower bound for both

methods: the best (B) error and the average (A) error
across 30 runs of each method. As expected, the PSO
compares favourably with MA in all instances. Notice

as well that the relative errors for the best (B) and av-



10 Juan José Palacios et al.

Table 8 Average RE (in %) for sets of problems of size 8×8.

PSO MA
Problem B A B A

J8-per0-1 4.410 5.421 7.533 10.493
J8-per0-2 5.402 5.909 6.923 9.715
J8-per10-0 2.951 3.425 4.209 6.688
J8-per10-1 1.614 2.375 3.419 5.959
J8-per10-2 1.352 2.650 3.994 6.455
J8-per20-0 0.393 0.872 1.170 2.960
J8-per20-1 0.000 0.111 0.155 1.349
J8-per20-2 0.288 0.783 1.114 2.837

erage (A) solution do not differ greatly, suggesting that
the PSO is quite stable. Figure 7 depicts the average
relative makespan error for each set of fuzzy problems,

clearly illustrating the difference between the proposed
PSO and the MA.

0.0%

2.0%

4.0%
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12.0%

j8-per0-1 j8-per0-2 j8-per10-0 j8-per10-1 j8-per10-2 j8-per20-0 j8-per20-1 j8-per20-2

MA PSO

Fig. 7 Average makespan error RE (%) for 8× 8 problems.

4.5 Why Not Simply Defuzzify?

It is tempting to think that a simpler approach to fuzzy

open shop problems is to use defuzzification: substitute
the uncertain durations for a crisp value (e.g. their ex-
pected value) and then solve the resulting deterministic

open shop problem. This would provide a deterministic
predictive schedule, including a task processing order.
Tasks can then be processed according to this order,

even if their starting times are likely to change given
the variability in the durations. The advantages of do-
ing so are clear: a simpler operational setting and the

availability of different solving methods from the lit-
erature. However, before embracing defuzzification, we
should also consider its effect (if any) on the robustness

of the obtained solutions.

In this subsection, we propose to evaluate, in terms
of ϵ-robustness, the predictive schedules obtained with
both approaches: solving the fuzzy problem or, alterna-

tively, defuzzifying durations and solving the resulting
crisp problem. To do so, we simulate N possible re-
alisations or scenarios of the problem: crisp durations

for tasks are generated following a probability distribu-

tion which is coherent with the possibility distribution

defined by each TFN. For each scenario i = 1, . . . , N ,
let Ci

max denote the makespan obtained by executing
tasks according to the ordering provided by a predictive

schedule. Then, the mean ϵ-robustness of the predictive
schedule, denoted ϵ, is calculated as:

ϵ =
1

N

N
∑

i=1

|Ci
max − Cpred

max |

Cpred
max

(11)

where Cpred
max is the makespan estimated by the pre-

dictive schedule. In our case, two predictive schedules
are considered: the schedule obtained from solving the
fuzzy problem, so Cpred

max is the expected makespan E[Cmax],

and the schedule obtained from solving the defuzzified
problem where TFNs are substitued by their expected
value, in which case Cpred

max is a crisp makespan value.

For this robustness analysis, we concentrate on the
largest problem instances, those of size 8 × 8 and con-
sider, for each problem instance, N = 1000 determinis-

tic instances corresponding to possible realisations. Fig-
ure 8 depicts, for each problem, the mean ϵ-robustness
value of each predictive schedule, the fuzzy one (de-

noted ϵF ) and the defuzzified one (denoted ϵC), across
theN simulated scenarios. Clearly, the predictive sched-
ule obtained from the fuzzy problem is much more ro-

bust (with smaller prediction error ϵ) than the schedule
obtained from the defuzzified problem. In fact, the ro-
bustness error of the defuzzified solution is always sig-

nificantly higher than that of the fuzzy solution, with
error increases ranging from 28.03% to 170.51% and an
average error increase of 85.04%. We may conclude that

it is more robust to take into account all the available
information about task durations and solve the fuzzy
problem than solve the defuzzified problem.

0
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1.5

2

2.5

Fig. 8 Mean ϵ-robustness value of the predictive schedules
obtained from the fuzzy problem (ϵF , in grey) and the de-
fuzzified one (ϵC , in black)
.
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5 Conclusions and Future Work

We have considered an open shop problem with un-
certain durations modelled as triangular fuzzy num-

bers where the objective is to minimise the expected
makespan, a problem denoted O|fuzzpij |E[Cmax]. We
have proposed a particle swarm optimization (PSO)
method to solve this problem. An extensive experimen-

tal analysis has shown that the PSO obtains good re-
sults both in terms of relative makespan error and also
in comparison to a memetic algorithm from the lit-

erature. Additionally, we have argued that it is more
robust to find solutions to the fuzzy problem, taking
into account the uncertainty in the durations along the

scheduling process, instead of the straightforward ap-
proach of defuzzifying the durations and scheduling the
resulting deterministic problem.

These promising results suggest directions for future
work. First, the PSO should be tested on more difficult
problems, fuzzy versions of other benchmark problems

from the literature. Also, the PSO provides a solid basis
for the development of more powerful hybrid methods,
in combination with local search techniques, an already

successful approach in fuzzy job shop problems [29]. It
would also be interesting to adapt this successful PSO
method to the fuzzy job shop problem.
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12. González-Rodŕıguez, I., Puente, J., Vela, C.R., Varela,
R.: Semantics of schedules for the fuzzy job shop problem.
IEEE Transactions on Systems, Man and Cybernetics,
Part A 38(3), 655–666 (2008)
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