
Research Article

Robust Switched Control Design for Nonlinear
Systems Using Fuzzy Models

Wallysonn Alves de Souza,1 Marcelo Carvalho Minhoto Teixeira,2

Máira Peres Alves Santim,3 Rodrigo Cardim,2 and Edvaldo Assunção2

1 Department of Academic Areas of Jataı́, Federal Institute of Education, Science and Technology of Goiás (IFG),
Campus Jataı́, 75804-020 Jataı́, GO, Brazil

2Department of Electrical Engineering, Univ Estadual Paulista, Campus of Ilha Solteira (UNESP), 15385-000 Ilha Solteira,
SP, Brazil
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�e paper proposes a new switched control design method for some classes of uncertain nonlinear plants described by Takagi-
Sugeno fuzzy models. �is method uses a quadratic Lyapunov function to design the feedback controller gains based on linear
matrix inequalities (LMIs). �e controller gain is chosen by a switching law that returns the smallest value of the time derivative of
the Lyapunov function.�e proposedmethodology eliminates the need to 	nd themembership function expressions to implement
the control laws. �e control designs of a ball-and-beam system and of a magnetic levitator illustrate the procedure.

1. Introduction

�ere has been much interest in recent years to study
switched systems, mainly linear systems, as can be seen in
[1–8]. �is interest has also increased for nonlinear systems
and several papers have been published on switched Takagi-
Sugeno fuzzy systems. In general, these studies use switching
rules based on regions that depend on the premise variables
and/or membership functions and/or state variables [9–18].

Results on switching laws based on the premise variable
can be seen in [9, 10, 17]. In [9, 10], a switched fuzzy system
was used to represent the nonlinear dynamical model of a
hovercra� vehicle and to design a switching fuzzy controller.
�en, in [10] smoothness conditions were established, which
avoid the phenomenon of discontinuity in the control signal.
�e problem of dynamic output feedback H∞ control was
addressed in [17]. Switching laws based on the values of
the membership functions are considered in [11, 12, 14–16],
where the switched control scheme presented in [14] is an

extension of the parallel distributed compensation (PDC).
A dynamic output feedback controller, which is based on
switched dynamic parallel distributed compensation, was
proposed in [15].

Switching laws based on the plant state vector were pro-
posed, for instance, in [13, 18]. �e control design presented
in [13] uses local state feedback gains obtained from the
solution of an optimization problem that assures a guaranteed
cost performance. LMIs conditions for robust switched fuzzy
parallel distributed compensation controller design and a
H∞ criterion were obtained in [18]. �e procedure to design
switching controllers described in [18] was based on the
switched quadratic Lyapunov function proposed in [19].

�is paper proposes a new method of switched control
for some classes of uncertain nonlinear systems described by
Takagi-Sugeno fuzzy models. �is new control law, which
also depends on the state variables, generalizes the results
given in [8], which considered only linear plants. �e pro-
posed controller chooses a gain from a set of gains by means
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of a suitable switching law that returns the smallest value
of the Lyapunov function time derivative. �e proposed
methodology enables us to design the set of gains based
on LMIs and on the parallel distributed compensation, as
proposed, for instance, in [20–26].

�e main advantage of this new procedure is its practical
application because it eliminates the need to 	nd the explicit
expressions of the membership functions, which can o�en
have long and/or complex expressions or may not be known
due to the uncertainties. Furthermore, for certain classes of
nonlinear systems, the switched controller can operate even
with an uncertain reference control signal. Additionally, with
the proposed methodology the closed-loop systems usually
present a settling time that is smaller than those obtainedwith
fuzzy controllers, without using switching, that are widely
studied in the literature. Moreover, performance indices such
as decay rate and constraints on the plant’s input and output
can be added in the control design procedure.

Simulation results of the control of a ball-and-beam
system and of a magnetic levitator are presented to com-
pare the performance of the proposed control law with
the traditional PDC fuzzy control law [20, 22]. �e com-
putational implementations were carried out using the
modeling language YALMIP [27] with the solver LMILab
[28].

�e paper is organized as follows. Section 2 presents the
preliminary results on Takagi-Sugeno fuzzy model, fuzzy
regulator design, and stability of the Takagi-Sugeno fuzzy
systems via LMIs. Section 3 o�ers a new switching control
method for some classes of nonlinear systems described by
Takagi-Sugeno fuzzy models. Some examples to illustrate
the performance of the new proposed method are given in
Section 4. Finally, Section 5 draws the conclusions.

For convenience, in some places, the following notation
is used:

K� = {1, 2, . . . , �} , � ∈ N, � (�) = �,
�� (� (�)) = ��, � (� (�)) = �, ‖�‖2 = √���,

(
, �, �,) (�) = �∑
�=1

�� (
 �, ��, ��, �) ,

�� ≥ 0, �∑
�=1

�� = 1, �� = [�1, �2, . . . , ��] .

(1)

2. Takagi-Sugeno Fuzzy Systems and
Fuzzy Regulator

Consider theTakagi-Sugeno fuzzymodel as described in [29–
31]:

Rule � : IF �1 (�) is ��1, . . . , �� (�) is ���,
THEN {�̇ (�) = 
 �� (�) + ��� (�) ,� (�) = ��� (�) ,

(2)

where ��� is the fuzzy set � of the rule �, � ∈ � and � ∈�, �(�) ∈ R
� is the state vector, �(�) ∈ R

	 is the input

vector, �(�) ∈ R

 is the output vector, 
 � ∈ R

�×�, �� ∈ R
�×	,�� ∈ R


×�, and �1(�), . . . , ��(�) are premise variables that in
this paper are the state variables.

From [20], �̇(�) given in (2) can be written as follows:

�̇ (�) = �∑
�=1

�� (� (�)) (
 �� (�) + ��� (�)) , (3)

where ��(�(�)) is the normalized weight of each local model
system 
 ��(�) + ���(�) that satis	es (1).

Assuming that the state vector �(�) is available, from
the Takagi-Sugeno fuzzy model (2), the control input of
fuzzy regulators via parallel distributed compensation has the
following structure [20]:

Rule � : IF �1 (�) is ��1, . . . , �� (�) is ���,
THEN � (�) = −�� (�) . (4)

Similar to (3), one can consider the control law [20]

� (�) = �� = − �∑
�=1

�� (� (�)) �� (�) . (5)

From (5), (3), and (1), one obtains

�̇ (�) = �∑
�=1

�∑
�=1

�� (� (�)) �� (� (�)) [
 � − ���] � (�)
= (
 (�) − � (�) (�)) �.

(6)

2.1. Stability of Takagi-Sugeno Fuzzy Systems via LMIs. �e
following theorem, whose proof can be seen in [20], guar-
antees the asymptotic stability of the origin of the system
(6).

�eorem 1. �e equilibrium point � = 0 of the continuous-
time fuzzy control system given in (6) is asymptotically stable
in the large if there exist a common symmetric positive de�nite
matrix � ∈ R

�×� and �� ∈ R
�×	 such that, for all �, � ∈ K�,

the following LMIs hold:

�
�� + 
 �� − ���� − ��� ��� ≺ 0,
(
 � + 
�)� + �(
 � + 
�)� − ����

− ���� − ��� ��� − ��� ��� ⪯ 0, � < �,
(7)

excepting the pairs (i,j) such that ���� = 0, for all �. If (7) are
feasible, the controller gains are given by � = ���−1, � ∈ K�.

Remark 2. In this paper, for simplicity, the new design
method of the controller gains was based on �eorem 1.
However, the proposed methodology does not exclude the
use of other relaxed control design methods also based on
LMIs, for plants described by Takagi-Sugeno fuzzy models,
as those presented in [20, 22, 23, 32–35].
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3. Main Result

3.1. Case 1: Fuzzy System with Constant Matrix �(�) = �. In
this section the design of a switched controller for the Takagi-
Sugeno fuzzy system (3) is proposed, assuming that �(�) = �
is a constant matrix now given by

�̇ (�) = 
 (�) � (�) + �� (�) . (8)

Suppose that (7) are feasible and let � = ���−1, � ∈ K�,
be the gains of the controller given in (5), and # = �−1 is
obtained from the conditions of �eorem 1. �en, de	ne the
switched controller by

� (�) = �� = −��, $ = argmin
�∈K�

(−��#���) . (9)

�erefore, from (1), the controlled system (8) and (9) can
be written as follows:

�̇ (�) = 
 (�) � (�) + ��� = �∑
�=1

�� [
 � − ��] � (�) . (10)

�eorem 3. Assume that the conditions of �eorem 1, related
to the system (8) with the control law (5), hold and obtain� = ���−1, � ∈ K� and # = �−1. �en, the switched control
law (9) makes the equilibrium point � = 0, of the system (8),
asymptotically stable in the large.

Proof. Consider a quadratic Lyapunov candidate function� = ��#�. De	ne �̇�� and �̇�� as the time derivatives of� for
the system (8), with the control laws (5) and (9), respectively.
�en, from (10),

�̇�� = 2��#�̇ = 2��# (
 (�) � + ���)
= 2��#
 (�) � + 2��#� (−�) �. (11)

�us, note that, from (1) and (9),

min
�∈K�

{��#� (−�) �} ≤ ��#�(− �∑
�=1

���)�. (12)

�erefore, from (11) and the laws given in (9) and (5) observe
that

�̇�� = 2��#
 (�) � + 2min
�∈K�

{��#� (−�) �}
≤ 2��#
 (�) � + 2��#�(− �∑

�=1
���)�

= 2��# (
 (�) − � (�)) �
= 2��# (
 (�) � + ���) = �̇�� .

(13)

�en, �̇�� ≤ �̇�� . Furthermore, from �eorem 1 �̇�� < 0 for� ̸= 0. �us, the proof is concluded.

Remark 4. �eorem 3 shows that if the conditions of
�eorem 1 are satis	ed, then �̇��(�(�)) < 0 for all �(�) ̸= 0

and thus �̇��(�(�)) < 0 for �(�) ̸= 0, ensuring that the
equilibrium point � = 0 of the controlled system (8) and
(9) is asymptotically stable in the large. �us, �eorem 1 can
be used to project the gains 1, 2, . . . , � and the matrix# = �−1 of the switched control law (9). Additionally, note
that the switched control law (9) does not use themembership
functions ��, � ∈ K�, which would be necessary to implement
the control law (5) and may thus o�er a relatively simple
alternative for implementing the controller.

3.2. Case 2: Fuzzy SystemwithNonlinearity in theMatrix�(�).
In this case a fuzzy system similar to (3) will be considered,
with ��, � ∈ K�, de	ned in (1); namely,

̇̂� (�) = 
̂ (�) �̂ (�) + �̂ (�) � (�) ,

̂ (�) = �∑

�=1
��
̂ �, �̂ (�) = �∑

�=1
���̂�. (14)

Let V ∈ R
	 be the time derivative of the control input

vector � ∈ R
	. De	ne ��+� and V�, such that �̇�+�(�) = �̇�(�) =

V�(�), 5 ∈ K	. �us one obtains the following system:

̇̂� (�) = 
̂ (�) �̂ (�) + �̂ (�) � (�) ,
�̇�+1 (�) = V1,

...

�̇�+	 (�) = V	,
(15)

or equivalently [36]

�̇ (�) = 
 (�) � (�) + �V (�) , (16)

where

� = [�̂� ��+1 ⋅ ⋅ ⋅ ��+	]�,

 (�) = [
̂ (�) �̂ (�)0	×� 0	×	] , � = [0�×	9	×	] . (17)

A�er the aforementioned considerations, note that the
system (16) is similar to the system (8) and therefore the
control problem falls into Case 1. �us, one can adopt the
procedure stated in Case 1 for designing a switched control
law V(�) = −��(�), � ∈ R

	×�+	.

3.3. Case 3: Fuzzy System with Uncertainty in the Control

Signal. In this case, it is assumed that the plant given by �̇ =;(�, �) has an equilibrium point � = �0 and the respective
control input is � = �0, such that ;(�0, �0) = 0. Suppose that�0 is known, �0 is uncertain, but 0 < �0 ∈ [�0min

, �0max
], where�0min

and �0max
are known, and the plant can be described by

the Takagi-Sugeno fuzzy system (1)–(3),

�̇ (�) = 
 (�) � (�) + � (�) �, (18)

where �(�) = �(�)−�0, �(�) is the state vector of the plant and�(�) = �(�) − �0, � is the control input of the plant.
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Now consider that �(�) can be written as follows:

� (�) = �> (� (�)) , (19)

where � is a known constant matrix and >(�(�)) > 0, for all �,
is an uncertain nonlinear function. �us, the system (18) can
be written as follows:

�̇ (�) = 
 (�) � (�) + � (�) � = 
 (�) � (�) + �> (� (�)) �.
(20)

Assume that the gains � = ���−1, � ∈ K�, and the

matrix # = �−1 have been obtained using the vertices of the
polytope of the system (18) in the LMIs (7) from �eorem 1,
as proposed in [20]. Now, given a constant @ > 0, de	ne the
control law as

� (�) = �(�,�) = �(�,�) − �0, with �(�,�) = −�� + A�, (21)

where

� ∈ {1, 2, . . . , �} , $ = argmin
�∈K�

{−��#���} ,

A� =
{{{{{{{{{

�0max
, if ��#� < −@,[(�0min

− �0max
) ��#�+ @ (�0max

+ �0min
)] × (2@)−1, if

HHHHH��#�HHHHH ≤ @,�0min
, if ��#� > @.

(22)

Within this context the following theorem is proposed.

�eorem 5. Suppose that the conditions from�eorem 1 hold,
for the system (18) with the control law (5), and obtain � =���−1, � ∈ K�, and # = �−1. �en the switched control
law (21) and (22) makes the system (18) and (19) uniformly
ultimately bounded.

Proof. Consider a quadratic Lyapunov candidate function� = ��#�. De	ne �̇�� and �̇�(�,�) as the time derivatives of� for the system (18), (19), with the control laws (5) and (21),
and (22), respectively. �en,

�̇�(�,�) = 2��#�̇ = 2��# (
 (�) � + �> (�) �(�,�))
= 2��# (
 (�) � − � (�) (�) �)

+ 2��#�> (�) [�(�,�) − �0 +  (�) �]
= �̇�� + 2��#�> (�) [−�� + A� − �0 +  (�) �]
= �̇�� + 2> (�)min

�∈K�
{−��#���}

+ 2> (�) ��#� [A� − �0 +  (�) �] .

(23)

Remembering that �� > 0, � ∈ K� and ∑��=1 �� = 1, >(�) >0, and >(�)� = �(�) and noting that min�∈K�{−��#���} ≤−��#�(∑��=1 ���)�, from (23)

�̇�(�,�) ≤ �̇�� − 2��#� (�)( �∑
�=1

���)�
+ 2> (�) ��#� [A� − �0 +  (�) �]

= �̇�� + 2> (�) ��#� (A� − �0) .
(24)

Now, if |��#�| ≥ @, then from (22), >(�)��#�(A� − �0) ≤ 0.
�us, from (24) �̇�(�,�) ≤ �̇�� < 0 for � ̸= 0, since the system
(18) with the control law (5) is globally asymptotically stable.

Otherwise, if |��#�| < @, one obtains from (24) and (22)

�̇�(�,�) ≤ �̇�� + 2>max

HHHHH��#�HHHHH ⋅ HHHHHA� − �0HHHHH
≤ − J‖�‖22 + 2>max

HHHHHA� − �0HHHHH @
≤ − J‖�‖22 + 2>max (HHHHHA�HHHHH + HHHH�0HHHH) @
≤ − J‖�‖22 + 4>max ⋅ �0max

⋅ @
≤ − J‖�‖22 + J1,

(25)

where −J < 0 denotes the maximum eigenvalue of #(
(�) −�(�)(�)) + (
(�) − �(�)(�))�# for all � de	ned in (1),>max = max{>(�)}, and J1 = 4>max ⋅ �0max
⋅ @. �erefore,�̇�(�,�) < 0, if ‖�‖2 > √J1/J. �us, according to [37] the

controlled system is uniformly ultimately bounded and the
proof is concluded.

Remark 6. Observe that the function A� given in (22) is
important to ensure the uniformultimate boundedness of the
system and smoothness of the control input. Note that when@ is equal to zero, the function A� is a discontinuous function
and therefore the control input can also be discontinuous, as
can be seen in [8].�us, the designermust choose @ according
to the requirements.

4. Examples

4.1. Example of Case 1. To illustrate this case, presented is the
control design of a ball-and-beam system, in Figure 1, whose
mathematical model [38, page 26] is given by the following
equations:

̈� (�) = N� (�) ̇O2 (�) − N> sin (O (�)) , ̈O (�) = � (�) , (26)

where � is the position of the ball; O is the angle of the beam
relative to the ground; � is the torque applied to the beam

and the control input; > = 9.81m/s2 is the acceleration of the

gravity; and N = RS2/(T�+RS2) is an uncertain parameter of
the system which depends on the mass R, the radius S, and
the moment of inertia T� of the ball.
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r u

�

Figure 1: Ball-and-beam system.

De	ne the state variables �1 = �(�), �2 = ̇�(�), �3 =O(�), and �4 = ̇O(�). �en, by de	ning the state vector � =[�1 �2 �3 �4]�, the system (26) can be written as follows:

�̇1 = �2,
�̇2 = N�1�24 − N> sin (�3) ,
�̇3 = �4,
�̇4 = �,

(27)

or equivalently

�̇ = [[[
[

0 1 0 00 0 ;23 (�, N) ;24 (�, N)0 0 0 10 0 0 0
]]]
]
� + [[[

[

0001
]]]
]
�, (28)

where

;23 (�, N) = −N> sin (�3)�3 , ;24 (�, N) = N�1�4. (29)

Note that, for implementing the switched controller (9),
the controller gains will be designed using the generalized
form proposed in [22], and therefore the following domain
will be considered for the system (28) and (29):

\1 = {� ∈ R
4 : −1 ≤ �1 ≤ 1, − _12 ≤ �3 ≤ _12 ,

− 2 ≤ �4 ≤ 2, 0.60 ≤ N ≤ 0.7143} .
(30)

A�er the calculations the following maximum and mini-
mum values of the functions ;23 and ;24 were obtained:

d231 = max
(�,�)∈�1

{;23 (�, N)} = −4.8492,
d232 = min

(�,�)∈�1
{;23 (�, N)} = −5.0053,

d241 = max
(�,�)∈�1

{;24 (�, N)} = 1.0204,
d242 = min

(�,�)∈�1
{;24 (�, N)} = −1.0204.

(31)

�us, the nonlinear function ;23 can be represented by
a Takagi-Sugeno fuzzy model, considering that there exists
a convex combination with membership functions $231 =

$231(�, N) and $232 = $232(�, N) and constant values d231 andd232 given in (31) such that [22]

;23 (�, N) = $231 (�, N) d231 + $232 (�, N) d232 , (32)

with

0 ≤ $231 , $232 ≤ 1, $231 + $232 = 1. (33)

�erefore, from (32) note that

$231 (�, N) = ;23 (�, N) − d232d231 − d232 ,
$232 (�, N) = 1 − $231 (�, N) .

(34)

Similarly, from (31), there exist @241 = @241(�, N) and @242 =@242(�, N) such that

;24 (�, N) = @241 (�, N) d241 + @242 (�, N) d242 , (35)

with

0 ≤ @241 , @242 ≤ 1, @241 + @242 = 1. (36)

Hence, from (35) observe that

@231 (�, N) = ;24 (�, N) − d242d241 − d242 ,
@242 (�, N) = 1 − @241 (�, N) .

(37)

Recall that @241(�, N) + @242(�, N) = 1 and $231(�, N) +$232(�, N) = 1, from (33) and (36), respectively. �en, it
follows that

;23 (�, N) = $231@241d231 + $231@242d231
+ $232@241d232 + $232@242d232 ,

;24 (�, N) = $231@241d241 + $231@242d242
+ $232@241d241 + $232@242d242 .

(38)

Now, de	ne

�1 (�, N) = $231@241 , �2 (�, N) = $231@242 ,
�3 (�, N) = $232@241 , �4 (�, N) = $232@242 , (39)

as the membership functions of the system (28) and (29), and
their local models:


1 = [[[
[

0 1 0 00 0 d231 d2410 0 0 10 0 0 0
]]]
]
, 
2 = [[[

[

0 1 0 00 0 d231 d2420 0 0 10 0 0 0
]]]
]
,


3 = [[[
[

0 1 0 00 0 d232 d2410 0 0 10 0 0 0
]]]
]
, 
4 = [[[

[

0 1 0 00 0 d232 d2420 0 0 10 0 0 0
]]]
]
,

�1 = �2 = �3 = �4 = [0 0 0 1]�.
(40)
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Figure 2: State variables of the ball-and-beam system (28) using the switched controller (9) (solid line) and the fuzzy controller (5) (dotted

line), considering N = 0.7 and the initial condition �(0) = [0.2 −1 −0.2 0]�.
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Figure 3: Control signal of the ball-and-beam system (28) using
the switched controller (9) (solid line) and the fuzzy controller (5)
(dotted line), considering N = 0.7 and the initial condition �(0) =[0.2 −1 −0.2 0]�.

�us, using the LMIs (7) from �eorem 1, one obtains
the following controller gains and symmetric positive de	nite
matrix:

1 = [−17.6809 −35.4033 252.2903 18.5316] ,
2 = [−26.9467 −62.7180 360.9879 26.9307] ,
3 = [−17.6320 −35.2593 251.7173 18.4873] ,
4 = [−26.8979 −62.5740 360.4149 26.8865] ,

# = [[[
[

0.0022 0.0032 −0.0170 −0.00120.0032 0.0095 −0.0380 −0.0029−0.0170 −0.0380 0.2302 0.0170−0.0012 −0.0029 0.0170 0.0020
]]]
]
.

(41)

�e goal of the simulation is to keep the ball at the origin(�, O) = (0, 0). Considering, N = 0.7, the initial condition�0 = [0.2 −1 −0.2 0]�, and the equilibrium point �� =

[0 0 0 0]�, the simulation of the controlled systems (28),
(29), (9), (41) and (28), (29), (5), (31)–(41) presented the
responses shown in Figures 2 and 3.

Note that the controller gains have been found using the
generalized form proposed in [22]. However, the switched
controller �� given in (9) does not use the membership func-
tions and therefore it is not necessary to 	nd and implement
such functions. �us, an advantage of this new methodology
is that one can eliminate all the steps of the project given in
(32)–(39) that are needed to 	nd the membership functions,
which can sometimes have long and/or complex expressions
or may not be known due to the uncertainties and so their
practical implementations are not possible, as is the case of
this example.

4.2. Example of Case 2. To illustrate this case, consider the
control system design of a magnetic levitator presented in
Figure 4, whose mathematical model [38, page 24] is given
by

R ̈� = −f ̇� + R> − gh�2
2(1 + h�)2 , (42)

where R = 0.05Kg is the mass of the ball; > = 9.8m/s2 is
the gravity acceleration; g = 0.460H, h = 2m−1, and f =0.001Ns/m are positive constants; � is the electric current; and� is the position of the ball.

De	ne the state variables �1 = � and �2 = ̇�. �en, (42)
can be written as follows [39]:

�̇1 = �2, �̇2 = > − fR�2 − gh�2
2R(1 + h�1)2 . (43)
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Figure 4: Magnetic levitator.

Consider that during the required operation, [�1 �2]� =(�1, �2) ∈ \2, where
\2 = {(�1, �2) ∈ R

2 : 0 ≤ �1 ≤ 0.15} . (44)

�e objective of the paper is to design a controller that
keeps the ball in a desired position � = �1 = �0, a�er a
transient response. �us, the equilibrium point of the system

(43) is �� = [�1� �2�]� = [�0 0]�.
From the second equation in (43), observe that, in the

equilibrium point, �̇2 = 0 and � = �0, where
�20 = 2R>gh (1 + h�0)2. (45)

Note that the equilibrium point is not in the origin[�1 �2]� = [0 0]�. �us, for the stability analysis the
following change of coordinates is necessary:

�1 = �1 − �0, �2 = �2, � = �2 − �20; (46)

that is,

�1 = �1 + �0, �2 = �2, �2 = � + �20. (47)

�erefore, �̇1 = �̇1 and �̇2 = �̇2 and from (45), �2 = � +2R>(1 + h�0)2/gh.
Hence, the system (43) can be written as

�̇1 = �2,
�̇2 = >h (h�1 + 2h�0 + 2)

(1 + h (�1 + �0))2 �1 − fR�2
− gh

2R(1 + h (�1 + �0))2 �.
(48)

Finally, from (48) it follows that

[�̇1�̇2] = [
[

0 1
;21 − fR

]
]
[�1�2] + [ 0>21] �, (49)

where

;21 = ;21 (�1, �0) = >h (h�1 + 2h�0 + 2)
(1 + h (�1 + �0))2 ,

>21 = >21 (�1, �0) = −gh
2R(1 + h (�1 + �0))2 .

(50)

Now, de	ne �3 and V such that �̇3 = �̇ = V; that is, �3 = �.
�us, considering (50), the system (49) can be given by

[
[
�̇1�̇2�̇3

]
]

= [[[[[
[

0 1 0
;21 − fR >21
0 0 0

]]]]]
]
[
[
�1�2�3

]
]

+ [
[
001]]

V. (51)

A�er this adjustment it is seen that the problem falls into
Case 1. �us, the procedure stated in Case 1 can be used for
designing a switched control law V(�) = −��(�), � ∈ R

3.
�us, to 	nd the local models, the maximum and mini-

mumvalues of functions;21 and>21must be obtained. In this
case the methodology proposed in [39] will be used. �en,
suppose that the desired position is known and belongs to the
set �0 ∈ [0.04, 0.11] and consider �0 as a new variable for the
speci	cation of the domain\3 of the nonlinear functions ;21
and >21 [39]:

\3 = {(�1, �2, �0) ∈ R
3 : −0.11 ≤ �1 ≤ 0.11,

0.04 ≤ �0 ≤ 0.11} . (52)

As expected, a�er the calculations, considering (50) and
(52), one obtains

d211 = max
(�1 ,�0)∈�3

{;21 (�1, �0)} = 51.4116,
d212 = min

(�1 ,�0)∈�3
{;21 (�1, �0)} = 25.1427,

j211 = max
(�1 ,�0)∈�3

{>21 (�1, �0)} = −4.4367,
j212 = min

(�1 ,�0)∈�3
{>21 (�1, �0)} = −12.4392.

(53)

�erefore, from (53) one has the following local models:


1 = [
[

0 1 0d211 −0.02 j2110 0 0 ]
]
, 
2 = [

[
0 1 0d211 −0.02 j2120 0 0 ]

]
,


3 = [
[

0 1 0d212 −0.02 j2110 0 0 ]
]
, 
4 = [

[
0 1 0d212 −0.02 j2120 0 0 ]

]
,

�1 = �2 = �3 = �4 = [0 0 1]�.
(54)
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Using the LMIs (7) from �eorem 1, the following con-
troller gains and symmetric positive de	nite matrix were
obtained:

1 = [−636.9216 −109.3352 15.6269] ,
2 = 103 [−2.2199 −0.3851 0.0535] ,
3 = [−784.7978 −135.0930 19.1611] ,
4 = 103 [−2.3678 −0.4108 0.0570] ,
# = [

[
5.7404 0.8178 −0.14200.8178 0.1424 −0.0195−0.1420 −0.0195 0.0077 ]

]
.

(55)

For numerical simulation, at � = 0 s the initial condition
was �(0) = [0.04 1]� and �0 = 0.1m. Since �3 = � =�2 − �20 and �20 = 1.5339A2 (assuming that �2(0) = 0, the
initial condition for the system (51) is �0 = [0.04 1 0]� −
[0.1 0 1.5339]� = [−0.06 1 −1.5339]�; that is, �3(0) =−1.5339), at � = 1 s, from Figure 5, the system is practically at

the point �(1) = [�1(1) �2(1)]� = [0.1 0]� and �3(1) = 0.
A�er changing �0 from 0.1m to 0.04m at � = 2 s, one can see

that the system is practically at the point �(2) = [0.04 0]�
and�3(2) = 0, whichwill be the new initial condition. Finally,�0 changes from 0.04m to 0.08m at � ≥ 2 s. �us, as shown
in Figure 5, �(∞) = [0.08 0] and �3(∞) = 0. Figures 5 and
6 illustrate the system response.

4.3. Example of Case 3. Consider the magnetic levitator from
Section 4.2 given in (43) and (49)-(50), where the mass R is
uncertain and de	ne \4 as the operation domain [39]:

\4 = {(�1, �0, R) ∈ R
3 : −0.08 ≤ �1 ≤ 0.1,

0.05 ≤ �0 ≤ 0.08, 0.08 ≤ R ≤ 0.1} . (56)

�us, as described in Section 4.2, the system (49) can be
written as follows:

[�̇1�̇2] = [ 0 1;21 ;22] [�1�2] + [ 0>21] �, (57)

where

;21 = ;21 (�1, �0) = >h (h�1 + 2h�0 + 2)
(1 + h (�1 + �0))2 ,

;22 = ;22 (R) = − fR,
>21 = >21 (�1, �0, R) = −gh

2R(1 + h (�1 + �0))2 .
(58)

Observe that the system (57) can be rewritten as in (20);

that is, �̇ = 
(�)� + �>(�)�, where � = [0 −1]� and >(�) =>(�1, �0, R) = gh/2R(1 + h(�1 + �0))2. Note that >(�) > 0,
for all � ∈ \4.
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Figure 5: State variables of the magnetic levitator (43) and state �3
given in (51) using the switched controller (9) (solid line) and the
fuzzy controller (5) (dotted line), considering �0 = 0.1m, �0 =0.04m, and �0 = 0.08m, for � ∈ [0, 1), � ∈ [1, 2), and � ≥ 2,
respectively.
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(solid line) and fuzzy control signal (5) and electric current �(�)
(dotted line), for �0 ∈ [0.04, 0.11], considering �0 = 0.1m, �0 =0.04m, and �0 = 0.08m, for � ∈ [0, 1), � ∈ [1, 2), and � ≥ 2,
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current (�(�,�)(�)) of the controlled system, considering �0 = 0.08m
and R = 0.09Kg, �0 = 0.05m and R = 0.08Kg, and �0 = 0.07m
andR = 0.1Kg, for � ∈ [0, 1), � ∈ [1, 2), and � ≥ 2, respectively.
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A�er the calculations, the maximum and minimum
values of the functions ;21, ;22, >21, and �20, in the domain\4,
were obtained as follows:

d211 = max
(�1 ,�0)∈�4

{;21 (�1, �0)} = 45.2512,
d212 = min

(�1 ,�0)∈�4
{;21 (�1, �0)} = 26.7042,

d221 = max
	∈�4

{;22 (R)} = −0.0100,
d222 = min

	∈�4
{;22 (R)} = −0.0125,

j211 = max
(�1 ,�0 ,	)∈�4

{>21 (�1, �0, R)} = −2.4870,
j212 = min

(�1 ,�0 ,	)∈�4
{>21 (�1, �0, R)} = −6.5075,

max �0 = max
�0,	∈�4

{�20 (� (�))} = 2.8667,
min �0 = max

�0 ,	∈�4
{�20 (� (�))} = 2.0623.

(59)

From (59), de	ne the following local models of the plant (57)
and (58):


1 = [ 0 1d211 d221] , 
3 = [ 0 1d211 d222] ,

5 = [ 0 1d212 d221] , 
7 = [ 0 1d212 d222] ,

�1 = [ 0j211] , �2 = [ 0j212] ,
(60)

where 
1 = 
2, 
3 = 
4, 
5 = 
6, 
7 = 
8, �1 = �3 =�5 = �7, and �2 = �4 = �6 = �8.
�us, using the LMIs (7) from �eorem 1, the following

controller gains and symmetric positive de	nite matrix were
obtained:

1 = [−67.1269 −8.6056] ,
2 = [−39.6153 −4.9426] ,
3 = [−67.1260 −8.6051] ,
4 = [−39.6157 −4.9423] ,
5 = [−65.5197 −8.7998] ,
6 = [−34.0771 −4.6633] ,
7 = [−65.5169 −8.7990] ,
8 = [−34.0824 −4.6634] ,
# = [3.0219 0.45000.4500 0.0827] .

(61)

Setting @ = 10−4, the control law (21) for the levitator is
given by

� (�) = �(�,�) (�) = �2(�,�) (�) − �20,
with �2(�,�) (�) = −�� (�) + A�, (62)

where�, � ∈ K8, are presented in (61).
Consider

� ∈ {1, 2, . . . , 8} , $ = argmin
�∈K�

{−��#���} ,

A� = {{{{{
2.8667, if ��#� ≤ −@,−4022.3��#� + 2.4645, if

HHHHH��#�HHHHH ≤ @,2.0623, if ��#� ≥ @.
(63)

For the simulation illustrated in Figure 7, the initial

condition was �(0) = [0.05 1]� and, at � = 0 s, �0 = 0.08m
and R = 0.09Kg. In � = 1 s, from Figure 7, the system is

practically at the point �(1) = [0.08 0]�. A�er changing�0 from 0.08m to 0.05m and R from 0.09Kg to 0.08Kg at� = 2 s, one can see that the system is practically at the point�(2) = [0.05 0]�, which will be the new initial condition.
Finally, the last changes occur at � = 2 s: �0 from 0.05m to0.07m and R from 0.08Kg to 0.01Kg. �us, observe that in

Figure 7, �(∞) = [0.07 0]�.
Note that in this case it is not possible to obtain the

membership functions, since the mass is uncertain, but the
proposed method overcomes this problem, because it does
not depend on such functions. Observe also that even with
uncertainty in the reference control signal (because � =�2 − �20 and �20 given in (45) is uncertain considering thatR is uncertain), the proposed methodology was e�cient
and provided an appropriate transient response, as shown in
Figure 7.

Remark 7. In a control design it is important to assure stability
and usually other indices of performance for the controlled
system, such as the settling time (related to the decay rate),
constraints on input control and output signals.�e proposed
methodology allows specifying these performance indices,
without changing the LMIs given in [40] or their relaxations
as presented, for instance, in [20, 23], by adding a new set of
LMIs.

5. Conclusions

�is paper proposed a new switched control design method
for some classes of uncertain nonlinear plants described
by Takagi-Sugeno fuzzy models. �e proposed controller is
based on LMIs and the gain is chosen by a switching law that
returns the smallest time derivative value of the Lyapunov
function. An advantage of the proposed methodology is that
it does not change the LMIs given in the control design
methods commonly used for plants described by Takagi-
Sugeno fuzzy models as proposed, for instance, in [20,
22, 23, 34]. Furthermore, it eliminates the need to obtain
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the explicit expressions of the membership functions, to
implement the control law.�is fact is relevant in cases where
the membership functions depend on uncertain parameters
or are di�cult to implement. Simulating the implementation
of this new procedure in the control design of a ball-and-
beam system and of a magnetic levitator, the controlled
system presented an appropriate transient response, as seen
in Figures 2, 3, 5, 6, and 7.�us, the authors consider that the
proposed method can be useful in practical applications for
the control design of uncertain nonlinear systems.
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