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This article investigates the robust synchronisation problem for uncertain nonlinear chaotic systems. The norm-
bounded uncertainties enter into the chaotic systems in random ways, and such randomly occurring uncertainties
(ROUs) obey certain Bernoulli distributed white noise sequences. For this synchronisation problem, the sampled-
data controller that has randomly varying sampling intervals is considered. In order to fully use the sawtooth
structure characteristic of the sampling input delay, a discontinuous Lyapunov functional is proposed based on
the extended Wirtinger inequality. By the Lyapunov stability theory and the linear matrix inequality (LMI)
framework, the existence condition for the sample-date controller that guarantees the robust mean-square
synchronisation of chaotic systems is derived in terms of LMIs. Finally, in order to show the effectiveness of our
result, the proposed method is applied to two numerical examples: one is Chua’s chaotic systems and the other is
the hyperchaotic Rössler system.

Keywords: nonlinear chaotic systems; synchronisation; randomly occurring uncertainties; variable sampling;
sampled-data control

1. Introduction

Since the concept of synchronisation was introduced

by Pecora and Carroll (1990), chaos synchronisation

has been a very hot topic in the nonlinearity commu-

nity, and has attracted much interest of scientists and

engineers due to its potential applications in biology,

chemistry, engineering, secure communication and

some other nonlinear fields. It should be pointed out

that chaotic systems have complex behaviours that

possess some special features, such as being extremely

sensitive to tiny variations of initial conditions, having

bounded trajectories in phase space and so on. To date,

various control methods have been applied theoreti-

cally and experimentally to the synchronisation of

chaotic systems, such as the adaptive feedback control

(Xiao and Cao 2009), delayed feedback control (Cao,

Li, and Ho 2005), observer-based control (Celikovsky

and Chen 2005), backstepping control (Park 2006),

impulsive control (Cao, Ho, and Yang 2009; He, Qian,

Cao, and Han 2011), H1 control (Lin and Kuo 2011),

sliding mode control (Yau 2008), fuzzy control (Lam,

Ling, Lu, and Ling 2008), sampled-data control (Lu

and Hill 2008) and so on. In recent years, among

various control methods, the importance of the

sampled-data control scheme has been increasing as

the digital hardware and communication technologies

are rapidly developing. As most of the controllers are

digital controller or networked to the system, these

control systems can be modelled by sampled-data

systems, whose control signals are kept constant

during the sampling period and are allowed to

change only at the sampling instant. These discontin-

uous control signals that have stepwise form cause big

trouble to control or analyse the system. In order to

effectively deal with the sampled-data control,

Astrom and Wittenmark (1989) and Mikheev,

Sobolev, and Fridman (1988) introduced a concept

that discontinuous-sampled control inputs treat time-

varying delayed continuous signals, although applied

actual control signals are discontinuous. Since then,

the sampled-data control scheme based on the concept

of Astrom and Wittenmark (1989) and Mikheev et al.

(1988) have been applied to many dynamic systems,

such as the complex dynamical networks (Li, Zhang,

Hu, and Nie 2011), fuzzy systems (Peng, Han, Yue,

and Tian 2011), neural networks (Zhang, He, and Wu

2010) and so on. However, there are only a few works

for chaotic systems using the sampled-data control

approach (Lu and Hill 2008).

Since the above concept is introduced by Astrom

and Wittenmark (1989) and Mikheev et al. (1988), the

sampled-data control system can be dealt with the
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time-delayed system. Untill now, so many techniques

have been developed to analyse the time-delayed

system because time-delay is one of the important

facts that causes instability. For example, synchroni-

sation of chaotic neural networks with time-varying

delay is investigated in Balasubramaniam, Chandran,

and Theesar (2011). In Balasubramaniam,

Lakshmanan, and Theesar (2010), state estimation

for Markovian jumping recurrent neural networks is

studied by considering interval time-varying delays. In

Zheng, Zhou, and Wang (2012), stochastic exponential

synchronisation of neural networks with mixed delays

is discussed. The exponential synchronisation scheme

is applied to reaction–diffusion networks with mixed

delays using intermittent driving given in Hu, Yu,

Jiang, and Teng (2012a).

In sampled-data control systems, selecting proper

sampling interval is very important to design suitable

controllers. By defining the sampling interval, there are

several kinds of sampled-data control methods. When

all signals in a given system are sampled at one

constant rate, we speak of a single-rate digital control

system; when different signals in a given system are

sampled at different but constant rates, we speak of a

multi-rate digital control system; and when for all

signals in a system that are sampled, the sampling rate

for each signal is the same, but may be varying from

sample to sample, we speak of a digital control system

with time-varying sampling intervals. Traditionally,

many researches focus more on single-rate digital

control systems, however, the time-varying sampling

is applied to several practical systems because of its

usefulness in recent years. For example, in networked

control systems, if a constant sampling period is

adopted, the sampling period should be large enough

to avoid network congestion when the network is

occupied by most users, so network bandwidth cannot

be sufficiently used when the network is idle.

Therefore, the necessity of the controller with varying

sampling interval has strongly come into fore. These

have motivated the study of variable sampling and

there are a number of papers considering the problem

of varying sampling period of control systems. In

Tahara, Fujii, and Yokoyama (2007), the variable

sampling deadbeat control method for the megawatt

(MW) class pulse width modulation (PWM) inverter

system is used to overcome the poor control perfor-

mance that comes from the limitation of hardware. In

kilowatt (kW) class PWM inverter system, the output

voltage can accurately track the reference voltage

under the condition that the carrier frequency is limited

to 2 kHz. However, in the MW class PWM inverter

system, the carrier frequency cannot be too high due to

the performance of switching device. In Ozdemir and

Townley (2003), the sampled-data integral control for

a large class of infinite-dimensional systems was pro-

posed using a convergent adaptive sampling. In Hu and

Michel (2000) and Sala (2005), the stability problem of

digital feedback control systems with time-varying

sampling periods is discussed. The problem of stochas-

tic stability for networked control systems with both

network-induced delay and transmitted data dropout

using the time-varying sampling period method, where

the number of data packet dropout is driven by a finite

state Markov chain, is investigated in Li, Zhang, and

Jing (2009). More recently, stochastically-varying

sampling intervals are considered, which are said to be

the further extended scheme to the case of time-varying

sampling intervals. In Gao, Meng, and Chen (2008),

mean square stability of the networked control system

with stochastically-varying network-induced delay is

studied. In Gao, Wu, and Shi (2009), an H1 control

for sampled-data control system with probabilistic

sampling is also investigated.

On the other hand, in the real-world situation,

parameter uncertainties are unavoidable mainly due to

the modelling inaccuracies, variations of the operating

point, aging of the devices, etc. Therefore, the issue of

robustness analysis has been taken into account in all

sorts of systems by many researchers (Mohammad-

Hoseini, Farrokhi, and Koshkouei 2008; Yang and Ye

2009; Balasubramaniam et al. 2011; Li, Duan, Xie, and

Liu 2012; Balasubramaniam, Vembarasan, and

Rakkiyappan 2012; Faydasicok and Arik 2012). Very

recently, Hu et al. (2012b) have proposed a new type of

uncertainties named as randomly occurring uncertain-

ties (ROUs) due to the fact that the uncertainties may

be subject to random changes in environmental

circumstances, for instance, repairs of components

and sudden environmental disturbances, and thus the

uncertainties may occur in a probabilistic way with

certain types and intensity. To the best of our

knowledge, no related results have been established

for synchronisation of nonlinear chaotic systems

with ROUs.

In this article, based on a common Lyapunov

functional (Yue, Han, and Peng 2004; Naghshtabrizi

and Hespanha 2005), we propose a discontinuous

Lyapunov functional approach to achieve asymptotic

robust synchronisation of uncertain chaotic systems

using sampled-data control with stochastically-varying

sampling intervals, whose occurrence probabilities are

given constants and satisfy the Bernoulli distribution.

In order to use the discontinuous Lyapunov functional

approach, stochastic variables (�ij(t)) are defined. The

discontinuous Lyapunov functional makes full use of

the sawtooth structure characteristic of sampling input

delays and thus get less conservative synchronisation

criterion for the system. Furthermore, the parameter

uncertainties that are time-varying norm bounded and

108 T.H. Lee et al.

D
o
w

n
lo

ad
ed

 b
y
 [

Y
eu

n
g
n
am

 U
n
iv

er
si

ty
] 

at
 1

7
:2

3
 1

8
 D

ec
em

b
er

 2
0
1
2
 



randomly occurred are considered for reality. The

derived sufficient condition for the stability is formu-

lated by a linear matrix inequality (LMI) that is easily

solvable using various numerical convex optimisation

algorithms (Boyd, Ghaoui, Feron, and Balakrishnan

1994). Two numerical examples are included to show

the effectiveness of our result. One is a well-known

chaotic system and the other is a hyperchaotic system.

Notations: R
n is the n-dimensional Euclidean space,

R
m�n denotes the set of an m� n real matrix. X> 0

(respectively, X� 0) means that the matrix X is a real

symmetric positive definite matrix (respectively, posi-

tive semi-definite). I denotes the identity matrix. 0m�n

denotes an m� n zero matrix. �(i, j) denotes the ith

row, j-th column element (or block matrix) of matrix

�. ? in a matrix represents the elements below the main

diagonal of a symmetric matrix. k�k refers to the

Euclidean vector norm and the induced matrix norm.

E{x} and E{xjy}, respectively, mean the expectation of

the stochastic variable x and the expectation of the

stochastic variable x conditional on the stochastic

variable y. Pr{�} means the occurrence probability of

the event �. {{A}\ {B}} means the intersection

between set A and B.

2. Problem formulation

Consider the following master (drive) and slave

(response) chaotic systems with ROUs:

_xðtÞ ¼ ðAþ �ðtÞDAðtÞÞxðtÞ þ ðBþ �ðtÞDBðtÞÞ f ðxðtÞÞ,

ð1Þ

_yðtÞ ¼ ðAþ �ðtÞDAðtÞÞyðtÞþ ðBþ �ðtÞDBðtÞÞ f ðyðtÞÞþ uðtÞ

ð2Þ

where x(t)¼ (x1, x2, . . . ,xn)
T2R

n and y(t)¼ ( y1,

y2, . . . , yn)
T2R

n are state vectors of master and slave

systems, respectively, A and B are system matrices with

appropriate dimensions, u(t)¼ (u1, u2, . . . , un)
T2R

n is

the control input and f: R
n!R

n is a continuous

nonlinear vector function satisfying the global

Lipschitz condition, i.e.

k f ðaÞ � f ðbÞk � l ka� bk 8a, b 2 R
n ð3Þ

for a positive scalar l. And, DA(t) and DB(t) are the

uncertainties of system matrices of the form

DAðtÞ DBðtÞ
� �

¼ DFðtÞ Ea Eb

� �

ð4Þ

in which D, Ea, Eb are known constant matrices and

the time-varying nonlinear function F(t) satisfies

FTðtÞFðtÞ � I, 8t � 0: ð5Þ

For our synchronisation scheme, let us define an

error vector as follows:

eðtÞ ¼ yðtÞ � xðtÞ: ð6Þ

From Equation (6), the error dynamics is given as

_eðtÞ ¼ ðAþ �ðtÞDAðtÞÞeðtÞ þ ðBþ �ðtÞDBðtÞÞ �fðeðtÞÞ þ uðtÞ,

ð7Þ

where �fðeðtÞÞ ¼ f ð yðtÞÞ � f ðxðtÞÞ.

To account for the phenomena of ROUs, we

introduce the stochastic variables �(t), which are

Bernoulli distributed white sequences. Natural

assumptions of �(t) are as follows:

Prf�ðtÞ ¼ 1g ¼ �, Prf�ðtÞ ¼ 0g ¼ 1� �,

where �2 [0, 1] is a known constant.

Remark 1: Here, there is big probability of the

existence of errors between theoretical and practical

systems because of unexpected factors, such as sensing

error, modelling error, parameter aging and channel

strength. Therefore, in order to overcome this phe-

nomenon, it is natural to assume system uncertainties.

In addition, the system uncertainties may be the

random changes in environmental circumstances, for

example, network-induced random failures and repairs

of components and sudden environmental distur-

bances. So, to consider ROUs is worth for reality.

Remark 2: Originally, Bernoulli distributed variables

are used to model the presence of the random

nonlinearity that mimics the packet dropping scenario

in networked world. After introducing the Bernoulli

distributed variable to engineering, it has been applied

to express many scenarios such as probabilistic actu-

ators or sensors fault (Tian, Yue, and Peng 2010) and

random delays (Peng, Yue, Tian, and Gu 2009; Yue,

Tian, Wang, and Lam 2009; Hu et al. 2012c). Very

recently, Bernoulli distributed variables have been

widely used in the concept of random occurring that

have various types, such as randomly occurring

nonlinearities, randomly occurring delays, randomly

occurring sensors saturations (Ding, Wang, Shen, and

Shu 2012; Hu et al. 2012b).

Remark 3: The random variable �(t) that satisfies

E{�(t)}¼ � and E{(�(t)� �)2}¼ �(1� �), is used to model

the probability distribution of the ROUs. Such a

description originated from Hu et al. (2012) has never

been considered in control problems of chaotic systems.

Then, Equation (7) can be rewritten as

_eðtÞ ¼ AeðtÞ þ B �fðeðtÞÞ þ uðtÞ þ �ðtÞDpðtÞ,

pðtÞ ¼ FðtÞqðtÞ,

qðtÞ ¼ EaeðtÞ þ Eb
�fðeðtÞÞ:

ð8Þ

International Journal of Control 109
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It should be noted that nowadays, most of the

controllers are digital controller or networked to the

system. These control systems can be modelled by

sampled-data control systems. So the sampled-data

control approach is eligible to receive much attention.

Hence, this article investigates a design for feedback

controller using the sampled-data signal with stochas-

tic sampling such that limt!1 y(t)¼ x(t). To do this,

the controller takes the following form:

uðtÞ ¼ KeðtkÞ, tk � t5 tkþ1, k ¼ 0, 1, 2, . . . , ð9Þ

where K is the gain matrix of the feedback controller to

be determined later and tk is the updating instant time

of the zero-order-hold (ZOH).

We introduce a stochastic variable d(t) as

stochastically-varying sampling interval such that

tkþ1� tk¼ d(t) satisfies the Bernoulli distribution as

well, and two stochastic variables, d(t) and �(t), are

mutually independent. Therefore, it is assumed that we

have m sampling intervals, taking values d0, d1, . . . , dm
with 0¼ d0< d1< � � �< dm, and the probability of the

occurrence of each is

Prfd ðtÞ ¼ dig ¼ �i, i ¼ 1, 2, . . . ,m, ð10Þ

where �i2 [0, 1] are known constants and
Pm

i¼1 �i ¼ 1.

In order to design the controller using sampled-

data with stochastic sampling, the concept of the time-

varying delayed control input which is proposed in

Astrom and Wittenmark (1989) and Mikheev et al.

(1988) is adopted in this article. Thus, by defining

�(t)¼ t� tk, tk� t< tkþ1, the controller (9) can be

represented as the following:

uðtÞ ¼ KeðtkÞ

¼ Keðt� �ðtÞÞ, tk � t � tkþ1: ð11Þ

Here, the time-varying delay �(t) satisfies _�ðtÞ ¼ 1

and the following probability rule:

� If sampling interval is d1, then Prf0� �ðtÞ5d1g¼ 1

� If sampling interval is d2, then

Prf0� �ðtÞ5d1g¼
d1

d2

Prfd1 � �ðtÞ5d2g ¼
d2�d1

d2

8

>

>

<

>

>

:

.

.

.

� If sampling interval is dm, then

Prf0� �ðtÞ5d1g¼
d1

dm

Prfd1 � �ðtÞ5d2g ¼
d2�d1

dm

.

.

.

Prfdm�1 � �ðtÞ5dmg ¼
dm�dm�1

dm
:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð12Þ

Now, we define the stochastic variables �i(t) and

�i(t) such that

�iðtÞ ¼
1 di�1 � �ðtÞ5 di

0 otherwise

�

�iðtÞ ¼
1 d ðtÞ ¼ di

0 otherwise

�
, i ¼ 1, . . . ,m ð13Þ

with the following probability:

Prf�iðtÞ ¼ 1g ¼ Prfdi�1 � �ðtÞ5 dig

¼
X

m

j¼i

�j
di � di�1

dj
¼ �i,

ð14Þ

Prf�iðtÞ ¼ 1g ¼ Prfd ðtÞ ¼ dig ¼ �i, ð15Þ

where i¼ 1, . . . ,m,
Pm

i¼1 �i ¼ 1.

It is noted that, stochastic variables �i(t) and �i(t)

satisfy the Bernoulli distribution as well, so we have

Ef�iðtÞg ¼ �i, Efð�iðtÞ��iÞ
2g ¼ �ið1��iÞ

Ef�iðtÞg ¼ �i, Efð�iðtÞ��iÞ
2g ¼ �ið1��iÞ

, i¼ 1, . . . ,m:

ð16Þ

Thus the system (8) with m sampling intervals can

be expressed as

_eðtÞ ¼AeðtÞþB �fðeðtÞÞþ
X

m

i¼1

�iðtÞKeðt� �iðtÞÞþ �ðtÞDpðtÞ,

pðtÞ ¼FðtÞqðtÞ,

qðtÞ ¼EaeðtÞþEb
�fðeðtÞÞ,

ð17Þ

where di�1� �i(t)< di.

Definition 2.1 (Gao et al. 2008): The error system (8)

is said to be mean square stable if for any "> 0, there is

a �(")> 0 such that E{ke(t)k2}<", t> 0, when

E{ke(0)k2}<�("). In addition, if limt!1E{ke(t)k2}¼ 0,

for any initial conditions, then the error system (8) is

said to be globally mean square asymptotically stable.

Remark 4: The time-varying delay �i(t) in Equation

(17) are independent on the stochastic interval. So, by

introducing stochastic variables �i(t), we can remodel

system (8)–(17) which is general time-varying delay

system. Here, the probability of �i(t) is indicated in

Equation (14), which is originated from Gao et al.

(2009). On the other hand, the stochastic sampling

interval d(t) can be expressed to stochastic variables

�i(t) which are first introduced by Gao et al. (2008),

i.e. d ðtÞ ¼
Pm

i¼1 �iðtÞdi.

Remark 5: It should be pointed out that, m stochas-

tic variables �i(t) and �i(t) are mutually dependent,

110 T.H. Lee et al.
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respectively, but every intersection set of �i(t) and �i(t),

respectively, are zero, i.e.

Pr
�

f�iðtÞ ¼ 1g \ f�j ðtÞ ¼ 1g
�

¼ 0

Pr
�

f�iðtÞ ¼ 1g \ f�j ðtÞ ¼ 1g
�

¼ 0
, 8i, j¼ 1, . . . ,m, i 6¼ j:

ð18Þ

3. Main results

In this section, a design problem of the sampled-data

feedback controller with stochastic sampling intervals

for the synchronisation of chaotic systems will be

investigated via a discontinuous Lyapunov functional

approach. Before proceeding further, the following

lemmas and fact are given.

Lemma 3.1 (Gu, Kharitonov, and Chen 2003): For

any matrix M> 0, scalars �1 and �2 satisfying �2>�1, a

vector function x: [�1, �2]!R
n such that the integra-

tions concerned are well defined, then

Z �2

�1

xðsÞds

� �T

M

Z �2

�1

xðsÞds

� �

� ð�2 � �1Þ

Z �2

�1

xTðsÞMxðsÞds: ð19Þ

Lemma 3.2 (Liu, Suplin, and Fridman 2011): Let

x(t)2W[a, b) and x(a)¼ 0. Then for any matrix R> 0

the following inequality holds:

Z b

a

xðsÞTRxðsÞds �
4ðb� aÞ2

�2

Z b

a

_xðsÞTR _xðsÞds: ð20Þ

Fact 1 (Schur complements): Given constant sym-

metric matrices �1, �2, �3 where �1 ¼ �
T
1 and

05�2 ¼ �
T
2 , then �1 þ�

T
3�

�1
2 �3 5 0 if and only if

�1 �
T
3

�3 ��2

	 


5 0, or
��2 �3

�
T
3 �1

	 


5 0:

The following is a main result of this article.

Theorem 3.3: For given positive constants �, �i, �,

known matrices Ea, Eb, D2R
n�n and the Lipschitz

constant L¼ l2In, the feedback controller (9) using

sampled-data with m sampling intervals guarantees

robust synchronisation between master (1) and slave (2)

systems if there exist positive-definite matrices P, Qi, Ri,

Zi2R
n�n and any matrices Si, G, H2R

n�n and positive

scalars 	, 
 satisfying the following LMIs:

� 
�T

? �
I

	 


5 0, ð21Þ

Ri Si

? Ri

	 


4 0, 8i ¼ 1, . . . ,m, ð22Þ

where

� ¼

�1 �1 GB �2 �D

? �2 �3

? �	I �GTBT 0

? ? ? �3 ��GD

? ? ? �
I

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,

�1 ¼ �1Q1 � �1R1 þ 	Lþ GAþ ATGT �
X

m

i¼1

�Zi,

�2 ¼ P� Gþ �ATGT,

�3 ¼
X

m

i¼1

�ih
2
iRi þ �id

2
i Zi

� �

� �G� �GT,

�Zi ¼
X

m

j¼i

�j

�2hi

4dj
Zj

� �

,

hi ¼ di � di�1,

� ¼ Ea 0n�2nm Eb 0 0
� �

,

�1 ¼

ð1, 1Þ ¼ �1R1 � �1S1 þ �Z1 þ �1H

ð1, 2Þ ¼ �1S1

ð1, iÞ ¼ �iþ1
2
Hþ �Ziþ1

2

i ¼ 3, 5, 7, . . . , 2m� 1

otherwise ¼ 0

,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�2 ¼

ði, iÞ ¼ �iþ1
2
ð�2Riþ1

2
þ Siþ1

2
þ ST

iþ1
2

Þ � �Ziþ1
2

i ¼ 1, 3, 5, . . . , 2m� 1

ði, iÞ ¼ � i
2
ð�Q i

2
� R i

2
Þ þ � i

2
þ1ðQ i

2
þ1 � R i

2
þ1Þ

i ¼ 2, 4, 6, . . . , 2m

ði, iþ 1Þ ¼ �iþ1
2
ðRiþ1

2
� Siþ1

2
Þ

i ¼ 1, 3, 5, . . . , 2m� 1

ði, iþ 1Þ ¼ � i
2
þ1ðR i

2
þ1 � S i

2
þ1Þ

i ¼ 2, 4, 6, . . . , 2m� 2

ði, iþ 2Þ ¼ � i
2
þ1S i

2

i ¼ 2, 4, 6, . . . , 2m� 2

otherwise ¼ 0

,

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�3 ¼ 02nm�n �32 02nm�n

� �

,

�32ði, 1Þ ¼ �iþ1
2
�HT i ¼ 1, 3, 5, . . . , 2m� 1

�32ði, 1Þ ¼ 0 i ¼ 2, 4, 6, . . . , 2m,

�i,Qi,Ri, �Zi ¼ 0 i4m:

ð23Þ

Also, the desired control gain matrix (9) is given by

K¼G�1H.
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Proof: Consider the following discontinuous

Lyapunov functional for the error system (17):

VðetÞ ¼ V1ðetÞ þ V2ðetÞ þ V3ðetÞ, t 2 ½tk, tkþ1Þ, ð24Þ

where

V1ðetÞ ¼ eTðtÞPeðtÞ,

V2ðetÞ ¼
X

m

i¼1

�iðtÞ

 

Z t�di�1

t�di

eTðsÞQieðsÞds

þ hi

Z �di�1

�di

Z t

tþ�

_eTðsÞRi _eðsÞds d�

!

,

V3ðetÞ ¼
X

m

i¼1

V3iðtÞ,

V3iðetÞ ¼ �iðtÞ

 

d2i

Z t

tk

_eTðsÞZi _eðsÞds

�
�2

4

Z t

tk

ðeðsÞ � eðtkÞÞ
TZiðeðsÞ � eðtkÞÞds

!

:

It is noted that it is easy to find that V3i(t)� 0

from Lemma 2. In addition, it is correct that

limt!t�
k
VðtÞ � VðtkÞ, because V3i(t) will disappear

at t¼ tk.

Define the infinitesimal operator L of V(et) defined

as follows:

LVðetÞ ¼ lim
h!0þ

1

h
fEfVðetþhÞjetg � VðetÞg: ð25Þ

Then from (24) and (25), we obtain

EfLV1ðtÞg ¼ Ef2eTðtÞP _eðtÞg, ð26Þ

and

EfLV2ðtÞg ¼ E

�

X

m

i¼1

�

�ie
Tðt� di�1ÞQieðt� di�1Þ

� �ie
Tðt� diÞQieðt� diÞ þ �ih

2
i _e

TðtÞRi _eðtÞ

� �ihi

Z t�di�1

t��iðtÞ

_eTðsÞRi _eðsÞds

� �ihi

Z t��iðtÞ

t�di

_eTðsÞRi _eðsÞds

�

: ð27Þ

By using Lemma 1 and Theorem 1 in Park, Ko, and

Jeong (2011), the integral terms of LV2(t) can be

bounded as

� �ihi

Z t�di�1

t��iðtÞ

_eTðtÞRi _eðsÞds� �ihi

Z t��iðtÞ

t�di

_eTðsÞRi _eðsÞds

� ��i
�1iðtÞ

�2iðtÞ

	 
T
1

1� i
Ri 0

?
1

i
Ri

2

6

6

4

3

7

7

5

�1iðtÞ

�2iðtÞ

	 


� ��i
�1iðtÞ

�2iðtÞ

	 
T
Ri Si

? Ri

	 


�1iðtÞ

�2iðtÞ

	 


, ð28Þ

where �1iðtÞ ¼
R t�di�1

t��iðtÞ
_eðsÞds, �2iðtÞ ¼

R t��iðtÞ

t�di
_eðsÞds,

i¼ (di� �i(t))(di� di�1)
�1.

It is noted that the discontinuous Lyapunov func-

tional V3(t), which originates from Liu and Fridman

(2012), makes full use of the sawtooth structure

characteristic of sampling input delays. However, in

this article, the interval of integration V3(t), [tk, t],

stochastically occur because of the definition of

�(t)¼ t� tk. If the sampling interval d(t)¼ d2, then tk
exists in two intervals such that [t� �1(t), t] and

[t� �2(t), t� d1] with probabilies d1
d2

and d2�d1
d2

, respec-

tively. Therefore in order to completely use the

information of sawtooth structure delay, �(t), we

introduce stochastic variables �ij(t) such that

�ijðtÞ ¼
1, �iðtÞ�j ðtÞ ¼ 1

0, otherwise
j � i ¼ 1, . . . ,m

�

ð29Þ

with the following probability:

Prf�ijðtÞ ¼ 1g ¼ �i

dj � dj�1

di
¼ �ij: ð30Þ

where
Pm

i¼1

Pi
j¼1 �ij ¼ 1.

Then, the Lyapunov functional V3i(t) can be

rewritten as

V3iðtÞ ¼ �iðtÞd
2
i

Z t

t��ðtÞ

_eTðsÞZi _eðsÞds

�
X

i

j¼1

 

�ijðtÞ
�2

4

Z t

t��j ðtÞ

ðeðsÞ � eðt� �j ðtÞÞÞ
T

� ZiðeðsÞ � eðt� �j ðtÞÞÞds

!

,

and its expectation is

EfLV3iðtÞg ¼ E

(

�id
2
i _e

TðtÞZi _eðtÞ

�
X

i

j¼1

�ij
�2

4

eðtÞ

eðt� �j ðtÞÞ

	 


Zi �Zi

? Zi

	 
�

�
eðtÞ

eðt� �j ðtÞÞ

	 
�

)

i ¼ 1, 2, . . . ,m:

ð31Þ

From the property of the nonlinear function f(�), we

can obtain the following equation:

	 �fðeðtÞÞT �fðeðtÞÞ � 	eTðtÞLeðtÞ: ð32Þ

According to the error system (17), for any

appropriately dimensioned matrix G, the following
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equation holds:

E

�

2 eTðtÞGþ � _eTðtÞG
� �

�

	

� _eðtÞ þ AeðtÞ þ BFðtÞ

þ
X

m

i¼1

�iKeðt� �iðtÞÞ þ �DpðtÞ




¼ 0, ð33Þ

where we let H¼GK.

Also, from (4) and (5), we have

pTðtÞ pðtÞ � qTðtÞqðtÞ: ð34Þ

Then, there exists a positive constant, 
, satisfying the

following equation:


 �TðtÞ�T
��ðtÞ � pTðtÞ pðtÞ

� �

� 0, ð35Þ

where � are defined in (23) and �(t) is

�ðtÞ ¼ eTðtÞ eTmðtÞ
�fTðeðtÞÞ _eTðtÞÞ pTðtÞ

� �T
,

with

By using the S-procedure and adding left sides of

(32), (33) and (35) to E{LV(t)}, we can obtain the

following new upper bound of E{LV(t)}

EfLVðtÞg � E

n

�TðtÞ
�

�þ 
�T
�
�

�ðtÞ
o

: ð36Þ

Then, by Fact 1, the negativeness of the matrix

�þ 
�
T
� in Equation (36) is equivalent to the

LMI (21). Therefore, if LMI (21) holds, then, by

Definition 1, the error system is mean square stable.

This implies that the synchronisation between the

master system (1) and the slave system (2) is achieved

by the designed controller (9). This completes the

proof. œ

If the term V3(t) is neglected, then the discontin-

uous Lyapunov functional (24) becomes the continu-

ous Lyapunov functional. If Zi (i¼ 1, . . . ,m) in (24)

choose Zi¼ 0 as zero matrices, then we can obtain the

following result.

Corollary 3.4: For given positive constants �, �i, �,

known matrices Ea, Eb, D2R
n�n and the Lipschitz

constant L¼ lIn, if there exist positive-definite matrices

P, Qi, Ri, Zi2R
n�n and matrices Si, G, H2R

n�n

and positive scalar 	, 
 satisfying the LMIs (21)

such that (21)jZi¼0, ð8i ¼ 1, . . .mÞ, and (22), then there

exists a sampled feedback controller (9) with m

sampling intervals which guarantees synchronisation

between the master (1) and slave (2) chaotic systems.

Moreover, the desired control gain matrix in (9) can be

given by K¼G�1H.

Remark 6: The synchronisation criteria for chaotic

systems via the discontinuous and continuous

Lyapunov functional come from Theorem 1 and

Corollary 1, respectively. The main difference of two

Lyapunov functionals is the existence of V3(t), which

makes full use of the sawtooth structure characteristic

of sampling input delays. Thus, theoretically the

conservatism of Theorem 1 is less than Corollary 1,

which will be validated by numerical examples in the

next section.

Remark 7 : In this article, �i(t) and �ij(t) are used for

utilisation of discontinuous Lyapunov functional

approach, which makes full use of the sawtooth

structure characteristic of sampling input delay �(t).

It is the key idea of this article. To the best of our

knowledge, the discontinuous Lyapunov functional

approach has never been tackled in the synchronisa-

tion problem of chaotic systems using the sampled-

data control system with stochastic sampling intervals.

4. Numerical examples

In order to show the effectiveness of the proposed

control scheme and derived results, two numerical

examples, which are very well-known chaotic systems

with ROUs via the sampled-data control having multi

sampling intervals, are presented. In both the exam-

ples, MATLAB, YALMIP 3.0 and SeDuMi 1.3 are

used to solve LMI problems and the parameter � is

chosen as 0.01.

4.1 Example 1: Chua’s circuit

The first example is about the synchronisation of

Chua’s circuits (Chua, Komuro, and Matsumoto

2000), and its chaotic behaviour is displayed in

Figure 1. The Chua’s circuit is described by the

following parameters:

A¼

�am1 a 0

1 �1 1

0 �b 0

2

6

4

3

7

5
, B¼

�aðm0�m1Þ 0 0

0 0 0

0 0 0

2

6

4

3

7

5
,

f ðxikðtÞÞ ¼
1

2
ðjxikðtÞþ cj� jxikðtÞ� cjÞ, k¼ 1, . . . ,n

with the parameters are a¼ 9, b¼ 14.28, c¼ 1,

m0¼�1/7, m1¼ 2/7 and the nonlinear function f(�)

satisfies the Lipschitz condition with l¼ 1.

The parameters associated with system uncertain-

ties are given D¼ In, Ea¼ 0.3In, Eb¼ 0.4In,

emðtÞ ¼ eTðt� �1ðtÞÞ eTðt� d1Þ eTðt� �2ðtÞÞ eTðt� d2Þ � � � eTðt� �mðtÞÞ eTðt� dmÞ
� �T

:
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F(t)¼ 0.4þ 0.2 sin t, �¼ 0.4 and initial condi-

tions are chosen as x(0)¼ [�0.1 �0.5 �0.7],

y(0)¼ [�0.1 �0.4 0.3].

In this example, we consider two sampling intervals

d1, d2. By Theorem 1 and Corollary 1, we can obtain

the maximum sampling interval d2 for various cases, as

given in Tables 1 and 2. It shows the maximum values

of d2 with respect to different d1 and �1, respectively.

It can be seen from Tables 1 and 2 that Theorem 1

gives the more improved results than Corollary 1, as

mentioned in Remark 4.

By solving LMI problems given in (21) and (22) of

Theorem 1 with d1¼ 0.1, d2¼ 0.2 and �1¼ 0.3, we can

obtain the following control gain:

K ¼

�4:9521 �3:4626 0:4270

�0:9048 �1:9505 �0:1152

1:1345 5:1330 �6:7120

2

6

4

3

7

5
: ð37Þ

In order to show effectiveness of the proposed control

scheme, the uncontrolled error signals are depicted in

Figure 2. Under the given control gain, K,

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

−3

−2

−1

0

1

2

3

−4

−3

−2

−1

0

1

2

3

4

x2(t)x1(t)

x
3
(t

)

Figure 1. The chaotic behaviour of Chua’s circuit.

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

time

e
(t

)

Figure 2. The uncontrolled error signals of Example 1.

Table 2. The maximum value of d2 for different �1
(d1¼ 0.1).

�1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

d2 Theorem 1 1.597 0.791 0.573 0.462 0.395 0.350 0.317
Corollary 1 0.980 0.521 0.369 0.294 0.257 0.235 0.221

Table 1. The maximum value of d2 for different d1
(�1¼ 0.8).

d1 0.01 0.02 0.04 0.06 0.08 0.1 0.15

d2 Theorem 1 1.113 1.078 1.008 0.935 0.864 0.791 0.602
Corollary 1 1.086 1.028 0.906 0.782 0.654 0.521 �

114 T.H. Lee et al.

D
o
w

n
lo

ad
ed

 b
y
 [

Y
eu

n
g
n
am

 U
n
iv

er
si

ty
] 

at
 1

7
:2

3
 1

8
 D

ec
em

b
er

 2
0
1
2
 



the simulation result of the controlled error signals and

the sampled control inputs are presented in Figures 3

and 4, respectively. As seen in Figure 3, the trajectories

of error signals are indeed well stabilised. It means that

the slave system (2) is synchronised up to the master

system (1) by control inputs, which are seen in

Figure 4. Finally, Figure 5 displays the stochastic

parameters, �(t) and d(t).

4.2 Example 2. Hyperchaotic Rössler system

Next example is about the synchronisation of hype-

chaotic (Rossler 1979) which are described by

A ¼

0 �1 �1 0

1 0:25 0 1

0 0 0 0

0 0 �0:5 0:05

2

6

6

6

4

3

7

7

7

5

, B ¼ In,

f ðxðtÞÞ ¼

0

0

3þ x1ðtÞx3ðtÞ

0

2

6

6

6

4

3

7

7

7

5

,

and its chaotic behaviour is displayed in Figure 6.

The Lipschitz constant of nonlinear function f(�) is

l¼ 10 and initial conditions of each system are chosen

as x(0)¼ [�10 �6 0 10], y(0)¼ [�5 �6 5 10].

The parameters for system uncertainties are given:

D¼ In, Ea¼ 0.5In, Eb¼ 0.2In, F(t)¼ 0.4þ 0.2 sin t and

�¼ 0.3. It is assumed that this example has three

sampling intervals d1, d2, d3.

Under the above simulation setting, the values of

the maximum sampling interval d3 specified by

Tables 3 and 4 can be obtained by Theorem 1 and

Corollary 1.

When the sampling intervals are d1¼ 0.04,

d2¼ 0.08, d3¼ 0.12 and the probability of each sam-

pling interval is �1¼ 0.3, �2¼ 0.3, �3¼ 0.4, respec-

tively, the control gain matrix calculated by Theorem 1

is given by

K ¼

�14:4064 1:0790 1:1050 0:0981

�0:8802 �14:8533 0:1179 �1:1901

0:1175 0:1290 �14:0431 0:0237

0:1139 �0:2160 0:5304 �14:2046

2

6

6

6

4

3

7

7

7

5

:

ð38Þ

The uncontrolled and controlled error signals are

presented in Figures 7 and 8, respectively. Comparing

with Figures 7 and 8, controlled error signals become

zero as time goes to infinity. However, in the case of

the uncontrolled system, error signals do not approach

to zero as expected. It implies that our proposed

controller achieves the synchronisation of hyperchaotic

0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

4

6

Figure 4. The sampled-data control input with two sampling
intervals in Example 1.

0 1 2 3 4 5 6 7 8 9 10

0

1

δ
(t

)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

time

d
(t

)

Figure 5. The stochastic parameters, �(t) and d(t), of
Example 1.

0 0.5 1 1.5 2 2.5 3
−0.6

−0.4
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0.8

1

time

e
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Figure 3. The controlled error signals of Example 1.
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Figure 6. The chaotic behaviour of the hyperchaotic Rössler system.

Table 4. The maximum value of d3 for different �1 and �2 (d1¼ 0.02, d2¼ 0.05).

The maximum values of d3

�1

�2 0.4 0.5 0.6 0.7 0.8

0.5 Theorem 1 0.470
Corollary 1 0.328

0.4 Theorem 1 0.250 0.502
Corollary 1 0.178 0.364

0.3 Theorem 1 0.186 0.263 0.534
Corollary 1 0.131 0.195 0.399

0.2 Theorem 1 0.153 0.194 0.276 0.560
Corollary 1 0.112 0.141 0.212 0.434

0.1 Theorem 1 0.133 0.160 0.203 0.289 0.598
Corollary 1 0.101 0.118 0.151 0.229 0.470

Table 3. The maximum value of d3 for different d1 and d2 (�1¼ 0.5, �2¼ 0.3).

The maximum values of d3

d1

d2 0.01 0.02 0.03 0.04 0.05 0.06

0.04 Theorem 1 0.298 0.274 0.246
Corollary 1 0.248 0.209 0.155

0.06 Theorem 1 0.274 0.251 0.225 0.197 0.167
Corollary 1 0.205 0.176 0.136 0.090 �

0.08 Theorem 1 0.252 0.227 0.200 0.172 0.142 0.110
Corollary 1 0.147 0.125 0.090 � � �

0.1 Theorem 1 0.226 0.202 0.174 0.145 0.155 �
Corollary 1 � � � � � �
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Rössler systems. The applied control inputs which

consisted of sampled signals are displayed in Figure 9

and the stochastic parameters, �(t), d(t), are presented

in Figure 10.

5. Conclusions

In this article, the robust synchronisation problem of

chaotic systems via sampled-data control with stochas-

tic sampling interval has been studied. The sampled-

data control system has been remodelled to a delay

system with stochastic variables using the input-delay

approach. In addition, ROU was considered in the

sense of reality. In order to use full information of

sawtooth structure characteristic of the sampling delay,

the discontinuous Lyapunov functional has been

proposed by introducing new stochastic parameters

�i(t) and �ij(t). The results show that the use of the

discontinuous Lyapunov functional gets less conserva-

tism than the use of the continuous Lyapunov func-

tional. Then, the criteria for designing synchronisation

controllers are expressed by terms of LMIs. Two

numerical examples have been illustrated to show the

performance of the proposed controller.
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