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Abstract—We present a detailed re-examination of the problem
of inexpensive yet accurate clock synchronization for networked
devices. Based on an empirically validated, parsimonious ab-
straction of the CPU oscillator as a timing source, accessible
via the TSC register in popular PC architectures, we build on
the key observation that the measurement of time differences,
and absolute time, requires separate clocks, both at a conceptual
level and practically, with distinct algorithmic, robustness, and
accuracy characteristics. Combined with round-trip time based
filtering of network delays between the host and the remote time
server, we define robust algorithms for the synchronization of the
absolute and difference TSCclocks over a network. We demon-
strate the effectiveness of the principles, and algorithms using
months of real data collected using multiple servers. We give
detailed performance results for a full implementation running
live and unsupervised under numerous scenarios, which show
very high reliability, and accuracy approaching fundamental
limits due to host system noise. Our synchronization algorithms
are inherently robust to many factors including packet loss, server
outages, route changes, and network congestion.

Index Terms—timing, synchronization, software clock, NTP,
GPS, network measurement, round-trip time, TSC.

I. MOTIVATION

The availability of an accurate, reliable, and high resolution

clock is fundamental to computer systems. Ongoing synchro-

nization to a time standard is necessary to keep the offset of

such a clock, that is its departure from the true time, small.

A common way to achieve this for networked computers is

to discipline the system software clock (SW) through the

algorithms associated with the Network Time Protocol (NTP)

[1], [2], which allows timestamp information to be exchanged

between NTP time server(s) and the client. Algorithms process

these timestamps, determine the offset, and deliver rate and

offset adjustments to the SW clock.

For many purposes this SW-NTP clock solution works

well. NTP is designed to provide offset accuracy bounded

by the round-trip time (RTT) between the server and the

client, and under ideal circumstances offset can be controlled

to below 1ms. For more demanding applications however,

the performance of the SW-NTP clock is insufficient. Offset

errors can be well in excess of RTT’s in practice, and more

importantly, are susceptible to occasional reset adjustments

which can in extreme cases be of the order of 10’s or even

100’s of milliseconds. In other words, the SW-NTP clock is not
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reliable enough and lacks robustness. In addition, in the SW-

NTP solution the rate or frequency of the clock is deliberately

varied as a means to adjust offset. This results in erratic rate

performance. A smooth and accurate clock rate is a highly

desirable feature as it determines the relative accuracy of time

differences, which are basic to most applications.

As distributed computing and service delivery over networks

increase in importance, so will a fundamental constraint to

such distributed systems: packet latency, and with it clock

synchronization. One application where this is critical now

is inexpensive measurement of IP networks, where off the

shelf PC’s are used to monitor data packets as they pass by

the network interface. The drawbacks of the SW-NTP clock,

as for example reported in [3], [4], are widely recognised in

the network measurement community. They have led many

networking researchers to turn to local rather than remote

clock synchronization. The Test Traffic Measurement net-

work of RIPE NCC for example [5], consisting of over 100

customised PC’s across Europe and elsewhere, uses Global

Positioning System (GPS) receivers to locally discipline the

standard SW clock, which improves synchronization to around

10µs. Although GPS is no longer an expensive technology as

such, the need for roof access to avoid intermittent reception

results in long installation delays and costs, making a multi-

node efforts such as RIPE NCC’s extremely ambitious, and

even modest measurement efforts problematic. Radio based

alternatives for synchronization rely on the presence of the

appropriate network and also imply additional hardware. It

is therefore desirable to provide improved network based

synchronization with ‘GPS-like’ reliability, and increased ac-

curacy, using inexpensive PC’s with no additional hardware.

In [4] a new clock was proposed which made significant

progress towards this aim. It was based on the TimeStamp

Counter (TSC) register, found in Pentium class PCs and

other architectures, which counts CPU cycles. The essence

of this TSCclock was very simple. The TSC register is used

to keep track of time at high resolution, for example 1

nanosecond for a 1 gigahertz processor. Updating this register

is a hardware operation, and reading it and storing its value is

also fast. Provided that we have an accurate estimate of the true

period, p, of a clock cycle, time differences measured in TSC

units can readily be converted to time intervals in seconds:

∆(t) = ∆(TSC) · p. This simple idea is feasible because

CPU oscillators have high stability, so the cycle period is,

to high precision, constant over quite long time periods, or in

other words, accumulated drift is small over these time scales

(below 1 part in 107). Two methods of remote calibration

over a network were given in [4] for measuring p, however



2

neither were robust enough for unsupervised use under real-

world conditions. The first aim of this paper is to provide an

accurate and highly robust algorithm for p measurement. The

result is the difference TSCclock, a highly accurate and robust

clock for the measurement of time differences below a critical

scale (typically around 1000[sec] for PCs). As an example, for

typical round-trip times (RTTs), its error is below 0.1µs, even

after days of connectivity loss.

The second, and main aim of this paper is to address in

detail robust absolute synchronization in the context of the

TSCclock. Absolute synchronization is a very different, and

more difficult problem than that of rate synchronization, that is

the measurement of p. Here we describe principles, a method-

ology, and filtering procedures which make reliable absolute

synchronization possible, within a client-server paradigm of

timestamp exchange with a reference clock across a noisy

network. The result is the absolute TSCclock, an accurate

robust clock for the measurement of absolute time. As an

example, if the host has a symmetric path to a nearby server, it

can synchronize down to around 30µs or even below, close to

the level of host system ‘noise’. Under loss of connectivity, the

clock will slowly drift but no abrupt errors will be introduced.

Pointing out the need for two separate clocks, which are not

just different conceptually but also in terms of synchronization

algorithms, robustness, and accuracy, is in itself of consider-

able importance. The SW-NTP clock is an absolute clock only,

and is therefore fundamentally unsuitable for many applica-

tions such as the measurement of RTT, delay variation, and

code execution time. It deliberately couples the measurement

of offset and rate, whereas the TSCclocks succeed in (almost)

entirely decoupling them. The TSCclocks considerably raise

the bar for the accuracy, and more importantly, the reliability,

of synchronization achievable inexpensively across a network.

The TSC is already routinely employed in software clock

solutions (not as the primary local source, but to interpolate

between the timer interrupts generated by another hardware

oscillator). By ‘TSCclock’ we refer to the overall solution

described here, its principles and algorithms, and not simply to

the fact that the TSC is employed. Indeed the clock definition

and algorithms (and implementation) are generic, and could

be used with some other hardware counter.

This paper is an enhanced and extended version of [6].

The additions are mainly in section VI-B, which uses an

improved validation methodology and several new long traces

from new servers to provide a substantially expanded set of

performance results, on both old and new hardware, using

a new implementation. We include some experiments using

stratum-2 NTP servers to complement our core stratum-1

results, and demonstrate the impact of very high host load.

For interest, we have also added a simple comparison against

SW-NTP. A detailed comparison is beyond scope and will be

the subject of another paper. Notations from [6] have been

revised and simplified throughout, and the timestamping and

path asymmetry discussions have been revisited. For space

reasons some details, including on Allan deviation, machine

room temperature, and local rates, have been omitted.

II. PRELIMINARIES

In this section we provide background on the infrastructure

underlying our clock, its synchronization and characterization.

A. Terminology

A perfect clock, denoted simply by t, runs at a rate of 1

second per second, and has an origin t = 0 at some arbitrary

instant. A given real clock is imperfect. It reads C(t) at the

true instant t and suffers from an error or offset θ(t) given by

θ(t) = C(t) − t (1)

at true time t. The skew γ corresponds to the difference

between the clock’s rate and the reference rate of 1. The model

which captures this idea in its simplest form we call the Simple

Skew Model (SKM). It assumes that

SKM: θ(t) = θ0 + γ t. (2)

To refine the concept of skew we write

θ(t) = θ0 + γ t + ω(t), (3)

where the ‘simple skew’ γ is just the coefficient of the

deterministic linear part, ω(t) being a detrended remainder

obeying ω(0) = 0, which encapsulates non-linear deviations.

The oscillator stability [7] partially characterizes ω(t) via

the family, indexed by timescale τ , of relative offset errors:

yτ (t) =
θ(t + τ) − θ(t)

τ
= γ +

ω(t + τ) − ω(t)

τ
. (4)

In other words, yτ (t) is the average skew at time t when

measured over time scale τ , and consists of the mean skew γ
plus non-linear variations which impact at time scale τ .

Table I translates skew values (expressed as Parts Per

Million (PPM) since skew is dimensionless) into absolute error

over key time intervals: ∆(offset) = ∆(t) · (average skew).
The typical skew of CPU oscillators from nominal rate is

around 50PPM [7].

B. The TSCclock

We propose a clock based on the TSC register which counts

CPU cycles. Denote the register contents at time t by TSC(t),
and set TSC0 = TSC(0). The construction of an absolute clock

from the counter is based on the intuition of the simple skew

model, where the oscillator period p is constant, implying that

t = (TSC(t)− TSC0)p. In practice we must obtain estimates,

Significance of Time Interval Interval Skew [PPM]
Duration 0.02 γ∗ = 0.1

Target RTT to NTP server 1ms 0.02ns 0.1ns

Typical Internet RTT 100ms 2ns 10ns

Standard unit 1s 20ns 0.1µs

Local SKM validity τ∗=1000s 20µs 0.1ms

1 Daily cycle 86400s 1.7ms 8.6ms

1 Weekly cycle 604800s 12.1ms 60.5ms

TABLE I
ABSOLUTE ERRORS AT KEY ERROR RATES AND TIME INTERVALS.
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p̂ of p, and T̂SC0 of TSC0. The definition of a simple TSC

based (absolute) clock Cu(t) is therefore

SKM: Cu(t) = (TSC(t) − T̂SC0)p̂ = TSC(t)p̂ + K, (5)

where the constant K = −T̂SC0p̂ tries to align the origins

of Cu(t) and t, but with some error. It is easy to show that

the errors pǫ = p̂ − p and TSCǫ = T̂SC0 − TSC0 lead to

θ(t) = pǫ/p · t − p̂ TSCǫ, which, comparing to (2), identifies

γ = pǫ/p = p̂/p − 1 and θ0 = Cu(0) = TSC0 p̂ + K.

The SKM model does not hold over all timescales, so

the above estimates must be taken as time varying. A key

consequence is that the variation of offset over time is no

longer a simple, known function of γ, and so must be measured

independently, that is the clock drift must be tracked. In prac-

tice therefore we must correct the uncorrected clock Cu(t).
In fact two variants, depending on whether time differences

(valid up to SKM timescales), or absolute time, are needed:

difference: Cd(t) = TSC(t)p̂(t)

absolute: Ca(t) = TSC(t)p̂(t) + K − θ̂(t) = Cu(t) − θ̂(t),

where p̂(t) is the current period estimate, and θ̂(t) is the

current estimate of the offset of the uncorrected clock Cu(t),
which we correct for to obtain Ca(t). Only by defining two

clocks in this way can we provide an absolute clock without

negating the smooth rate of the underlying hardware, which

is the basis of the extremely high accuracy of the difference

clock. The absolute clock should only be used for applications

which truly require it, because the estimation of θ̂ is inherently

challenging. On the other hand the difference clock does not

involve θ̂, and so can be used to measure time differences

very accurately [4] provided drift can be ignored, which is

the case for time intervals which are small compared to the

critical ‘SKM scale’ τ∗, defined below. As τ∗ ≈ 1000 [sec],

this includes most cases of importance to traffic measurement.

Above this scale clock drift is significant, and the time

difference will be more accurately measured using Ca(t).

C. Timestamping

Even a perfect clock is of little use if one is unable to

read at the right time. Dealing with this timestamping issue

is application dependent. Here, for the purpose of remote

synchronization of the TSCclock, the application is the times-

tamping of arriving and departing NTP packets.

In [4] (see also [8]), timestamping was achieved in the Linux

2.4 kernel by exploiting the existing API. Here we modified

the existing Berkely Packet Filter tapping mechanism under

BSD 2.2.8, 5.3 and 6.1 kernels, which results in driver based

timestamping for incoming packets, and a kernel based one for

outgoing ones. The timestamping locations were carefully cho-

sen to achieve two aims: closeness to the hardware in order to

reduce system noise in both outgoing and incoming directions,

and ‘causality-compliance’, namely that timestamps on the

sending side are taken before the packets are sent. Compliant

timestamping ensures that system noise can only increase the

round-trip time relative to the timestamping events compared

to the true round-trip time. It therefore appears as a positive

host delay on top of network delay, which can be dealt with
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Fig. 1. Timeline of the ith host-server exchange including forward path

delay (d↑i ), server delay (d→i ), backward path delay (d↓i ) and RTT (ri =

d↑i +d→i +d↓i ). The shaded quantities were not available for the 2003 traces.

by the filtering mechanisms described below. The use of

user-level timestamping breaks compliance, leading to serious

problems, which can however be circumvented [9].

D. NTP Time Servers

Network Time Protocol (NTP) servers are networked com-

puters running the ntpd daemon. We will be principally con-

cerned with stratum-1 servers, whose clocks are synchronized

by a local reference time source. ServerLoc is in our laboratory

just outside the local network where the hosts reside. ServerInt

is also located at the University of Melbourne, but is on a

distinct network in a different building and uses a different

GPS receiver. Finally, ServerExt is located in a distant city.

The distances between the host and the servers are given in

table II in terms of physical distance, the minimum RTT of

NTP packets over at least a week, and in the number of IP

hops as reported by the traceroute utility. We also give the path

asymmetry A, which as discussed in detail in section IV-B

is the difference of the minimum one-way delays to and

from the server. The servers of table II were used in 2003

to collect the traces used in Sections III, IV, V and VI-A.

The new traces from 2006-7 use different servers described

in section VI-B. Hosts wishing to synchronize their system

clock run an application which communicates with a NTP

server via NTP packets. The client-server exchange works as

follows. The ith NTP packet is generated in the host. Before

being sent, the timestamp Ta,i is generated by the SW clock

and is placed in the packet payload. Upon arrival at the server,

the timestamp Tb,i is made by the server clock and inserted

into the payload. The server then immediately sends the packet

back to the host, adding a new departure timestamp Te,i, and

the host timestamps its return as Tf,i. The four timestamps

{Ta,i, Tb,i, Te,i, Tf,i} are the raw data from the ith exchange

from which the host clock must be synchronized. None of

these are perfect however due to clock and timestamping

Server Reference Distance r (min RTT) Hops A
ServerLoc GPS 3 m 0.38 ms 2 ≈ 50µs

ServerInt GPS 300 m 0.89 ms 5 ≈ 50µs

ServerExt Atomic 1000 km 14.2 ms ≈ 10 ≈ 500µs

TABLE II
CHARACTERISTICS OF THE STRATUM-1 NTP SERVERS USED IN 2003.
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limitations. The actual times of the corresponding events we

denote by {ta,i, tb,i, te,i, tf,i}, as shown in Figure 1.

The TSCclock does not use the usual timestamps made

by the SW-NTP clock at the host, but instead takes separate

raw TSC timestamps. We denote these by Ta,i, Tf,i as above

even though they are in ‘TSC units’, rather than seconds.

Being a stratum-1 NTP server, the server’s clock should be

synchronized, and so we could expect that Tb,i = tb,i and

Te,i = te,i. However, as servers are often just PC’s running

ntpd to synchronize the SW to GPS, this may not be the case.

In the implementation described here, we rely on the normal

flow of NTP packets between host and server, to minimize

the disruption to normal system operations. We use a polling

rate of 16 seconds, which is higher than the usual default,

but which provides a detailed set of data base from which to

examine both the underlying TSC oscillator and the TSCclock

performance. Other values are considered later.

We assume that an effort has been made to locate a nearby

stratum-1 server, such as ServerInt, which has a RTT of the

order of only 1ms, but is not on the local network. It also

has the advantage (see section IV-B) of having, in terms of

network elements, a verifiably symmetric route. We believe

that such a server can be readily found in institutions with

significant networking infrastructure. We stress however that

the presence of such an ‘optimal’ server is not required for

very good results in most cases (see section VI-B).

E. Reference Timing

Validation of timing methods would not be possible without

a reliable timing reference. We used DAG3.2e (2003 data sets)

and DAG3.7GP (2006-7) measurement cards, designed for

high performance passive monitoring of wired Ethernet with

timestamping accuracy around 200ns ([10], [11]). The cards

were synchronized to a Trimble Acutime 2000 GPS receiver

mounted on the roof of the laboratory.

Ideally the DAG and TSCclock would timestamp the same

events, however as the DAG monitors packets via a passive tap

on the Ethernet cable outside the hosts, as shown in Figure 1

the DAG event times obey tga,i > ta,i and tgf,i < tf,i (as

DAG timestamps the first bit rather than the last, a correction

of 90 ∗ 8/100 = 7.2µs is included in tga,i, t
g
f,i as 100Mbps

interface cards were used in all hosts). The resulting host-DAG

and DAG-host delays dh↑
i , dh↓

i > 0 are primarily due to the

processing time of the network card and the host scheduling

and interrupt latency. We call these collectively system noise.

System noise has a constant and a variable component and

depends on the host and its operating system. By removing

the network side RTT rg
i = tgf,i − tga,i, as seen by the DAG,

from the total RTT ri, we isolate the total system noise or

rh
i = dh↑

i + dh↓
i = ri − rg

i . This ‘host RTT’ can be reliably

measured. Typical characterising values are a minimum value

of rh = mini(r
h
i ) = 150µs and an inter-quartile range of

10µs. The latter figure places a lower limit to our validation

methodology for clock offset (but not rate) errors, whereas the

impact of the former depends on other factors linked to path

asymmetry. For the experiments conducted in 2003 the DAG

timestamps tga,i for outgoing packets were not available, so that

rg
i and rh

i could not be measured exactly.
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Fig. 2. The offset error θ(t) of Cu(t), in two temperature environments,
falls within the skew cone defined by ±γ = 0.1PPM. (b) over 1 week. (a) a
zoom over the first 1000 seconds.

Occasionally spikes (isolated outliers) occur in system

noise. These can be reliably detected and filtered out, produc-

ing ‘corrected timestamps’. This is important both for reliable

validation and Allan deviation measurement.

III. TIMESTAMP DATA CHARACTERIZATION

In this section we study the raw timestamp data and derive

models of it on which the TSCclock algorithm is built.

A. The Clock

We examine the TSCclock offset of a 600Mhz host, green,

in two different temperature environments, laboratory: an open

plan area in a building which was not airconditioned, and

machine-room: a closed temperature controlled environment.

It is convenient to examine the drift of the TSC oscillator

via that of the uncorrected TSCclock Cu(t) = TSC(t)p̂ + K,

however to do so we must first supply a value of p̂. In Figure 2

we use p̂ = p̄ = 1.82263812∗10−9 (548.65527 Mhz) for mea-

surements made in the laboratory, and p̄ = 1.82263832∗10−9

(548.65521 Mhz) in the machine-room, and then estimate the

offset via θ̂(tf,i) = Tf,i∗p̄−T g
f,i for each. These p̄ estimates are

obtained by a simple average using the first and last packets.

The above uncorrected, SKM based clocks, allow the non-

linear drift of the TSC to be inspected. From the right plot

in Figure 2 it is clear that the SKM model fails over day

timescales, as the offset error is far from linear, although the

variations fall within the narrow cone emanating from the

origin defined by γ = ±0.1PPM. In the left plot however

we see that over smaller time scales the offset error grows

approximately linearly with time. We found these observations

to hold for all traces collected over many months in 2003. In

[4] the same result was reported for a host in an airconditioned

(but not temperature controlled) office environment over a con-

tinuous 100 day period. In 2006-7, using the same hardware,

then over 6 years old, values above 0.1PPM but below 1PPM

were sometimes encountered.

The above discussion is only one illustration. Depending

on the timescale and p̂ value chosen, θ(t) can take on very

different appearances. To examine offset over all scales simul-

taneously, and to avoid the need for a prior rate estimation,

we return to the concept of oscillator stability (4). A particular

estimator of the variance of yτ (t), known as the Allan variance

(essentially a Haar wavelet spectral analysis [12]), calculated

over a range of τ values, is a traditional characterization
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of oscillator stability [7]. We term its square root the Allan

deviation, and interpret it as the typical size of variations

of time scale dependent clock rate. A study over a range of

timescales is essential as the source and nature of timing errors

vary according to the measurement interval. At very small

timescales, γ will not be readily visible in yτ (t) as the ‘rate’

error will essentially correspond to system noise affecting

timestamping. At intermediate timescales γ may seem well

defined and constant with some measurement noise, as in the

left plot in Figure 2. At large scale where daily and weekly

cycles enter, the issue is not noise in estimates of γ but rather

variations in γ itself.

Four Allan deviation plots are given in Figure 3, for traces

taken under different conditions ranging from 1 to 3 weeks in

length. One is when the host was in the laboratory, and uses

ServerInt. The others are from the machine room, using each

of the 3 servers. Corrected Tf,i timestamps were used here,

as otherwise the timestamping noise outliers add considerable

spurious variation at small scales.

Over small scales the plots show a consistent 1/τ decrease,

consistent with the results of [4]. This is exactly what we

would expect if the SKM were true with ω(t) in (3) represent-

ing white system noise, and the plots agree as the hardware,

operating system, and timestamping solution are the same in

each case, and the dominant noises arise from them. The

plots diverge, and all rise, at larger scales as new sources

of variation, such as diurnal temperature variations, enter in.

They begin to flatten as major new sources of variation cease

at the weekly timescale, whilst always remaining below the

horizontal line marking 0.1 PPM.

In the machine-room the environmental control bounds

temperature variations within a 2oC band. We therefore expect

that the laboratory data would be more variable, and therefore

that the corresponding curve will lie above each of those from

the machine-room. This is indeed the case at large scales,

but not always at intermediate scales, due to the presence of

a low amplitude (≈ 0.05PPM) but distinct oscillatory noise

component of variable period between 100 to 200 minutes

(clearly visible in Figure 8). This was confirmed as being

10
1

10
2

10
3

10
4

10
5

10
−8

10
−7

τ  [sec]

A
lla

n
 d

e
v
ia

ti
o

n
 o

f 
 y
τ

Laboratory ServerInt
M−room ServerInt
M−room ServerLoc
M−room ServerExt
0.1 PPM

τ [sec]

A
ll
a
n

D
e
v
ia

t
io

n
(y

τ
)

Fig. 3. Allan variation plots. From small scales to around τ = 1000 seconds,
the SKM applies, and rate estimates are meaningful down to 0.01PPM.

driven by the airconditioning cycle through checking with a

digital temperature logger.

In conclusion, in three different temperature environments

the SKM model holds over timescales up to 1000 seconds.

Henceforth we use SKM scale, or τ∗, to refer to this value.

Below the SKM scale local rate is meaningful but may only

be measured to an accuracy given by the value of the Allan

deviation at that scale. This is bounded by the minimum

value attained at τ = τ∗, which here is of the order of

γ∗
ǫ = 0.01PPM. It is not meaningful to speak of rate errors

smaller than this, as the validity of the SKM model itself

cannot be verified to this level of precision. Over larger

timescales the model fails but the rate error remains below

the rate error bound γ∗ =0.1 PPM. Indeed, to within this

level of accuracy we can say that the SKM model holds over

all time scales. These measurements are consistent with the

results of [7] stating that the clock stability of commercial

PCs is typically of the order of 0.1 PPM. The oscillator metrics

above appear as parameters in the TSCclock algorithm, which

can therefore be used, for example, for less stable oscillator

classes by making the appropriate calibration.

To characterise rate beyond τ∗, one cannot hope to measure

an expected or stationary value, as it does not exist. We do not

attempt to measure a (meaningless) ‘long term rate’ as such in

this paper, however we do make use of estimates made over

large time intervals, corresponding to an average of meaningful

local rates, as a means of reducing errors due to timestamping

and network congestion. Such average rates may be used as

surrogates for local rates, with an error which is bounded by

0.1 PPM. We return to this topic in section V-C where we

discuss local rates in more detail.

B. Network and Server Delay

Following Figure 1, we decompose packet i’s journey as:

Forward network delay : d↑i = tb,i − ta,i

Server delay : d→i = te,i − tb,i

Backward network delay : d↓i = tf,i − te,i

Round Trip Time : ri = tf,i − ta,i = d↑i + d→i + d↓i .

Figure 4 gives representative examples of 1000 successive

values of the backward network delay and server delay for

the host in the machine-room, using ServerLoc, calculated as

d↓i (te,i) = T g
f,i − Te,i and d→i (te,i) = Te,i − Tb,i respectively.

These time series appear stationary, with a marginal distri-

bution consistent with a deterministic minimum value plus a

positive random component. These observations make physical

sense. The minimum in network delay corresponds to prop-

agation delay plus minimum system noise, and the random

component to queueing in network switching elements and the

operating system. Not unexpectedly, the latter are very small

for such a short route, but can take 10’s of milliseconds during

periods of congestion, For the server, there will be a minimum

processing time and a variable time due to timestamping issues

both in the µs range, and rare delays due to scheduling in the
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Fig. 4. Example time series: (a) backward network delay d↓i , (b) server delay d→i . They are well modelled by a constant + positive noise.

millisecond range. We formalise these observations in

Forward network delay : d↑i = d↑ + q↑i (6)

Server Delay : d→i = d→ + q→i

Backward network delay : d↓i = d↓ + q↓i

Round Trip Time : ri = r + (q↑i + q→i + q↓i ),

where d↑, d→, and d↓ are the respective minima and q↑i , q→i
and q↓i are the positive variable components. The minimum

RTT is therefore r = d↑ + d→ + d↓. These simple models

provide the basic conceptional framework for what follows.

IV. SYNCHRONIZATION: NAIVE SKM CLOCKS

In this section we examine simple ‘naive’ synchronization

ideas based on the SKM, and detail their weaknesses. In

section V we show how they can be overcome using the

TSCclock algorithms. We use the first day of the same 7 day

machine-room data set (July 4–10) used previously.

A. Rate Synchronization

We wish to exploit the relation ∆(t) = ∆(TSC) ∗ p to

measure p. More precisely, assuming the SKM the following

relation holds for the forward path:

p =
tb,i − tb,j − (q↑i − q↑j )

TSC(ta,i) − TSC(ta,j)

where i > j. This inspires the naive estimate

p̂↑i,j =
Tb,i − Tb,j

Ta,i − Ta,j

(7)

which suffers from the neglect of the queueing terms and

the presence of timestamping errors. An analogous expression

provides an independent estimate p̂↓i,j from the backward path.

In practice we average these two to form our final estimate:

p̂i,j = (p̂↑i,j + p̂↓i,j)/2.

In Figure 5 backward estimates normalised as (p̂↓i,j −
p̄)/p̄ (where p̄ denotes the ‘detrending’ estimates from sec-

tion III-A) are given for all packets collected. The i-th estimate

compares the i-th packet against the first (j = 1), and is plotted

against the timestamp Te,i of its departure from the server.

Thus ∆(TSC) = Ta,i−Ta,j steadily increases as more packets

are collected. Superimposed are the corresponding reference

rate values, calculated as p̂g = (T g
f,i−T g

f,j)/(Tf,i−Tf,j) which

show some timestamping noise (Tf,i is not corrected here), but

are not corrupted by network delay. We immediately see that

the bulk of the estimates very quickly fall within 0.1 PPM of

the reference curve, as the size of errors due to both network

delay and timestamping noise are damped at rate 1/∆(t). The

estimates from packets which experienced high network delay

can nonetheless be very poor. Table I tells us that even when

measured over a timescale of a day, the bound of 0.1 PPM will

be broken when network queueing delay exceeds only 8.6 ms.

If the SKM held exactly, these errors would eventually be

damped as much as desired, however, this is not the case. We

wish ∆(t) to grow large, so that the estimates will become

increasingly immune to both network delay and timestamping

errors. However, we cannot let it grow without bound, as

changes in the rate would then be masked. For example,

there is always the possibility that the local environment will

change, and ultimately, the CPU oscillator is also subject to

aging. Thus some kind of windowing must be employed which

enables the past to be forgotten, which limits the degree of

error damping available from a large ∆(t). The conclusion is

that the naive estimates are unreliable, as their errors, although

likely to be small, can not be controlled or bounded.

B. Offset Synchronization

We wish to exploit the fact that the SKM holds over small

timescales to simplify the measurement of θ(t). Since we can

assume that γ < γ∗ = 0.1 PPM, the increase in offset error

over a host-server round-trip time of 1ms is under 0.1ns (see

table I). Even if the RTT was huge, such as 1 second, the

error increase would be under 0.1µs, which is well below

timestamping noise.

Two important observations follow from the above. First,

at RTT timescales we can assume that rate is constant and

therefore use a ‘global’ estimate p̄ measured over a large

∆(t) to convert TSC timestamps to time and thereby calculate

offset. We do not have to try to calculate a local estimate,

which is far more complex. Second, offset error accumulates

so slowly that we can associate to each packet i a single

constant value θi. From packet i we have two relations
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Fig. 6. Naive per-packet offset estimates θi compared to DAG reference.

involving θi: θi = Cu(ta,i)−ta,i = Cu(ta,i)−(tb,i−d↑i ), and

θi = Cu(tf,i)− (te,i +d↓i ), from which θi cannot be recovered

as the one-way delays cannot be independently measured. If

we add these:

θi =
1

2
(Cu(ta,i)+Cu(tf,i))−

1

2
(tb,i+te,i)+

1

2
A+

1

2
(q↑i −q↓i ),

(8)

the problem remains that the path asymmetry,

Path Asymmetry: A = d↑ − d↓ (9)

is not measurable. There is in fact a fundamental ambiguity

here, the same timestamp observations are consistent with

many different (θi, A) combinations, given by θi + c/2 and

A + c for a constant c scanning over a continuous range.

Happily, this range is finite because the ‘causality’ bound

A ∈ (−(r − d→), (r − d→)) ⊂ (−r, r) holds, i.e. we require

the packet events at the server to occur between those at the

host. Note that r and d→ can be measured as they each are

time differences measured by a single clock under conditions

where drift may be neglected.

In the absence of independent knowledge of A, a natural

naive estimate based on (8) is

θ̂i =
1

2
(Cu(ta,i) + Cu(tf,i)) −

1

2
(Tb,i + Te,i), (10)

which implicitly assumes that A = 0, and is equivalent

to aligning the midpoints (tb,i + te,i)/2 and (Cu(ta,i) +
Cu(tf,i))/2 of the server and host event times respectively.

In Figure 6 estimates obeying (10) are shown, along with

reference values calculated as in section III-A. Errors due to

network delay are readily apparent, but are more significant

than in the naive rate estimate case because they are not

damped by a large ∆(t) baseline.

The value of A places a hard limit on the accuracy of offset

measurement. The choice of server is therefore very important.

A nearby server will have a smaller RTT, and therefore a

tighter bound. More importantly however, a nearby server is

likely to have a path which is symmetric or close to it, which

would result in A ≪ r. This is in fact the case for ServerLoc

and ServerInt, which we measured (see table II) to be of the

order of 50 µs. Estimating A however is non-trivial. When only

incoming DAG timestamps were available (2003 data), we

used A = d↑−d↓ = r−d→−2d↓ which in terms of available

timestamps reduces to Âi = (Tf,i−Ta,i)p̂−2T g
f,i +Tb,i +Te,i,

and obtained estimates based on the packet i which minimizes

ri (see [4] for more details). In section VI we describe an

improved method using bidirectional DAG monitoring.

V. SYNCHRONIZATION: THE TSCCLOCKS

Here we define the core components of the TSCclock

algorithms. They differ in two key ways from the naive ones

of the previous section: they deal with drift, and they are

robust. The central obstacle to achieving these is the successful

filtering of network and host delays. It is intuitively clear from

Figures 5 and 6 that the packets carrying large delays can be

detected, and so dealt with. The TSCclock algorithms succeed

in doing this reliably even when delays are small.

A. Approach to Filtering

We need to measure the degree to which, for each packet i,
the available timestamps are affected by network queueing and

other factors. To do so we work with the round-trip time series

{ri}, which has a number of important intrinsic advantages

over the one-way delays, {d↑i } and {d↓i }.

As discussed above, since Ta,i, Tf,i, are measured by the

same clock, and since round-trip times are very small, neither

the unknown θ(t) nor local rates are needed to accurately

measure ri. The same is true for determining the quality of ri,

only a reasonable estimate such as an average p̄ is required.

This creates a near complete decoupling of the underlying

basis of filtering from the estimation tasks, thus avoiding the

possibility of undesirable feedback dynamics.

The point error of a packet is taken to be simply ri−r. The

minimum can be effectively estimated by r̂(t) = min
⌊t⌋
i=1

ri,

leading to an estimated error Ei = ri − r̂(t) which is highly

robust to packet loss. Error will be calibrated in units of the

maximum timestamping latency δ at the host (we use δ =
15µs).

Whereas round-trip times can effectively ignore drift, one-

way delays are measured by different machines, and must

therefore be calculated using absolute clocks. As a result, the

uncorrected one-way delay Tb,i −Cu(ta,i) inherits the drift of

Cu(t) (recall Figure 2), greatly complicating assessments of

quality. On the other hand RTT based filtering has its own key

disadvantage. Consider that with independent symmetric paths,

if the probability that one-way quality exceeds a given level is

q, and q′ for server delay, then the corresponding probability

drops below q′q2 for the RTT, which can be much smaller than

q under congested conditions. Thus quality packets are rarer

when judged by the RTT alone, making accurate estimation

more challenging.

B. Rate Synchronization

To bound the error on the estimate p̂(t), we use Equation (7)

but restrict ourselves to packets with bounded point error. The

base algorithm is simple. To initialise, set j and i to be the first

and second packets with point errors below some threshold

E∗. Equation (7) then defines the first value of p̂(t) which we

assign to t = tf,i. This estimate holds for t ≥ tf,i up until i is

updated at the next accepted packet, and so on. An estimate of

the error of the current estimate is (Ei + Ej)/((Tf,i − Tf,j)p̄)
and should be bounded by 2E∗/((Tf,i −Tf,j)p̄). As before the

above procedure is independently applied to both the forward

and backward paths, and the results averaged.
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Fig. 7. Relative error in p̄ estimates for E∗ = [20, 5]·δ = [0.3, 0.075] ms.
Errors fall below γ∗ =0.1 PPM and remain there.

This scheme is inherently robust, since even if many packets

are rejected, error reduction is guaranteed through the growing

∆(t) = Tf,i − Tf,j , without any need for complex filtering.

Even if connectivity to the server were lost completely, the

current value of p̂ remains entirely valid for filtering, allowing

estimation to recommence at any time free of ‘warm-up

dynamics’.

Figure 7 plots the relative error of the resulting estimates

with respect to the corresponding DAG reference rates for

those i selected. Two sets of results are given, for E∗ = 20δ
and 5δ (resulting in 72% and 3.9% of packets being selected

respectively), to show the insensitivity of the scheme to E∗.

In each case errors rapidly fall below the desired bound of

γ∗ = 0.1 PPM and do not return, in contrast to Figure 5 based

on the same raw data. The solid lines give expected upper

bounds on the error based on 2E∗/(T g
f,i−T g

f,j). To put this per-

formance into context, note that for the measurement of time

differences over a few seconds and below, which is relevant for

inter-arrival times, round-trip times, and also delay variation,

the estimate p̂ above gives an accuracy better than 1µs, an

order of magnitude better than a GPS synchronized absolute

software clock, after only a few minutes of calibration.

To ensure that any unexpected failures of the estimation

procedure cannot force the rate estimates to contradict the

known physical behaviour of the hardware, before a candidate

update is accepted it is sanity checked as follows: if the relative

difference between two successive rate estimates exceeds some

small multiple of the rate bound (we used 3γ∗), then the

update will be blocked, and a warning logged (a similar

rate bound assumption was used in [13]). This guarantees

that the estimate cannot vary wildly no matter what data it

receives. One situation where this is needed is when the server

timestamps themselves are in error. We have observed many

instances of this, and give an example from the data presented

here in the next section.

C. Local Rate Estimation

It is important to understand that the estimate p̂ above is

really that of the average rate p̄ over a large ∆(t) ≫ τ∗

window, and is thus an average of many different local or

‘true’ rates in the sense of the SKM. From Figure 3, true

local rates can be meaningfully defined down to accuracies

of γ∗
ǫ = 0.01 PPM, over scales below τ∗. However, there is

no need for local rate estimates in order to obtain p̄, and p̄
is sufficient to support filtering and both the difference and

absolute clocks. This is a huge advantage since the estimation

of local rates is much more difficult as there are only a small

number of timestamps available with which to ‘differentiate’ a

non-stationary drift. However, there are two important reasons

why the measurement of local rates is worthwhile: (i) they

extend the scales over which the difference clock Cd(t) can

be used to measure time differences, and (ii) to optimize the

performance of θ̂(t) and hence that of Ca(t).
We denote our local period estimates by pl(t), measured

over a timescale τl. Ideally τl < τ∗, however larger values are

typically needed to control estimation variance. The algorithm

calculates a local value for each packet k over a window of

effective width τl. Unlike for p̄ where packets were selected

based on a fixed quality, here it is essential to maintain the

timescale of the estimate fixed. The actual window is therefore

divided into near, central, and far subwindows of width τl/W ,

τl(W − 2)/W , and 2τl/W respectively. In each of the near

(index i) and far (index j) windows, the packets with the

lowest point errors are selected, and used in (7) to calculate

a candidate estimate p̂l(tf,k). As before, a bound on the error

of the estimate is calculated as (Ei + Ej)/((Tf,i − Tf,j)p̄).
If it lies under a target quality value γl (which we choose

to be γl = 0.05 PPM > 0.01 PPM to allow for estimation

error) we accept the estimate, else we are conservative and

set p̂l(tf,k) = p̂l(tf,k−1). We then set p̂l(t) = p̂l(tf,k), where

packet k is the most recent packet arriving before time t. We

apply a sanity check for candidates in a similar way to p̂. If

it fails, the previous trusted value is used.

As it is important that the estimate be local to the packet

k, W should be chosen small. On the other hand W should

be large enough so that packets of reasonable quality will lie

within it. By selecting the best candidates in the near and far

windows, we guarantee that there is an estimate for each k.

Good quality is designed into the scheme through the width of

the central window. Robustness to outliers is provided by the

monitoring of the expected quality of the candidate estimate,

and the sanity checking. Consequently, we found that the

results are insensitive to W (we use W = 30).

The algorithm closely tracks the corresponding reference

rate values made over the same time-scale. Using the same

data as in Figure 7, with γl = 0.05 PPM, τl = 5τ∗ and

W = 30, over 99% of the relative discrepancies from the

reference were contained within 0.023 PPM. The outliers were

due mainly to errors in the reference rates, not instabilities in

the estimation algorithm. Only 0.6% of values were rejected by

the quality threshold, and the sanity check was not triggered.

D. Offset Synchronization

Our aim is to estimate θ(t) for arbitrary t, using the naive

θ̂i estimates from past packets as a basis. Note that for many

applications, post processing of data would allow both future

and past values to be used, which improves performance,

particularly following long periods of congestion or sequential

packet loss. We focus on causal filtering as required by a

general purpose system clock operating on-line.

In this section we use data collected continuously in the

machine-room over the last 3 weeks of September 2003. The

host was connected to ServerInt. We also present comparative
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results from a week long trace using ServerLoc and a trace

2.7 weeks long using ServerExt.

When estimating p̂, large ∆(t) values were an asset. In

contrast, since θ(t) must be tracked, large time intervals

between quality packets would imply that the accepted θ̂i

would be out of date. This fundamental difference suggests

a paradigm of using estimates derived for each packet. Our

approach consists of four stages: (i) determining a total per-

packet error ET
i which combines point error and packet age,

(ii) assigning a weight wi based on the total error, (iii)

combining the weighted point estimates to form θ̂(t), and (iv)

a sanity check to ensure that θ̂(t) will not evolve faster than

the known hardware performance for any reason.

(i) Based on the last packet i arriving before time t, the

simplest approach is simply to set θ̂(t) = θ̂i. The magnitude of

the resulting error can be estimated by inflating the point error

by a bound on its growth over time: ET
i = Ei + γ∗(Cd(t) −

Cd(Tf,i)). This may be overly pessimistic as the residual rate

error (from the p̂ used to calculate θ̂i) may be as low as γ∗
ǫ

(from section V-B). We therefore estimate the total error as

ET
i = Ei + γ∗

ǫ (Cd(t) − Cd(Tf,i)).
(ii) First we consider only those packets which fall into

a SKM related offset window τ ′ seconds wide before t, as

we only know how to relate current and past offset values

within the context of the SKM. For each packet i within

the window we penalise poor total quality very heavily by

assigning a quality weight via wi = exp(−(ET
i /E)2) ≤ 1,

which becomes very small as soon as the total quality lies

away from a band defined by the size of E > 0. The graphs

below justify the particular choices τ ′ = τ∗ and E = 4δ.

(iii) An estimate can now be formed through a normalised

weighted sum over the offset window:

θ̂(t) =
∑

i

wiθ̂i/
∑

i

wi,

which amounts to a constant predictor on a packet by packet

basis. The local rate estimates can be used to introduce linear

prediction instead:

θ̂(t) =
( ∑

i

wi(θ̂i + γ̂l (Cd(t) − Cd(Tf,i)))
)
/

∑

i

wi

where γ̂l = 1− p̂l(tf,i)/p̄ is the estimate of the residual skew

relative to p̂ = p̄ (the value used in Cu(t) to calculate θ̂i).
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Fig. 8. Time series of θ̂i using the algorithm (without local rates) against
reference values θg

i , with naive estimates in the background. The oscillations
are due to the airconditioning in the machine room. The (rare) spikes
in the reference values are examples of corruption by timestamping noise
(corresponding Tf,i are corrected using neighbouring values).

If all the packets in the window have poor quality then

even the weighted estimate can perform poorly. Indeed, under

periods of high congestion we may find that
∑

i wi = 0 to

machine precision. To avoid being influenced in such cases,

when mini(E
T
i ) > E∗∗, we instead base the estimate on the

last weighted estimate accepted (say at packet i), which gives

θ̂(t) = θ̂(tf,i) (11)

θ̂(t) = θ̂(tf,i) + γ̂l ∗ (Cd(t) − Cd(Tf,i)), (12)

depending upon whether the local rate correction is used or

not We set E∗∗ = 6E, or about 3 ‘standard deviations’ away

in the Gaussian-like weight function, so that the estimate will

only be abandoned when quality is extremely poor.

(iv) Just as for the rate estimates, we put in place a high

level sanity check to ensure that the offset estimate cannot

vary in a way which we know is impossible, no matter what

data it receives. If successive offset estimates differ by more

than a given function of τ∗ and γ∗ then the most recent

trusted value will simply be duplicated. In this section we use

simple thresholding, set at 1ms, which is orders of magnitude

beyond the expected offset increment between neighboring

packets. It is very important that such a sanity check be just

that, for example in this case that the threshold be set very

high. Attempting to reduce this value to ‘tune’ its performance

would be tantamount to replacing the main filtering algorithm

with a crude alternative dangerously subject to ‘lock-out’,

where an old estimate is duplicated ad infinitum. An instance

when the sanity check was needed is given later.

An example of the offset error θ̂i of the uncorrected clock

Cu(t), estimated by the algorithm at successive packet arrivals,

is given in Figure 8. The performance is very satisfactory:

the algorithm succeeds in filtering out the noise in the naive

estimates (shown in the background), producing estimates

which are only around θ̂i − θg
i = −30µs away from the DAG

reference values θg
i = Cu(tf,i) − T g

f,i. This difference is just

the negative of the offset error of Ca(t) as measured by DAG,

since Ca(tf,i) = Cu(tf,i) − θ̂i = Cu(tf,i) − θg
i − (θ̂i − θg

i ).
However, given that the path asymmetry is estimated as

A ≈ 50µs, which implies an ambiguity in offset of A/2 ≈
25 µs (Equation (8)), and that timestamping issues limit the

verifiability of our results to around 10µs in any case, the

total offset of 30µs is seen to be essentially due to asymmetry,

showing that the algorithm is working very well in eliminating

the errors due to variable network delay.

We now consider the performance of the clock more system-

atically as a function of key parameters. In Figure 9 the central

curve shows the median of θ̂i − θg(t) = −(Ca(tf,i)− T g
f,i) as

a function of the offset window τ ′, calculated over the entire

3 weeks. It is around 28µs over a wide range of window

sizes, and the inter-quartile range (IQR) is likewise very small,

of the order of 11µs for the optimal value at τ ′/τ∗ = 0.5,

again with low sensitivity to window size. Even the range

from the topmost (99th percentile) to the bottommost (1st

percentile) curve is only of the order of 50µs. Essentially

identical results were obtained over the 3 month period of

continuous monitoring (section VI) using ServerInt, of which

the current 3 week trace is a subset.
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Fig. 9. Sensitivity analysis of clock offset with respect to key parameters: (a) window size τ ′, (E = 4δ, with and without local rate: τl = 20τ∗) (b) quality
assessment E (τ ′ = τ∗/2, with and without local rate: τl = 20τ∗), and (c) polling period (τ ′ = τ∗, E = 4δ without local rate). From top to bottom: the

99%, 75%, 50% (the median) 25% and 1% percentiles of the error θ̂i − θg(t) = −(Ca(tf,i) − T g
f,i

) of θ̂i The sensitivity is very low in each case.

Figure 9(a) also compares the estimation with and without

the use of local rates. The differences are marginal for this

trace, with local rate we only gain some immunity to the

effects of choosing a window size too large. In either case,

the insensitivity of the results to the precise value of τ ′ is

encouraging, and the fact the optimum is close to τ ′ = τ∗ is

precisely what we would expect from our SKM formulation,

and a natural validation of it.

Figure 9(b) examines the results as a function of the quality

assessment parameter E. Again very low sensitivity is found,

with optimal results being achieved at a small multiples of δ,

as one would expect. We also performed sensitivity analyses

with respect to the aging rate parameter γ∗
ǫ , and the local

rate window width τl. For each, the sensitivity is so low for

this relatively well behaved data that they could be omitted

entirely with little effect. These refinements bring tangible

benefits only under certain conditions, such as high loss, where

packets in the τ ′ window may be much further in the past than

intended, or when parameters have not been poorly chosen.

We next examined performance with respect to polling

period. As they were essentially identical, we omit the results

using the local rate correction. We compare the period of 16

seconds, used so far, with others including the usual range of

allowed default values: 64 to 256. The sensitivity results with

respect to τ ′ were very similar to those reported in Figure 9(a),

although the optimal ‘kink’ position moves to slightly larger
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Fig. 10. Performance over four different operating environments (same data
sets as Figure 3). Top to bottom: 99%, 75%, 50% 25% and 1% percentiles

of the error θ̂i − θg(t) of θ̂i.

values. The results for E were unchanged beyond a slight

spreading of the error distribution.

We now keep the other parameters fixed at τ ′ = τ∗, E = 4δ,

and γ∗
ǫ = 0.02 PPM and vary the polling rate. Figure 9(c)

shows again that the sensitivity is very low. In particular the

median error only changed by a few microseconds despite a

reduction of raw information by a factor of 32 across the plot.

This is significant since it is important, in generic applications,

that time servers not be excessively loaded.

Finally, we examine the performance of the algorithm over

the four different traces, representing different host-server

environments, used in Figure 3. We use τ ′ = τ∗, E = 4δ, and

τl = 5τ∗, and a polling period of 64. We see the reduction

in variability when moving from the laboratory into the more

stable machine room (MR), and a further improvement when

moving from ServerInt to the even closer local server. The

jump in median error when ServerExt is used is due to the

much increased path asymmetry, an inescapable phenomenon

for any remote client-server algorithm which assumes A = 0.

As before, the error is approximately A/2 using the values

from table II, much smaller than the RTT of r = 14.2 ms.

The increased variability is due to the higher noise resulting

from many hops, making quality packets much rarer. With

ServerExt we are stress testing the algorithm using a server

that is much further away in all senses than necessary.

VI. A ROBUST WORKING SYSTEM

Here we discuss additional issues that are important in

a working system, and examine one of the most important,

robustness to routing changes. We then present results from a

new C implementation, using several new data sets.

A. Robustness

The challenge for a working system is to adapt core al-

gorithms to a heterogeneous environment, repleat with both

foreseen and unforeseen anomalies, without compromising

principles or performance. There are many issues here which

are addressed in our implementation, including modifications

required to algorithms in a warmup phase, on-line formulations

that summarise (and forget) the past efficiently, and the avoid-

ance of unwanted dynamic interactions between estimates.
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Fig. 11. Performance of the θ̂ algorithm under extreme conditions (smooth thicker curves are reference offsets, variable curves with arrows are estimated
offsets): (a) loss of data over 3 days, (b) level shift error of 150 ms in the server clock (triggers sanity check), (c) artificial temporary and permanent upward
level shifts inducing change in A, (d) real permanent downward level shift using ServerExt with A constant. τ ′ = 2τ∗, τl = 5τ∗, τs = τl/2.

With the exception of robustness to changes in r (for example

caused by IP layer routing changes), for space reasons we

cannot discuss these in detail (see [6]). Instead, we illustrate

the performance of the final result on real, heterogeneous data.

We illustrate how the full system (for the moment we

use the same C implementation as in [6]), reacts in different

circumstances. Figure 11 zooms in on extreme events which

occurred during a continuous measurement period which con-

tinued the 3 month trace of the previous section to include an

additional gap of 6 days, followed by the change to ServerLoc

for 1 week, and then to ServerExt. Figure 11(a) demonstrates

the fast recovery of the algorithm even after the 3.8 day

gap in data collection Figure 11(b) shows the impact of a

server error lasting a few minutes, during which Tb,i and Te,i

were (inexplicably) each offset by 150ms. As errors in server

timestamps do not affect the RTT measurements at the host,

this is very difficult to detect and account for. However, the

offset (and local rate) sanity check algorithm was triggered,

which limited the damage to a millisecond or less.

The remaining examples involve level shifts, that is changes

in any of the minimum delays d↑, d→ or d↓ (see Equation (6)),

and hence r. This is primordial as filtering of network delay

is based on the estimation of r. On-line algorithms must be

able not only to survive such a transition in r but continue to

perform well. We now discuss the key issues.

Asymmetry of shift direction:

These are fundamentally distinct:

Down: congestion cannot result in a downward movement, so

the two can be unambiguously distinguished → easy detection.

Up: indistinguishable from congestion at small scales, be-

comes reliable only at large scales → difficult detection.

Asymmetry of detection errors:

The impact of an incorrect decision is dramatically different:

Judge quality packet as bad: an undetected upward shift looks

like congestion, to which algorithms are robust → non-critical.

Judge bad quality packet as good: falsely interpreting con-

gestion as an upward shift immediately corrupts estimates,

perhaps very badly → critical to avoid.

Asymmetry of offset and rate:

Offset: underlying naive estimates θ̂i remain valid to the θ̂(t)
algorithm even after a future shift → store past estimates and

their point errors relative to the r̂ estimate made at the time.

Rate: p̂ and p̂l estimates are made between a pair of packets,

so must compare them using a common point error base →

use point errors relative to current error level (after any shifts).

If the procedures of the last paragraph are followed, few

additional steps are needed to assemble a robust detection and

reaction scheme for level shifts.

The Level Shift Algorithm:

The two shift directions are treated separately:

Down:

Detection: Automatic and immediate when using r̂.

Reaction: Offset: no additional steps required.

Rate: No additional steps required. The algorithms will see

the shift as poor quality of past packets and react normally.

In time, increasing baseline separation and windowing will

improve packet qualities again.

Up:

Detection: Based on maintaining a local minimum estimate r̂s

over a sliding window of width τs. Unambiguous detection is

difficult and the consequences of incorrect detection serious.

We therefore choose τs large, τs = τl/2, and detect a shift (at

t = Ca(Tf,i) − τs) if |r̂s − r̂| > 4E.

Reaction: First update r̂ = r̂s (and on-line window estimate),

and recalculate θ̂i values and reassess their point qualities

back to the shift point. Otherwise no additional steps required.

Before detection, the algorithms will see the packets as having

poor quality, and react as normal. Since the window is large,

estimates may start to degrade toward the end of the window.

In Figure 11(c) two upward shifts of 0.9ms were artificially

introduced. The first, being under τs in duration, was never

detected and makes little impact on the estimates. The second

was permanent. Occurring at 80.04 days, it was detected a

time τs later, resulting in a jump in subsequent offset estimates

(the original on-line estimates, not the recalculated ones, are

shown). This jump is not a failure of the algorithm, but is the

unavoidable result of the change in A of 0.9/2 = 0.45 ms, as

the shifts were induced in the host→server direction only. The

important point concerning the algorithm is that the estimation

difficulties resulting from the shift in r have been kept well

controlled at around 50µs. Finally, the naturally occuring

permanent shift in Figure 11(d) occurs equally in each di-

rection, so that A does not change, and is also downward,

so that detection and reaction are immediate. The result is no

observable change in estimation quality, and no jump due to

A, the shift is absorbed with no impact on estimates.
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Fig. 12. Sensitivity analysis of offset error Ca(tf,i) − T g
f,i

, new implementation, for window size and polling period. In each plot from top to bottom the

curves are the 95%, 75%, 50% (the median) 25% and 5% percentiles of the offset error. Plots (a) and (b): wallaby to ServerInt2 over 32 days. Plots (c) and
(d): tastiger to ServerExt2 over 21 days. Plots (e) and (f): green to ServerLAN over 64 days. Plots (g) and (h): tastiger to ServerLAN over 64 days. Full
horizontal lines show the error component due to path asymmetry alone. Dashed horizontal lines (top row only) show the network asymmetry An.

B. Experiments With a Production TSCclock

This section documents the performance of an entirely new

C implementation. Algorithmically, it incorporates many small

improvements to robustness and efficiency. As a system, it has

improved kernel timestamping, is modular, uses less memory,

is far more configurable, runs as a system daemon, and can be

easily installed as a package on recent Linux and BSD systems

in parallel with the SW-NTP.

The timestamp data sets featured here were collected on

three hosts in 2006-7: green and tastiger with BSD-6.1 ker-

nels, and wallaby running BSD-5.3, using the stratum-1 NTP

servers of table III. An important improvement in validation

methodology for these new data sets arises through capturing

DAG timestamps in both the outgoing (tga,i) and incoming (tgf,i)

directions (Figure 1). First, this allows path asymmetry to be

decomposed into host and network components: A = Ah+An,

where An is defined analogously to (9) but with DAG replac-

ing host, and Ah = mini(d
h↑
i )−mini(d

h↓
i ). As both the DAG

and server are synchronized, An can be readily estimated for

each server, and values are given in table III.

As mentioned in section II-E, minimum system noise can

be of the order of rh = 150µs, an appreciable proportion

of minimum RTT for nearby servers! In terms of asymmetry

in this noise, the same fundamental ambiguity which exists

between the host and the server, exists between the host and

the DAG. Hence, although rh places bounds on Ah (just as r
does on A), Ah cannot be measured, and therefore neither can

A. However, it is nonetheless possible, with bidirectional DAG

Server Reference Distance r (min RTT) Hops An

ServerLAN GPS 3 m 0.24 ms 1 24µs

ServerInt2 GPS 300 m 0.61 ms 5 70µs

ServerExt2 GPS 3500 km 37.7 ms 10 175µs

TABLE III
CHARACTERISTICS OF THE STRATUM-1 NTP SERVERS USED IN 2006-7.

timestamps, to remove the effect of A completely. Specifically,

if we decompose the median total error θ = A/2+ θ′ into the

inherent error A/2 due to path asymmetry and the ‘true’ error

θ′ representing the performance of the TSCclock algorithm

itself, then the latter can be measured as

θ′ = θ −
A

2
= median(Ca(tf,i) − T g

f,i) −
1

2
(An + rh).

since θ(tf,i) = Ca(tf,i) − tf,i = Ca(tf,i) − (tgf,i + dh↓
i ),

and, assuming that packet i experiences minimum delays

everywhere, dh↓
i = (rh−Ah)/2 (a symmetric expression holds

using outgoing timestamps, however the system noise is lower

with incoming). The correction (An +rh)/2, which is specific

to the (server, host) pair, is shown as the solid horizontal line

in Figure 12 and should be compared to the median error.

The upper plots also show the server component An/2 as the

dashed horizontal line.

We first examine the window size and poll period sensitivi-

ties for a 32 day trace of the TSCclock on wallaby synchroniz-

ing to ServerInt2 (with default values τ ′ = τ∗ = 1024, poll-

period= 16, E = 6δ, γ∗
ǫ =0.1 PPM, τl = 5τ∗). Figures 12(a)

and (b) show that, in contrast to Figure 9, there is a significant

advantage in using the local rate correction, due to the wider

range of drift over this trace, which results in p̄ − p̂l being

larger. For example the IQR at τ = τ∗ in Figure 12(a)

is only 15µs using the local correction, compared to 55µs

without. In terms of median error, the gap between the total

median clock error and the component due to asymmetry

(thick horizontal line) is only 12µs when using the local rate

correction, compared to 10µs without. In other words, apart

from inherent asymmetry issues, the TSCclock (using local

rates) has errors which are tightly clustered around a median

value which is so low it stresses our ability to measure it given

system noise. The IQR values and sensitivity conclusions are

comparable to those of Figures 9(a),(c) using a similar server.
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Now consider a 20 day trace of the TSCclock on wallaby

synchronizing to ServerExt2. Figures 12(c) shows that, again,

the performance is best at around τ = τ∗ where the IQR

using local rates is only 49µs, a good result for such a distant

server, as is the excess median error which is only 40µs above

the asymmetry component. Plot 12(d) shows that the drop in

performance with increasing poll period is graceful.

The bottom row in Figure 12 supports a comparison of

green, the 600MHz Pentium III machine used above on the

2003 data, and tastiger, a 3.4Ghz Pentium Core Duo. Each

synchronized to ServerLAN in a simultaneous experiment last-

ing 64 days in the same laboratory temperature environment.

Because of the proximity of ServerLAN, both An (24µs)

and rg (166µs) are very small. Host system effects therefore

dominate the network ones, facilitating a host comparison.

We only show results using the local rate correction. The

results are very good: for default parameters the IQR is below

system noise at only 6µs for green and 10µs for tastiger,

and the excess median error above the asymmetry component

(horizontal line) is 4µs and 2µs respectively. The Allan plots

(not shown) fail to give any clear indication of a difference in

TSC oscillator characteristics between the different hardware.

However, the system noise was larger for green at rh = 166µs,

compared to rh = 78µs for tastiger, resulting in a total error

(166 − 78)/2 = 44µs larger for the older machine.

Finally, we checked how the new implementation compares

to the old. When applied to the full 3 month trace collected

in 2003, [6] reports that the proof of concept implementation

(using τ ′ = 2τ∗, E = 4δ, γ∗
ǫ = 0.01PPM and local rates)

gave [median,IQR]= [31, 15] µs compared to [29, 14]µs now,

using a poll period of 16 seconds, and [33, 24]µs compared

to [31, 24] µs now when polling every 256 seconds.

Thus far we have used stratum-1 servers exclusively, in

order to evaluate the TSCclock in isolation, free of errors

arising from an inaccurate server. However, in practice servers

of lower stratum may be used, and it is important to ensure that

the TSCclock reacts stably in this environment. To test this, we

first benchmarked green using ServerLAN, obtaining the best-

case θ̂ performance shown in Table IV, and a reference value

for period of p̄∗ = 1.822638984[ns]. We then pointed green

to two stratum-2 servers, first on the LAN, then another in the

same location as ServerInt2. Table IV gives the median and

IQR of two metrics, the rate error ep = (p̂ − p̄∗)/p̄∗ relative

to p̄∗, and the offset error eθ = Ca(tf,i) − T g
f,i (using a poll

period of 16[sec] and correcting for asymmetry). The values

of p̂ are extremely stable despite the lower stratum. The results

for eθ are also very good (better for the closer server as usual),

indicating that the TSCclock is tracking its server well. Of

course, if the absolute performance of the server is poor, so

will be that of the TSCclock. As an additional example, earlier

Server Stratum Med(ep) IQR(ep) Med(eθ) IQR(eθ)

ServerLAN 1 0 PPM 0.005 PPM 11µs 9µs

tastiger 2 −0.09 PPM 0.004 PPM 16µs 12µs

ServerInt3 2 −0.08 PPM 0.03 PPM 48µs 64µs

TABLE IV
PERFORMANCE COMPARISON WITH STRATUM-2 SERVERS.

CPU Load State of pl Duration Med(eθ) IQR(eθ)

Very light Stable 5 hours 3µs 14µs

Saturated Transitional 2 hours 7µs 33µs

Saturated Stable 5 hours 3µs 16µs

TABLE V
PERFORMANCE AS A FUNCTION OF CPU LOAD.

we reported an IQR of 15 µs for wallaby to ServerInt2. For

green to ServerInt3 this increases, but only to 64 µs.

Another dimension of robustness is host load, which up

to now has been very light. Table V shows results before and

after a busy loop was activated which pushed CPU usage up to

100%. As expected, the load had no impact on algorithm oper-

ation, which only requires resources once each polling period

(here 16 [sec]). One potential impact is of higher system noise

on timestamping, however we saw no sign of this neither in the

raw timestamp data, nor via algorithm diagnostics. Sustained

high load does however result in a considerable temperature

increase, and a corresponding unusually large increase in local

rate of the TSC, measured as 1.0 PPM. The middle row of

table V shows that during a transitional phase, during which

the local rate estimate pl adapts to this new value, eθ is

mildly affected, after which (row three), performance returns

to light-load values. Throughout and as expected, p̂ was stable

and allowed delay filtering as normal despite the radical load

increase. Note that if strong fluctuations were endemic, then

performance would be downgraded as above consistent with

a permanent ‘transition phase’.

Figure 13 shows a comparison of SW-NTP (synchronized

to ServerLAN in broadcast mode) against the TSCclock over

14 days. The SW-NTP fluctuates in a 1[ms] band, two orders

of magnitude wider than that of the TSCclock. Experiments

conducted in the environments of Figure 12 showed similar

levels of improvement. An authoritative comparison requires

controlled testing over a wide range of conditions and cannot

be attempted here. In [14] we describe how such testing can be

performed, and in so doing provide a number of comparisons

which are consistent with Figure 13. Using this methodology,

[15] makes a beginning on a systematic comparison and

confirms improvement exceeding 1 order of magnitude over a

range of servers and polling period. A detailed benchmarking

study, including the influence of hardware, load, temperature,

server stratum and distance, congestion, and algorithm param-

eters, is the subject of another paper.

We do not give explicit results for the difference clock Cd(t)
(see [14]). However, in months of operation we observed that
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Fig. 13. A sample comparison of SW-NTP and TSCclock performance.
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p̂ typically varies in a range of a few part in 109, with very rare

‘jumps’ of the order of a few parts in 108. The immediate and

remarkable implication is that, even if the network connectivity

were lost (resulting in p̂ being frozen) for extended periods,

the difference clock would be essentially unaffected.

VII. CONCLUSION

We have presented a detailed re-examination of the problem

of inexpensive yet accurate clock synchronization for net-

worked devices. It rests on an empirically validated, parsi-

monious abstraction of the CPU oscillator as a timing source,

accessible via the TSC register in popular PC architectures,

and then builds on the key observation that the measurement of

time differences, and absolute time, requires separate clocks.

We showed how this insight infiltrates all levels of the clock

design and synchronization algorithm problem, leading in par-

ticular to a decoupling of timestamping filtering from synchro-

nization itself, and a decoupling of absolute synchronization

from rate synchronization. The result is distinct algorithms:

the difference and absolute TSCclock, with performance and

robustness which fulfill the promise of the high stability of the

TSC but which are, inherently, qualitatively and quantitatively

very different. The status-quo solution, embodied in the ntpd

daemon, offers an absolute clock only.

Using many months of real data from 6 different network

accessible (stratum-1 NTP) time servers, and both ‘old’ and

new host hardware, we demonstrated that the TSCclocks are

very accurate, as well as robust to many factors including

packet loss and loss of server connectivity, routing changes,

network congestion, temperature environment, timestamping

noise, and even faulty server timestamps. We showed in detail

how the performance of the absolute TSCclock is insensitive

to key algorithm parameters, and explained why the difference

TSCclock is virtually invulnerable to them. For absolute syn-

chronization, we stressed the need to separate out errors due to

the algorithm (of the order of a few 10’s of µs under reasonable

conditions, close to the system noise limit) from fundamental

limitations due to path asymmetry. The impact and magnitude

of path asymmetry, notably for applications such as one-

way delay measurement, is context dependent, however the

TSCclocks should allow many applications requiring accurate

and reliable timing to do away with the cost of hardware based

synchronization, such as using GPS receivers. In particular,

the difference clock is not impacted by path asymmetry, and

is robust to extreme events such as weeks of connectivity loss.

We give detailed performance results for an implementation

for BSD and Linux platforms. It synchronizes to an NTP server

and is capable of being run as a system daemon in parallel with

existing system software clocks based on ntpd. The algorithms

however could easily be adapted for use with other kinds of

oscillators, and other kinds of time servers.
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