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Robust Synchronization of an Array of Coupled
Stochastic Discrete-Time Delayed Neural Networks

Jinling Liang, Zidong Wang, Senior Member, IEEE, Yurong Liu, and Xiaohui Liu

Abstract—This paper is concerned with the robust synchro-
nization problem for an array of coupled stochastic discrete-time
neural networks with time-varying delay. The individual neural
network is subject to parameter uncertainty, stochastic dis-
turbance, and time-varying delay, where the norm-bounded
parameter uncertainties exist in both the state and weight ma-
trices, the stochastic disturbance is in the form of a scalar Wiener
process, and the time delay enters into the activation function.
For the array of coupled neural networks, the constant coupling
and delayed coupling are simultaneously considered. We aim to
establish easy-to-verify conditions under which the addressed
neural networks are synchronized. By using the Kronecker
product as an effective tool, a linear matrix inequality (LMI)
approach is developed to derive several sufficient criteria ensuring
the coupled delayed neural networks to be globally, robustly,
exponentially synchronized in the mean square. The LMI-based
conditions obtained are dependent not only on the lower bound
but also on the upper bound of the time-varying delay, and can
be solved efficiently via the Matlab LMI Toolbox. Two numerical
examples are given to demonstrate the usefulness of the proposed
synchronization scheme.

Index Terms—Coupled neural networks, discrete time, Kro-
necker product, matrix functional, robust synchronization,
stochastic perturbation, time-varying delay.

I. INTRODUCTION

T HE last few decades have seen successful applications
of delayed neural networks in various areas such as

signal processing, fault diagnosis, pattern recognition, image
processing, and some optimization problems, and a great deal
of research results have been published in the literature; see [1],
[11], [12], [21], [30]–[33], [37], [39], [40], [44], [45], and the
references therein. When designing the neural networks or in
the implementation of neural systems, due to the thermal noise
in the electronic devices or the random fluctuations from the
release of neurotransmitters, stochastic disturbances are almost
inevitable. On the other hand, vital data, such as the signal
transmission delays, the synaptic interconnection weights, and
the neuron’s fire rate, are usually acquired and measured by
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way of statistical estimation, and this would give rise to estima-
tion errors. It has recently been recognized that both stochastic
disturbances and parameter uncertainties are unavoidable when
modeling and implementing real neural networks [27], and
constitute the main causes for performance degradation of
even instability of the system. Therefore, dynamical analysis of
various uncertain stochastic neural networks with time delays
has quickly become an attractive topic of research in the past
few years; see, e.g., [20], [27], [33], and [38]–[40].

In engineering applications such as network-based control,
time-series analysis, and system identification, it is often nec-
essary to formulate a discrete-time analog of the continuous-
time neural networks. Unfortunately, as pointed out in [28],
the discretization cannot preserve the dynamics of the contin-
uous-time counterpart even for a small sampling period. Conse-
quently, much effort has been devoted to the investigation of the
dynamical behaviors of delayed discrete-time neural networks
(DDNNs) with neither modeling errors nor stochastic distur-
bances via Lyapunov approaches [8], [16], [18], [20], [34]. It
should be noted that the parameter uncertainties and stochastic
disturbances have been largely overlooked due primarily to the
difficulty in mathematical analysis, despite the promising ap-
plication potentials of uncertain stochastic DDNNs in practical
areas such as image processing with circuit implementations,
economic dispatch, and unit commitment in power systems.
Therefore, one of the objectives of this paper is to deal with the
uncertainties as well as the stochasticity of the DDNNs.

Synchronization means that two or more systems that are
either periodic or chaotic adjust each other to give rise to a
common dynamical behavior. Since Pecora and Carroll intro-
duced a method to synchronize two identical chaotic systems
with different initial conditions [29], chaos synchronization has
gained considerable attention from various research areas such
as biological networks, secure communication, and chemical re-
actions [3], [9], [13], [26]. It has been shown that synchroniza-
tion could be induced either by coupling or by external forcing.
More recently, arrays of coupled systems have stirred much re-
search interest due to the fact that they can exhibit many inter-
esting phenomena such as synchronization and autowaves, and
they are important in modeling populations of interacting bi-
ological systems [42], [43]. Among them, the synchronization
in coupled identical delayed neural networks has been shown
to have an important impact on the fundamental science (e.g.,
the self-organization behavior in the brain). The synchroniza-
tion hypothesis for brain activities was formulated in 1938 by
Russian neurophysiologists [36], and the modern neurophysi-
ological experiments reinforced that synchronous oscillations
of neural activities in the brain structures (such as olfactory
bulb and cortex, visual cortex, hippocampus, neocortex, and
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thalamo–cortical systems) play a very important role in infor-
mation processing and coding [7], [10]. For example, the theta
rhythm related to the behavior of animals is produced by par-
tial synchronization of neuronal activity in the hippocampal net-
work [41], and an excessive synchronization of the neuronal ac-
tivity over a wide area in the brain results in the epileptic rhythm
[35]. In [6], the Lyapunov functional method and the Hermitian
matrix theory have been employed to investigate the global syn-
chronization of the coupled neural networks by defining a dis-
tance between any point and the synchronization manifold. For
details concerning synchronization of neural networks, please
see [4], [22], [42], [43], and the references cited therein.

To the best of the authors’ knowledge, up to now, there have
been very few results dealing with the robust synchronization
problem for an array of uncertain stochastic discrete-time neural
networks with time-varying delays. It is, therefore, the main
focus of this paper to analyze the globally exponential syn-
chronization problem for an array of delayed neural systems
with stochastic disturbances and parameter uncertainties. By
employing the matrix functional method in combination with
the properties of Kronecker product, several delay-dependent
criteria are obtained ensuring that the addressed neural networks
are globally robustly synchronized in the mean square. These
conditions, which are expressed in the form of linear matrix
inequalities (LMIs), can be easily solved by the Matlab LMI
Toolbox. It is known that the delay-dependent conditions are
generally less conservative than the delay-independent ones es-
pecially when the delay in the system is small. The sufficient
conditions acquired in this paper are dependent not only on the
lower bound but also on the upper bound of the time-varying
delay.

The rest of this paper is organized as follows. In Section II,
the model studied in this paper is presented, and some defini-
tions and lemmas are introduced. In Section III, the robust syn-
chronization problem is studied and some sufficient conditions
in the form of LMIs are developed. In Section IV, two illus-
trative examples are provided to demonstrate the effectiveness
of the proposed criteria and, finally, conclusions are drawn in
Section V.

Notations: Throughout this paper, is an -dimensional
identity matrix. is the -dimensional Euclidean space and
the notation refers to the Euclidean vector norm. For real
symmetric matrices and , the notation (respec-
tively, ) means that the matrix is positive semidef-
inite (respectively, positive definite). The Kronecker product of
an matrix and a matrix is defined by an

matrix . We use and to de-
note the minimum and maximum eigenvalue of a symmetric
matrix. Let be a complete probability space with a
natural filtration satisfying the usual conditions (i.e.,
the filtration contains all -null sets and is right continuous)
and generated by Brownian motion , where
we associate with the canonical space generated by ,
and denote the associated -algebra generated by
with all the probability measure . For integers and with

, we use to denote the discrete interval given by
. Let be the

set of all functions . stands for the math-

ematical expectation operator with respect to the given proba-
bility measure and the asterisk in a matrix is used to denote
the term that is induced by symmetry. Matrices, if not explicitly
stated, are assumed to have compatible dimensions.

II. MODEL DESCRIPTION AND SOME PRELIMINARIES

In this section, to facilitate the readers, we will present the
uncertain stochastic discrete-time delayed neural networks in a
step-by-step manner. Let us start with the commonly studied
discrete-time neural networks described by the following equa-
tion:

(1)

where is the
state vector associated with the network at time ;

with
denoting the rate at which the cell resets its potential to the
resting states when isolated from other cells and inputs; and
are weight matrix and the delayed weight matrix, respectively;

is the activation function;
is the external input; and represents the time-varying
transmission delay that satisfies

(2)

where and are known positive integers.
As discussed in the previous section, in practice, the net-

work parameters may contain uncertainties due to modeling er-
rors and the neural network may be disturbed by environmental
noises that affect the overall dynamical behavior of the neural
system. Therefore, model (1) can be modified to the following
more realistic one:

(3)

where the matrices , , and represent the
parameter uncertainties satisfying the following admissible con-
dition:

(4)

in which and are known real constant ma-
trices and is the unknown matrix subject to

(5)

is a scale Wiener process (Brownian motion) defined on
with

(6)
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and is the diffusion coefficient vector
satisfying

(7)

for all , where and are known
positive constants.

Remark 1: The matrix in (4) may be time varying and
state dependent, i.e., , as long
as (5) holds. The parameter uncertainty structures (4) and (5) are
generally exploited in the research of robust control of uncertain
systems; see [38] for example.

The initial conditions associated with model (3) are given by

(8)

where is the family of all -measur-
able -valued random variable satisfying that

.
Note that the model (3) consists of an array of uncertain sto-

chastic DDNNs that have similar structure with possible cou-
plings. Generally speaking, the DDNNs in model (3) with dif-
ferent initial conditions (8) will have different dynamical tra-
jectories even if the distance of the two initial functions is very
small. This is particularly true when the DDNNs are presented
with chaotic dynamical behaviors. Therefore, the synchroniza-
tion of the coupled uncertain stochastic DDNNs becomes an
important problem. Motivated by this discussion, in this paper,
we will study the global robust synchronization problem for the
following array of coupled stochastic discrete-time neural net-
works with time-varying delay:

(9)

where ; is defined as follows: if there is
a connection between subnetwork and subnetwork ,
then ; otherwise, .

Let the diagonal element be defined as

(10)

then the network (9) can be rewritten as follows:

where and represent the linear linking matrix
and the nonlinear linking matrix of the neural networks, respec-
tively;

is another activation function;
and that satisfy the dif-

fusive coupling condition (10) denote the linear coupling and the
nonlinear coupling configuration of the array, respectively.

Remark 2: The class of dynamical systems such as (9)
has been extensively investigated as theoretical models of
spatio–temporal phenomena in a variety of problems in non-
linear systems and computation studies [14]. The dynamical
behavior is governed by the intrinsic nonlinear dynamics at
each subsystem and the diffusion due to the spatial coupling
between submodels. Clearly, the diffusive coupling condition
(10) ensures that the synchronized state of (9) is just a solution
of the individual network (3).

For the activation functions, the following assumptions are
made.

Assumption 1 [18]–[20]: There exist constants , , ,
and such that

for any different , .
Remark 3: The activation functions are usually assumed

to continuous, differentiable, monotonically increasing, and
bounded, such as the sigmoid-type of function. However,
in many electronic circuits, the input–output functions of
amplifiers may be neither monotonically increasing nor con-
tinuously differentiable, hence nonmonotonic functions can
be more appropriate to describe the activation. The type of
activation functions given in this paper was first introduced in
[19] and [20]. As pointed out in [19] and [20], the constants

in Assumption 1 are allowed to be positive,
negative, or zero. Hence, the resulting activation functions may
be nonmonotonic, and more general than the usual sigmoid
functions and Lipschitz-type conditions. Such a description is
very precise/tight in quantifying the lower and upper bounds
of the activation functions. As in [15], the nonlinear functions

are said to belong to sectors, i.e., the nonlinearities are
bounded by sectors . For more details about how
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to obtain the sector bounds of several well-studied nonlinear
functions, we refer the readers to [15].

For presentation convenience, we denote

Using the Kronecker product, we can rewrite system (9) into
a more compact form as

(11)

where is an identity matrix.
Definition 1: Model (11) is said to be globally robustly ex-

ponentially synchronized in the mean square if there exist two
constants and such that, for all

and sufficiently large integer , the in-
equality

holds for all and all parameter uncertainties satisfying
the admissible conditions (4) and (5), where .

Lemma 1 [2]: Let , , and
depend affinely on . Then, the following LMI:

holds if and only if one of the following conditions holds:
1) , ;
2) , .
Lemma 2: Let and be any vectors in , , , and

be matrices with satisfying , and be a positive
definite matrix. Then, the following inequalities hold:

1) ;
2) .
Lemma 3 [5]: Let and , , , and be matrices

with appropriate dimensions. Then, the following statements are
true:

1) ;
2) ;
3) ;
4) .
Lemma 4: Let be the -dimensional vector with all com-

ponents being 1 and . For , as-
sume that is an matrix, where

, and
where . Then, we have the fol-
lowing relationships:

1) , ;
2) , , ;
3)

;
where , , and are defined in model (11).

Remark 4: In this paper, we aim to study the synchronization
problem for an array of discrete-time neural networks so that the
trajectory of any two solutions of (3) will not diverge out of the
given distance as long as the distance of their two initial con-
ditions is controlled. The criteria obtained here are also useful
in other fields such as secure communication where the trans-
mitter and receiver are all chaotic or oscillatory systems. The
model (11) analyzed here are more general than those in the lit-
erature in the sense that we have included, for the first time, the
parameter uncertainties and the stochastic disturbances in the
synchronization problem.

III. MAIN RESULTS

In this section, a Lyapunov functional approach combined
with the linear matrix inequalities will be employed to investi-
gate the global robust synchronization problem for system (11).

Theorem 1: The dynamical system (11) is globally robustly
exponentially synchronized in the mean square if there exist
two matrices and , three diagonal matrices

, ,
and , and two scalars
and such that the LMIs (12) and (13), shown at the
bottom of the next page, hold for all , where

,

, ,

.
Proof: By Lemma 1, LMI (13) implies

(14)
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where the matrices and are shown at the bottom of the
page.

Let be the trajectory of (11) and choose the following
matrix functional:

(15)

where the matrix is defined in Lemma 4. Calculating the dif-
ference of along the solutions of (11) and taking the math-
ematical expectation, we obtain from Lemmas 3 and 4 that

(16)
where

(17)

(12)

(13)
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(18)

and

(19)

Substituting (17)–(19) into (16), one derives

(20)

Considering (7) and the condition (12), by Lemma 4 and
noticing the fact , it is easy to see that

(21)

On the other hand, from Assumption 1, we have

where and , which are equiv-
alent to

(22)
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(23)

(24)

where denotes the -dimensional unit column vector having
“1” element on its th row and zeros elsewhere.

Multiplying both sides of (22), (23), and (24) by , , and
, respectively, and summing up from 1 to with respect to

, we obtain

(25)

(26)

(27)

It follows from (20), (21), (25)–(27), and Lemma 4
that (28) shown at the bottom of the page holds, where

, ,
,

, and

(28)
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in which
.

Lemma 2 indicates that the following inequalities hold for all
:

(29)

(30)

From (28)–(30), we have

(31)

where

and
.

In the following, we will show that (14) implies

or, equivalently

(32)

where

and

Letting and
, we have from Lemma 2

that

(33)

Substituting (33) into (32), one can conclude from (14) that
there exists a scalar constant such that

(34)
Moreover, along the similar line of proof of Theorem 1 in [17],
we can derive that there exist two scalars and such
that

holds for all and all parameter uncertainties satisfying the
admissible conditions (4) and (5), where is a sufficiently
large integer. According to Definition 1, we conclude that model
(11) is globally robustly exponentially synchronized in the mean
square, and the proof is then completed.

Remark 5: In this paper, the synchronization problem is
studied for an array of stochastic discrete-time neural networks
with time-varying delay and parameter uncertainties. Note that
the obtained criteria in (12) and (13) are dependent on not only
the upper bound but also the lower bound of the time-varying
delay, hence less conservative than the traditional delay-inde-
pendent ones. Also, the LMI-based criteria can be checked
efficiently via the Matlab LMI Toolbox.

In the following, we will show that the main results given in
Theorem 1 are general enough to cover many special cases. Let
us first consider the case when system (11) has no stochastic
disturbances and the model can be reduced to

(35)

In this case, if in system (35), i.e., the system has only
the nonlinear coupling term, model (35) can be further simpli-
fied to

(36)

The following corollary is easily accessible from Theorem 1.
Corollary 1: The dynamical system (36) is globally robustly

exponentially synchronized if there exist two matrices
and , three diagonal matrices , , and ,
and one scalar such that the LMI (37) shown at the bottom
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of the page holds for all , where
,

, , and
.

If in system (35), i.e., the system has only the linear
coupling terms, model (35) becomes

(38)

and the following corollary is readily obtained from Theorem 1.
Corollary 2: The dynamical system (38) is globally robustly

exponentially synchronized if there exist two matrices
and , two diagonal matrices and , and one
scalar such that the LMI (39) shown at the bottom of the
page holds for all , where

, and
.

Next, let us consider the uncertainty-free case, i.e., there are
no uncertainties, and system (11) can be specialized to the fol-
lowing model:

(40)

In this case, we have the following corollary.
Corollary 3: The dynamical system (40) is globally exponen-

tially synchronized in the mean square if there exist two matrices
and , three diagonal matrices , , and
, and one scalar such that the following LMIs

hold for all :

(41)

(42)

where , , , and are defined in Theorem 1.
Moreover, if in model (40), i.e., the system has only

the nonlinear coupling term, model (40) can be further refined
to

(43)

and we have the following corollary directly.
Corollary 4: The dynamical system (43) is globally exponen-

tially synchronized in the mean square if there exist two matrices
and , three diagonal matrices , , and
, and one scalar such that the following LMIs

hold for all :

(44)

(45)

where , ,
and are defined in Corollary 1.

(37)

(39)
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Remark 6: Up to now, there have been considerable results on
the general topic of synchronization. For example, master–slave
synchronization of delayed neural networks was analyzed in
[3] and [13], the synchronization problem of complex networks
without delay was investigated in [26] and [42], while the de-
layed case was studied in [9] and [43]; synchronization of an
array of delayed neural networks was also studied in [4], [6],
and [22]. However, all criteria obtained in the aforementioned
literature are about continuous-time systems, and the results on
the corresponding discrete-time models are relatively few. In the
context of discrete-time models, the master–slave synchroniza-
tion was discussed in [17] without considering the parameter un-
certainties, where the activation function was assumed to be of
the traditional Lipschitz type. In [23]–[25], Lu and Chen investi-
gated the synchronization problem for an array of discrete-time
coupled complex networks in a systematic way and obtained a
series of elegant results by using innovative manifold/graph ap-
proaches. Overall, compared to the earlier works, there are two
main features of our results. First, the model studied here is in
discrete-time form; second, to the best of our knowledge, this
paper represents the first attempt to address both parameter un-
certainties and the stochastic disturbances for the synchroniza-
tion problems under a milder assumption on the activation func-
tions.

IV. NUMERICAL EXAMPLES

In this section, two examples will be illustrated to show the
effectiveness of our results.

Example 1: Consider system (36) with
; , , and

Obviously, these activation functions satisfy Assumption 1
with

and, therefore, it follows from the definitions of and
that

Let the scalar vary from ; by using the Matlab LMI
Toolbox, LMI (37) can be solved with the feasible solutions
until . By taking , we have the solutions as
follows:

According to Corollary 1, the array of coupled uncertain dis-
crete-time delayed neural networks (36) can achieve globally
robust synchronization when .

Example 2: Consider system (43) with and
, and , and

Let the scalar vary from ; by using the Matlab LMI
Toolbox, LMIs (44) and (45) can be solved with the feasible
solutions until . When , we have the feasible
solutions given as follows:
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According to Corollary 4, the array (43) is globally synchro-
nized in the mean square when .

V. CONCLUSION

In this paper, we have investigated the robust synchroniza-
tion problem for an array of coupled stochastic discrete-time
neural networks with time-varying delay. We have established
easy-to-verify conditions under which the addressed neural net-
works are synchronized. By using the Kronecker product as an
effective tool, an LMI approach has been developed to derive
several sufficient criteria ensuring the coupled delayed neural
networks to be globally, robustly, exponentially synchronized
in the mean square. The LMI-based conditions obtained are de-
pendent not only on the lower bound but also on the upper bound
of the time-varying delay, and can be solved efficiently via the
Matlab LMI Toolbox. Two numerical examples have been given
to demonstrate the usefulness of the proposed synchronization
scheme.
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