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Abstract

Current-day metagenomics analyses increasingly involve de novo taxonomic classification of long DNA sequences

and metagenome-assembled genomes. Here, we show that the conventional best-hit approach often leads to

classifications that are too specific, especially when the sequences represent novel deep lineages. We present a

classification method that integrates multiple signals to classify sequences (Contig Annotation Tool, CAT) and

metagenome-assembled genomes (Bin Annotation Tool, BAT). Classifications are automatically made at low

taxonomic ranks if closely related organisms are present in the reference database and at higher ranks otherwise.

The result is a high classification precision even for sequences from considerably unknown organisms.

Background
Metagenomics, the direct sequencing of DNA from mi-

crobial communities in natural environments, has revo-

lutionized the field of microbiology by unearthing a vast

microbial sequence space in our biosphere, much of

which remains unexplored [1–3]. With increases in

DNA sequencing throughput, metagenomics has moved

from analysis of individual reads to sequence assembly,

where increases in sequencing depth have enabled de

novo assembly of high-quality contiguous sequences

(contigs), sometimes many kilobases in length [4]. In

addition, current state-of-the-art encompasses binning

of these contigs into high-quality draft genomes, or

metagenome-assembled genomes (MAGs) [5–8]. The

advance from short reads to contigs and MAGs allows

the metagenomics field to answer its classical questions

[9], “who is there?” and “what are they doing?” in a uni-

fied manner: “who is doing what?”, as both function and

taxonomy can be confidently linked to the same gen-

omic entity. Because assembly and binning can be done

de novo, these questions can be applied to organisms

that have never been seen before, and the discovery of

entirely novel phyla is common still [8].

Several efficient tools for taxonomic classification of

short-read sequences have been developed over the

years, reflecting the read-based focus of the time. Most

tools consider each read as an independent observation,

whose taxonomic origin can be estimated by identifying

best-hit matches in a reference database, either on read,

K-mer, or translated protein level (see [10] for an over-

view). Widely used programs such as Kraken [11] (K-mer

based), CLARK [12] (discriminative K-mer based), and

Kaiju [13] (protein-based) can process hundreds of thou-

sands of sequencing reads per second. Without comprom-

ising accuracy, still faster approaches use mixture

modeling of K-mer profiles, as implemented in FOCUS

[14]. Sometimes a Last Common Ancestor (LCA) algo-

rithm is applied to allow for multiple hits with similar

scores as the best hit (e.g., Kraken, MEGAN [15]).

Similar approaches are often applied to contigs, with

classification often based on the best hit to a reference

database. Although fast, the best-hit approach can lead

to spurious specificity in classifications, for example

when a genomic region is highly conserved or recently

acquired via horizontal gene transfer (HGT) from a dis-

tantly related organism. As we will show below, the

problem is particularly grave when the query contigs are

very divergent from the sequences in the database, i.e.,
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Fig. 1 Contig and MAG classification with CAT and BAT. a, b Step 1: ORF prediction with Prodigal. CAT analyses all ORFs on a contig, BAT

analyses all ORFs in a MAG. c Step 2: predicted ORFs are queries with DIAMOND to the NCBI non-redundant protein database (nr). d Step 3: ORFs

are individually classified based on the LCA of all hits falling within a certain range of the top hit (parameter r), and the top-hit bit-score is

assigned to the classification. Bit-scores of hits are depicted within brackets. Hits in gray are not included in final annotation of the ORF.

Parameter f defines minimal bit-score support (mbs). e Step 4: contig or MAG classification is based on a voting approach of all classified ORFs, by

summing all bit-scores from ORFs supporting a certain classification. The contig or MAG is classified as the lowest classification reaching mbs. The

example illustrates the benefit of including multiple ORFs when classifying contigs or MAGs; a best-hit approach might have selected Bacteroides

vulgatus or Bacteroidetes if an LCA algorithm was applied as its classification, as this part has the highest score to proteins in the database in a

local alignment-based homology search. In the example, only six taxonomic ranks are shown for brevity; in reality, CAT and BAT will interpret the

entire taxonomic lineage
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they are distantly related to known organisms. Whereas

specificity (correctly classified/total classified) can be in-

creased when only classifications at higher taxonomic

ranks are considered, this approach is not desirable as

taxonomic resolution is unnecessarily lost for query con-

tigs that are closely related to known organisms.

Depending on their length, contigs may contain mul-

tiple open reading frames (ORFs), each of which con-

tains a taxonomic signal. Integrating these signals should

enable a more robust classification of the entire contig,

yet surprisingly few tools exist that integrate distributed

signals for contig classification. The viral-specific pipe-

line MetaVir2 [16] assesses the classification of up to five

ORFs encoded on a contig. Recently, the MEGAN long-

read algorithm was introduced [17], which allows users

to taxonomically classify long sequences such as those

generated by Oxford Nanopore Technologies or Pacific

Biosciences sequencers. The algorithm works by parti-

tioning the sequence into intervals based on the location

of hits of a LAST [18] search.

In contrast, for taxonomic classification of MAGs, it is

common to include information from multiple ORFs.

Since the classification of complete genomes by using

phylogenetic trees of multiple marker genes is well-

established [19], MAG classification has followed these

best practices. Some steps in the process can be auto-

mated, including initial placement in a low-resolution

backbone tree by CheckM [20], specific marker gene

identification, and backbone tree taxon selection by

phyloSkeleton [21], and many tools are available for pro-

tein alignment, trimming, tree building, and display.

However, interpretation of the resulting phylogeny re-

mains a critical manual step, making this approach for

genomic taxonomy a laborious task that does not scale

well with the increasing number of MAGs being gener-

ated (see, e.g., [7]).

Here we present Contig Annotation Tool (CAT) and

Bin Annotation Tool (BAT), two taxonomic classifiers

whose underlying ORF-based algorithm is specifically

designed to provide robust taxonomic classification of

long sequences and MAGs. Both tools exploit commonly

used tools for ORF calling and homology searches. They

require minimal user input and can be applied in an au-

tomated manner, yet all aspects are flexible and can be

tuned to user preferences.

Benchmarking classification of sequences from novel taxa

Taxonomic classifiers are often benchmarked by testing

them on sequences from novel taxa, i.e., that are not

(yet) in the reference database (e.g., as in the CAMI

challenge [22], and [11, 12, 14]). Alternatively, unknown

query sequences can be simulated by using a “leave-one-

out” approach, where the genome that is being queried

is removed from the database (e.g., [13, 17]). However,

due to taxonomic biases in database composition, other

strains from the same species, or other species from the

same genus, may still be present. Thus, the leave-one-

out approach does not reflect the level of sequence

Fig. 2 Classification performance of CAT for different levels of unknownness across a range of parameter settings. Thickness of markers indicates

values of the f parameter; runs with similar r parameter values are connected with black lines. Markers indicate maximum and minimum values

out of ten benchmarking datasets, bars cross at the means. Color coding indicates the mean taxonomic rank of classification averaged across the

then benchmarking datasets (minimum and maximum values not shown for brevity). Gray lines in the plot depict sensitivity, which is defined as

the fraction of classified sequences times precision. Runs with equal parameter settings are connected in the parameter settings figure, showing

that CAT achieves a high precision regardless of unknownness of the query sequence, by classifying sequences that are more unknown at higher

taxonomic ranks. Default parameter combination (r = 10, f = 0.5) is shown in red
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unknownness that is often encountered in real metagen-

omes, where the query sequences may be only distantly re-

lated to the ones in the reference database. A benchmark

better suited to address this novelty is a “leave-entire-taxa-

out” approach also known as clade exclusion, where all re-

lated sequences belonging to a certain taxonomic rank are

removed from the database (e.g., [11, 23, 24]).

Here, we rigorously assess the performance of taxo-

nomic classification tools by developing an extensive

database reduction approach at different taxonomic

ranks, where novel species, genera, and families are sim-

ulated by removing all the sequences of entire taxa from

the database. In a second benchmark, we classified the

high-complexity CAMI dataset [22]. We show that the

algorithm of CAT and BAT allows for the correct classi-

fication of organisms from known and unknown taxa

and outperforms existing methods, especially for se-

quences that are highly unknown (i.e., with no close rel-

atives in the database). Third, we used BAT in a real-

world challenge to classify a large, recently published set

of 913 MAGs from the cow rumen [7] that represent a

wide range of novelty at all taxonomic ranks, and whose

published taxonomic classifications involved extensive

phylogenetic analyses.

Results and discussion
To test the performance of our newly developed taxo-

nomic classification tools CAT and BAT, we thoroughly

tested them in three independent benchmarks: (1) A

clade exclusion experiment with increasing levels of se-

quence unknownness, (2) the high-complexity gold

standard CAMI assembly, and (3) a recently published

set of MAGs where the BAT classifications are com-

pared to the published taxonomic classifications.

Contig classification with CAT

Benchmark 1: Classification of increasingly unknown

sequences

We used CAT (Fig. 1) to classify ten simulated contig

sets in the context of four reference databases with dif-

ferent levels of simulated unknownness, representing

query sequences from (A) known strains, (B) novel spe-

cies, (C) novel genera, and (D) novel families (see the

“Methods” section). To assess the effect of the two key

user parameters, r (hits included within range of top

hits) and f (minimum fraction classification support), on

precision, fraction of classified sequences, sensitivity, and

taxonomic rank of classification, we ran CAT with a

wide range of possible parameter values against all four

reference databases (Fig. 2). This parameter sweep re-

vealed a trade-off between the classification precision on

the one hand and the taxonomic resolution and the frac-

tion of classified sequences on the other hand. This gen-

eral trend can be understood by considering that

classifications at a low taxonomic rank (i.e., close to the

species rank, high taxonomic resolution) will inevitably

be increasingly imprecise, especially if closely related or-

ganisms are absent from the reference database. This

might be resolved by classifying sequences at a higher

taxonomic rank, but this leads to increased numbers of

sequences not being classified or classified at trivially in-

formative taxonomic ranks such as “cellular organisms”

or “root.”

The r parameter, which governs the divergence of

included hits for each ORF, has the largest effect. As in-

creasing r includes homologs from increasingly divergent

taxonomic groups, their LCA is pushed back and classi-

fications at low taxonomic ranks are lost, resulting in

fewer classified sequences and classifications at lower

Fig. 3 Classification performance of CAT, LAST+MEGAN-LR, Kaiju, and DIAMOND best-hit for different levels of unknownness. a Classification of

known sequences. b–d Classification of simulated novel taxa for different levels of divergence from reference databases. Black bars indicate

maximum and minimum values out of ten benchmarking datasets, bars cross at the means. Color coding indicates the mean taxonomic rank of

classification averaged across the then benchmarking datasets (minimum and maximum values not shown for brevity)
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taxonomic resolution (i.e., at higher taxonomic ranks),

but with higher precision. The f parameter, which gov-

erns the minimum bit-score support required for classi-

fying a sequence, has a smaller effect. Decreasing f

results in classifications that are based on evidence from

fewer ORFs, leading to more tentative classifications at

lower taxonomic ranks. As a result, more sequences are

classified at lower taxonomic ranks, albeit with a lower

precision.

As a user increases r and f, this will increasingly result

in high-rank classifications that are correct but ultim-

ately uninformative. When low values of r and f are

chosen, the classifications will be more specific (i.e., at a

lower taxonomic rank) but more speculative (i.e., preci-

sion goes down). Based on the parameter sweep

described above, we set the default values for CAT con-

tig classification to r = 10 and f = 0.5 (red line in the

legend of Fig. 2). Note that this value of f = 0.5 results in

at most one classification, since > 50% of the bit-score

supports that classification.

Comparison to state-of-the-art taxonomic classifiers

We compared classification by CAT in this first bench-

mark to (1) the recently published LAST+MEGAN-LR

algorithm [17], (2) the widely used Kaiju algorithm [13],

and (3) a conventional best-hit approach with DIA-

MOND [25]. Kaiju, designed for short-read classifica-

tion, uses a best-hit approach with an LCA algorithm if

equally good top-hits are found. Its underlying algorithm

allows for the classification of long sequences as well

and has recently been used as such [17, 26, 27]. Final

Kaiju classification is based on the hit with the max-

imum exact match (MEM), or on the highest scoring

match allowing for mismatches (Greedy).

When classifying simulated contigs against the full ref-

erence database (known strains), all programs showed a

similar precision and fraction of classified sequences

(Fig. 3a). The mean taxonomic rank of classification is

slightly higher for CAT and LAST+MEGAN-LR than for

the other approaches (Additional file 1: Table S1),

reflecting the conservative LCA-based classification

strategies of the former two. DIAMOND best-hit does

not use an LCA algorithm, and Kaiju only in cases where

multiple hits have identical scores, and thus, they classify

contigs according to the taxonomic rank of their match

in the reference database.

When novel species, genera, and families were simu-

lated by removing related sequences from the database,

precision declined rapidly for DIAMOND best-hit and

Kaiju (Fig. 3b–d). The classifications called by these

approaches are often too specific, because in data-

bases where closely related sequences are absent, the

singular best hit may still match a sequence that is

annotated at a low taxonomic rank, although this

annotation cannot match that of the query. This

spurious specificity can be seen in the mean rank of

classification, which stays close to the species rank,

even when sequences from the same species, genus,

or family were removed from the database (Fig. 3b–d,

Additional file 1: Table S1). CAT and LAST+ME-

GAN-LR clearly perform better in the face of such

uncharted sequences. With default parameter settings,

CAT has higher precision and sensitivity than

MEGAN-LR and classifications are made at slightly

higher taxonomic ranks.

Precision for CAT and LAST+MEGAN-LR increases

when the sequence contains more ORFs with a DIA-

MOND hit to the database, whereas this is not the case

for DIAMOND best-hit and Kaiju (Additional file 2: Fig-

ure S1). Algorithms that integrate multiple taxonomic

signals are thus well suited for taxonomic classification

of long metagenomic sequences and MAGs (see below),

but even the majority of contigs in our benchmarking

sets that contained a single ORF are still classified cor-

rectly (Additional file 2: Figure S1).

Sequences are classified correctly and automatically at the

appropriate taxonomic rank

As a solution to the spurious specificity of the best-hit

approach described above, classifications are sometimes

assigned to a higher taxonomic rank such as genus, fam-

ily, or even phylum. However, applying a rank cutoff

may unnecessarily sacrifice taxonomic resolution in

cases where the query sequences do have close relatives

in the reference database and classification at a low taxo-

nomic rank would be justified. Additional file 2: Figure

S2 shows that application of a rank cutoff to the best-hit

classifications (e.g., reporting all classifications at the

genus or phylum rank) does not solve the problem of

spurious specificity as effectively as CAT does. CAT

classifications have a higher precision than a best-hit

cutoff on a rank comparable to its mean rank. For ex-

ample, when novel families are simulated, the mean rank

of classification for CAT is between order and class, and

precision is much higher than best-hit classifications on

those ranks, with a similar fraction of classified se-

quences (Additional file 2: Figure S2d). Importantly,

CAT has the highest precision on a per rank basis of any

of the tested tools (Additional file 2: Figure S3, Add-

itional file 1: Table S2). This shows that CAT approach

of integrating multiple taxonomic signals across a se-

quence leads to better classifications.

As shown in Fig. 2, the ORF-based voting algorithm

ensures a high precision regardless of the level of un-

knownness of the query sequences, i.e., whether closely

related sequences are present in the reference database

or not. In some circumstances, taxonomic resolution is

traded for precision: when classifying sequences that are
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more distantly related to the sequences in the reference

database, hits will have weaker bit-scores and match se-

quences that are taxonomically more diverse. As a result

of these conflicting signals, the algorithm automatically

increases the taxonomic rank when classifying more di-

vergent query sequences. Thus, no rank cutoff is needed

for precise classifications, regardless of the composition

of the metagenome.

Benchmark 2: Comparison to CAMI tools

Our second benchmark consisted of classifying the high-

complexity gold standard assembly of the CAMI chal-

lenge [22]. Classifying the CAMI dataset has two bene-

fits. First, it allows us to compare CAT to any of the

taxonomic classifiers tested in the CAMI challenge (re-

ferred to as “taxonomic binners” in [22]). Second, CAMI

simulated novel organisms, making it a complementary

benchmarking approach as compared to the database re-

duction method in our first benchmark.

Since novel sequences are simulated, it is crucial that

search databases are used that do not contain the simu-

lated sequences. For this reason, an “old” copy of RefSeq

(dated January 30th, 2015) was supplied during the

CAMI challenge. Here, we also ran CAT with that old

RefSeq reference database for a fair comparison against

the other tools. However, one of the advantages of CAT

and BAT is that they can be run with very large protein

databases and hence have a larger search space for taxo-

nomic classification beyond RefSeq. Thus, we also ran

CAT with the nr databases from a similar date (January

23, 2015) as a reference. The nr database is the default

option for CAT and BAT runs.

CAT performance measures on the high-complexity

gold standard contig set (Additional file 1: Table S3) are

plotted in Additional file 2: Figure S4 and can be com-

pared to Supplementary Figure 18 and Supplementary

Figure 19 in [22]. Average precision increases sharply if

99% of the data are considered (i.e., removal of taxa

summing up to less than 1% of the total assembly

length) as opposed to 100%. This is also true for most of

the tools tested in the CAMI challenge. The reason for

this observation is that precision in the CAMI challenge

is measured on a “per bin” basis, and erroneous classifi-

cations of single contigs thus weigh very heavily in this

benchmark. If classifications that are seen in only a sin-

gle or few contigs (i.e., are supported by short sequence

length overall) are excluded, CAT showed very high

average precision at all taxonomic ranks down to the

genus level (Additional file 2: Figure S4). Accuracy and

average recall were high for higher ranks and decreased

towards the species level. Misclassification was very low,

with misclassification rates of up to 11% only at the low-

est taxonomic ranks. Notably, CAT results with nr as a

reference database (Additional file 2: Figure S4b) were

better than with RefSeq as reference (Additional file 2:

Figure S4a) for any of the measures. Average precision

stayed above 90% down to the genus level if nr was used

as a reference, higher than what is achieved by any of

the tools tested in the CAMI challenge (see below). This

highlights the benefit of using a large reference database

for taxonomic classification.

We compared CAT to the other tools tested in the

CAMI challenge by downloading their performance mea-

sures from the CAMI GitHub (Additional file 2: Figure

S5). The CAMI tools fall within two categories: One set of

tools (taxator-tk 1.4pre1e, taxator-tk 1.3.0e, PhyloPythiaS+

mg c400, MEGAN 6.4.9) had low misclassification but

also low average recall and accuracy. The other set (Phylo-

PythiaS+ c400, Kraken 0.10.6-unreleased, Kraken 0.10.5)

had high recall and accuracy, but very high misclassifica-

tion rates towards species level. In contrast, CAT managed

a medium (when using RefSeq as reference database) to

high (when using nr as reference database) average recall

and accuracy, with a very low misclassification rate. The

misclassification rate was lower than that of the CAMI

tools, with the exception of taxator-tk (both versions),

which classified very few sequences in general. CAT

scored among the highest average precision with 99% of

Fig. 4 Computer resource usage by CAT, LAST+MEGAN-LR, and Kaiju. a Run-time and b peak memory usage. In a, classification by CAT and Kaiju

includes adding taxonomic names to the classification; in b, these steps are depicted separately
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the data. Thus, CAT has a high average precision and

combines the high average recall and accuracy of the sec-

ond set of tools with the low misclassification of the first.

The ORF-based algorithm is fast and has a very low

memory requirement

CAT is about two times faster than LAST+MEGAN-LR

(Fig. 4a) and outperforms all other programs tested in

our first benchmark in terms of memory usage (Fig. 4b).

The slowest and most memory intensive step is the DIA-

MOND search for homologs in the vast nr database,

which due to the flexible nature of our implementation

can be optimized for a specific use case (see Additional

file 1: Table S4) or replaced by any protein aligner of a

user’s choice, as can the search database.

We classified the CAMI high complexity dataset with

recent versions of the tools tested in our first and second

benchmarks. This analysis showed that CAT is faster

than MEGAN6, LAST+MEGAN-LR, and taxator-tk and

has a memory footprint that is similar to or lower than

any of the tested tools (Additional file 1: Table S4).

MAG classification with BAT

Benchmark 3: Classification of 913 metagenome-assembled

genome bins (MAGs)

Next, we set out to apply the algorithm to MAGs, i.e., draft

genomes that can be generated from metagenomes by

assembly and binning. Since the typical pipeline to generate

MAGs is reference database independent, they can be

distantly related to known organisms. As benchmark set,

we picked 913 recently published MAGs from the cow

rumen [7] that represented a wide range of novelty at

different taxonomic ranks (Additional file 2: Figure S6a).

The published classifications were based on the placement

of the MAGs in a backbone tree and subsequent refine-

ment, a slow process that includes various manual steps and

visual screening [7]. At the time of our study, the MAGs

were not yet included in the reference database, providing

an ideal test case for our automated classification tool BAT.

The 913 MAGs were previously assessed to be ≥ 80%

complete and have ≤ 10% contamination and contain be-

tween 541 and 5378 ORFs each (Additional file 2: Figure

S6b). We ran BAT with default parameter settings for

MAGs classification (r = 5, f = 0.3). The low r value en-

sures that individual ORFs are annotated to an LCA with

a relatively low taxonomic rank, as hits within 5% of the

highest bit-score are considered. The low f value reports

taxonomic classifications that are supported by at least

30% of the bit-score evidence. While this could be con-

sidered a speculative call when contigs with relatively

few encoded ORFs are annotated, the much higher num-

ber of ORFs in MAGs means that even classifications

with relatively low f values are backed by a high number

of ORFs and precision is thus expected to be high (Add-

itional file 2: Figure S1). We scored the consistency

between BAT and the published classifications (Fig. 5a),

Fig. 5 Classification of 913 MAGs with BAT. a Consistency between BAT classifications and published classifications with default parameter settings

(r = 5, f = 0.3). b The mean rank of classification can be increased by increasing f. Arrow indicates BAT results for its default parameter settings
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dividing consistent classifications into three groups: (i)

BAT can be more conservative than the published classi-

fication, i.e., BAT classifies the MAG to an ancestor of

the published classification; (ii) classifications can be

equal; and (iii) BAT can be more specific. Alternatively,

BAT can classify a MAG inconsistently, i.e., in a differ-

ent taxonomic lineage than the original publication. As

shown in Fig. 5a, 885 of 913 MAGs (97%) were classified

consistently with the original publication. If parameter f

is relaxed, mean rank of classification for the MAGs in-

creases (Fig. 5b). Importantly, decreasing the value of f

has little effect on inconsistency rate. Thus, changing

this parameter will mainly lead to a change in the rank

of classification, while the taxonomic lineage will remain

unchanged. Finally, classifying these MAGs with two

MAG classification tools that are still under develop-

ment, lastTaxa (https://gitlab.com/jfroula/lasttaxa) and

GTDB-Tk (https://github.com/Ecogenomics/GTDBTk),

yielded very similar results (Additional file 1: Table S5).

To assess the taxonomy of the 28 inconsistently classi-

fied MAGs (at r = 5, f = 0.3), we placed them in a phylo-

genomic tree with closely related genomes and observed

their closest relatives, the published classifications, and

the BAT classifications. As shown in Fig. 6, BAT classi-

fied all 28 inconsistently classified MAGs more pre-

cisely and at a higher taxonomic resolution than the

published classifications. Note that this may be due to

these closely related reference genomes being new

additions to the database since the research was per-

formed. Together, these results highlight the benefit

of using BAT for the rapid, automated, and high-

resolution taxonomic classification of novel microbial

lineages at a range of unknownness.

Conclusions
Metagenomics continues to reveal novel microorganisms

in all environments in the biosphere, whose genome

Fig. 6 Tree placement of the 28 inconsistently classified MAGs that were assigned to five different taxa according to the original classifications

(a–d). Headers of subfigures refer to the published classifications. In a, MAGs published as Selenomonadales are marked with an asterisk.

Taxonomic classification of reference genomes is indicated in shades boxes. BAT classifications of MAGs are indicated in open boxes
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sequences can be reconstructed with high accuracy by

using high-throughput DNA sequencing and modern se-

quence assembly and binning tools. Taxonomically clas-

sifying these uncharted sequences remains challenging,

partly because the vast natural biodiversity remains

highly underrepresented in even the largest reference da-

tabases, partly because existing classifiers are built to

classify short sequencing reads, and partly because inter-

preting trees is manual work.

We presented CAT and BAT, a set of tools that ex-

ploits DIAMOND homology searches of individual ORFs

called by Prodigal, LCA annotation, and a user-definable

weighting to classify long contigs and metagenome-

assembled genomes (MAGs). As we have shown, these

query sequences contain a wealth of information that al-

lows their accurate taxonomic classification at appropri-

ate taxonomic ranks, i.e., at a low rank when closely

related organisms are present in the database, and at a

high rank when the sequences are divergent or highly

novel. We have shown that the low precision of conven-

tional best-hit approaches when classifying novel taxa

can be overcome by a voting algorithm based on classifi-

cations of multiple ORFs. Elegantly, sequences from

organisms that are distantly related to those in the refer-

ence database are automatically classified at a higher

taxonomic rank than known strains. ORFs on divergent

sequences will hit a wider variety of different taxa both

on the individual ORF level and between ORFs. Such

conflict of classifications is automatically resolved by the

algorithm by providing a more conservative classifica-

tion, so no taxonomic cutoff rank for classification needs

to be pre-defined. In metagenomes containing both

known and unknown sequences, the algorithm vastly

outperforms best-hit approaches and a range of state-of-

the-art taxonomic classifiers in precision.

CAT and BAT supplement a modern metagenomics

workflow in various ways. For example, CAT can be

used after metagenome assembly to confidently classify

all contigs. Since contigs are longer sequences and thus

contain more information than individual reads, we ex-

pect that classification of the original reads in terms of

classified contigs results in better profiling estimates

than those based on the reads alone. Indeed, a compari-

son in [22] between taxonomic binners and dedicated

taxonomic profilers (whose output is an abundance pro-

file but not classification of individual sequences)

showed that on average binners estimated taxon abun-

dance more accurately than profilers. With increases in

contig lengths due to advances in assembly algorithms

and more deeply sequenced metagenomes, as well as in-

creasingly available long-read metagenomic sequencing

datasets, CAT classifications will become even more pre-

cise in the future. Moreover, BAT will rapidly provide

taxonomic classifications of MAGs without requiring a

full phylogenomics pipeline and subsequently visual in-

spection of the tree. CAT classifications of individual

contigs within MAGs can be used to identify taxonomic

outliers, and flag those as possible contamination. As

most binning tools do not incorporate taxonomic signals

(e.g., [28, 29]), CAT classification can be considered as

independent evidence and might be used to decide on

the inclusion of specific contigs in a MAG.

BAT provides a robust and rapid classification of

MAGs in a single operation, but is not a replacement

for high-confidence phylogenomic tree construction

based on marker gene superalignments which re-

mains the gold standard [19]. However, BAT queries

the full NCBI non-redundant reference database (nr)

and the taxonomic context is thus much bigger than

any phylogenomic tree that depends on completely

sequenced genomes. For example, the backbone tree

of CheckM currently includes only 5656 genomes

[20]. BAT classification is fully automated and can be

run on a set of MAGs with minimal user input,

allowing MAG classification to be scaled up consid-

erably as we showed here for over 900 MAGs that

were classified consistently with the original publica-

tion in almost all cases. Notably, in all inconsistent

cases, we identified genomes that were more closely

related to the BAT classification than to the pub-

lished (manual) classification.

As long as sequence space is incompletely explored

and reference databases represent a biased view of the

tree of life [1, 3], algorithms designed to address the

abundant uncharted microbial sequences will be needed

to make sense of the microbial world. Decreasing se-

quencing costs and improvement of alignment and bin-

ning algorithms have moved metagenomics from the

analysis of short reads towards contigs and MAGs, im-

proving our understanding of microbial ecosystems to a

genomic resolution. As these data will only increase in

the coming years, we presented a robust solution to their

specific challenges that we expect will play an important

role in future metagenomics workflows.

Methods
Explanation of the algorithm

Both CAT and BAT take high-quality long DNA se-

quences in FASTA format as input (Fig. 1), such as

assembled contigs or corrected long Oxford Nanopore

Technologies or Pacific Biosciences reads [30, 31]. First,

ORFs are predicted with Prodigal [32] in metagenome

mode, using default parameter settings (genetic code 11)

(Fig. 1a, b). Predicted proteins can also be independently

supplied to CAT/BAT in case a user prefers a different

gene caller than Prodigal.

Next, protein translations of the predicted ORFs are

queried against the National Center for Biotechnology
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Information (NCBI) non-redundant protein database (nr)

[33] using DIAMOND [25] blastp (e value cutoff of 0.001,

BLOSUM62 alignment matrix, reporting alignments

within 50% range of top hit bit-score) (Fig. 1c). The nr

database is currently the largest sequence database where

all sequences are assigned to clades in NCBI Taxonomy

[34]. A separate BLAST tabular output file can also be

supplied together with the predicted protein file, in which

case CAT/BAT starts directly with classification.

Taxonomic classification of the query sequences is

then carried out based on a voting approach that con-

siders all ORFs on a query with hits to the reference

database. Here, the main difference between CAT and

BAT is that CAT considers ORFs on a single contig,

whereas BAT considers ORFs on all contigs belonging

to a MAG. CAT and BAT also have slightly different de-

fault parameter values (see below).

First, the algorithm infers the taxonomic affiliation of

individual ORFs based on the top DIAMOND hits (Fig.

1d). To account for similarly high-scoring hits in poten-

tially different clades, hits within a user-defined range of

the top hit bit-score to that ORF are considered and the

ORF is assigned to the LCA of their lineages (parameter

r for range, by default hits with bit-scores within 10% or

5% range of the top hit bit-score are included, r = 10 for

CAT and r = 5 for BAT, respectively). By adjusting par-

ameter r, the user can tune how conservative CAT is in

the classification of individual ORFs. For example,

increasing r results in more divergent hits being in-

cluded that together are likely to have a deeper LCA,

thus leading to a more conservative ORF classification at

a higher taxonomic rank. In contrast, decreasing r leads

to a more specific classification since fewer and more

similar hits will be included, likely with a narrower

taxonomic range. This accounts for conserved or

HGT-prone genes that are highly similar in diverse

taxa by assigning them a high-rank classification. The

top hit bit-score for each ORF is registered for the

subsequent voting process (Fig. 1d).

Next, the query contig or MAG is evaluated by sum-

ming the bit-scores for each taxon identified among the

classifications of all ORFs, as well as their ancestral line-

ages up to the taxonomy root (Fig. 1e). The query contig

or MAG is then assigned to a taxon, if the total bit-score

evidence for that taxon exceeds a cutoff value (mbs, min-

imal bit-score support), which is calculated as a fraction

(parameter f for fraction) of the sum of the bit-scores of

all ORFs (mbs = f × Bsum, by default f = 0.5 for CAT and

f = 0.3 for BAT). For example, if parameter f is set to 0.5,

this means that a contig is assigned to a taxon if the ma-

jority of the sum of the bit-scores of all ORFs supports

that classification (mbs = 0.5 × Bsum). This is done at

multiple taxonomic ranks including phylum, class, order,

family, genus, and species. The algorithm stops at the

taxonomic rank where the total bit-score supporting the

classification drops below the minimal bit-score support

value, so CAT/BAT automatically finds the lowest rank

taxonomic classification that is still reliable (Fig. 1e).

Note that with CAT default values (f = 0.5), only one

classification is given per sequence, and there can be no

conflicting classifications at different ranks (e.g., a

species-level classification conflicting with a genus-level

classification). When f < 0.5 is set by the user, multiple

lineages at a given taxonomic rank may exceed the

threshold, and all will be written to the output file. A

user can decide on the appropriate (rank of) classifica-

tion based on support values that represent the fraction

of summed bit-score that supports the classification.

While these support values are indicative of the predic-

tion precision (Additional file 2: Figure S7a), in contrast

to the total bit-score alone (Additional file 2: Figure

S7b), it should be noted that they cannot be interpreted

as statistical probabilities.

Output files

For each query contig or MAG, the full taxonomic

lineage of the lowest-rank supported classification is

written to the output file, together with support values

per rank (i.e., the fraction of Bsum that is represented by

the taxon). In addition, the number of ORFs found on

the contig or MAG and the number of ORFs on which

the classification is based are written to the output file.

An extra output file containing information about indi-

vidual ORFs is also generated, including classifications of

ORFs and an explanation for any ORF that is not classi-

fied. We advise the user caution when interpreting the

classifications of short contigs that are based on rela-

tively few ORFs as they will be less robust than the clas-

sifications of long contigs or MAGs (Additional file 2:

Figure S1).

Helper programs

The CAT/BAT package comes bundled with three helper

utilities, “prepare,” “add_names,” and “summarise.” “Pre-

pare” only needs to be run once. It downloads all the

needed files including NCBI taxonomy files and the nr

database. It constructs a DIAMOND database from nr and

generates the files needed for subsequent CAT and BAT

runs. Because the first protein accession in nr not always

represents the LCA of all protein accessions in the entry,

“prepare” corrects for this in the protein accession to tax-

onomy id mapping file (prot.accession2taxid). After run-

ning CAT/BAT, “add_names” will add taxonomic names

to the output files, either of the full lineage or of official

taxonomic ranks alone (superkingdom, phylum, class,

order, family, genus, species). “Summarise” generates sum-

mary statistics based on a named classification file. For

contig classification, it reports the total length of the
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contigs that are classified to each taxon. For MAG classifi-

cation, it reports the number of MAGs per taxon.

Generation of contigs for clade exclusion benchmarking

datasets

To test the performance of the algorithm in a first

benchmark, we artificially generated contigs from known

genome sequences in the RefSeq database [35] (Add-

itional file 1: Table S6). We randomly downloaded one

genome per taxonomic order from bacterial RefSeq on

July 7, 2017 (163 orders in total) and cut the genomes

into at most 65 non-overlapping contigs, generating a

set of ~ 10,500 contigs with known taxonomic affiliation.

Contig lengths were based on the length distribution of

eight assembled real metagenomes deposited in the Se-

quence Read Archive (SRA) [36] (assembly with metaS-

PAdes v3.10.1 [4] after quality filtering with BBDuk that

is included with BBTools v36.64 (https://sourceforge.

net/projects/bbmap/), see Additional file 1: Table S6),

with a minimum length of 300 nucleotides. This was

done ten times to construct ten different benchmarking

datasets sampled from 163 different genomes, each from

a different taxonomic order.

Viruses remain vastly under-sampled, and the se-

quences in the database remain a small fraction of the

total viral sequence space [37]. Moreover, the hierarchy

of the viral taxonomy is not as deeply structured as the

taxonomy of cellular organisms [38]. Based on these

considerations, we did not explicitly assess the perform-

ance of our tool on viral sequences. However, we expect

that classification of viruses will be readily possible when

closely related viruses are present in the reference

database.

Reference databases with increasing levels of

unknownness

The benchmarking datasets generated above are derived

from genomes whose sequences are also present in the

reference database, corresponding to the perhaps un-

likely scenario where the query sequences in the meta-

genome are identical to known strains in the database.

To benchmark our tools in the context of discovering

sequences from novel taxa, we next generated novel ref-

erence databases with increasing levels of unknownness

by removing specific taxonomic groups from nr. In

addition to the original nr database (known strains),

three derived databases were constructed to reflect the

situation of discovering novel species, genera, and fam-

ilies. This was done by removing all proteins that are

only present in the same species, genus, or family as any

of the 163 genomes in the benchmarking dataset. To do

this, either we removed the sequences from the database

itself, or if a protein was identical in sequence to a pro-

tein in another clade, we changed the protein accession

to taxonomy id mapping file to exclude the query taxon.

In contrast to many other taxonomic classification tools,

all the programs that we compared (CAT, DIAMOND

best-hit, LAST+MEGAN-LR, and Kaiju) allowed such

custom files to be used. The three reduced databases

and associated mapping files thus reflect what nr would

have looked like if the species, genus, or family of the ge-

nomes present in the benchmarking dataset were never

seen before. This was done independently for each of

the ten different benchmarking datasets, resulting in a

total of 30 new reference databases to rigorously test the

performance of our sequence classification tools in the

face of uncharted microbial sequences. Simulating un-

knownness like this provides a better benchmark for

classification of unknown sequences than a leave-one-

out approach where only the query genome is removed

from the reference database(e.g., [13, 17]), because close

relatives of the query may still be present in the latter

case.

Programs, parameters, and dependencies

Nr database and taxonomy files were downloaded on

November 23, 2017. Prodigal v2.6.3 [32] was used to

identify ORFs on the simulated contigs. DIAMOND

v0.9.14 [25] was used to align the encoded proteins to

the reference databases for CAT and for the DIAMOND

best-hit approach. Kaiju v1.6.2 [13] was run both in

MEM and Greedy mode with SEG low complexity filter

enabled. The number of mismatches allowed in Greedy

mode was set to 5. For LAST+MEGAN-LR, LAST v914

[18] was used to map sequences to the databases with a

score penalty of 15 for frameshifts, as suggested in [17].

Scripts in the MEGAN v6.11.7 [17] tools directory were

used to convert LAST output to a classification file. The

maf2daa tool was used to convert LAST output to a .daa

alignment file. The daa2rma tool was used to apply the

long-read algorithm. “--minSupportPercent” was set to 0

and the LCA algorithm to longReads, and the longReads

filter was applied. “--topPercent” was set to 10 and

“--lcaCoveragePercent” to 80 (MEGAN-LR defaults).

The rma2info tool was used to convert the generated

.rma file to a classification file. When a reduced database

was queried, the appropriate protein accession to tax-

onomy id mapping file was supplied via its respective

setting (see the section “Reference databases with in-

creasing levels of unknownness” above).

Scoring of contig classification performance

For contig classification, we scored (i) the fraction of

classified contigs, (ii) sensitivity, (iii) precision, and (iv)

mean and median rank of classification (Additional file

2: Figure S8). Classifications were compared at the taxo-

nomic ranks of species, genus, family, order, class,

phylum, and superkingdom. In those cases where f < 0.5
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and multiple classifications reached the mbs threshold,

we chose the lowest classification that reached a major-

ity vote (i.e., as if f = 0.5) for calculating the four per-

formance measures i–iv. This means CAT classifications

were more conservative in those (rare) cases. Contigs

with a classification higher than the superkingdom rank

(e.g., “cellular organisms” or “root”) were considered un-

classified, as these classifications are trivially informative

in our benchmark. For all tools, a classification was con-

sidered correct if it was a subset of the true taxonomic

lineage, regardless of rank of classification. If a classifica-

tion was consistent with the true taxonomic lineage but

classified too specifically (e.g., at the species rank

whereas the query is a novel family), it was considered

incorrect. For classifications that are shown per rank,

only that part of the lineage that is too specific is consid-

ered incorrect.

The mean and median taxonomic rank of classification

were calculated for all classified contigs, where the ranks

species-phylum were given the integer values 0–6, re-

spectively. Even though the true distance between taxo-

nomic ranks may vary [39], calculating mean taxonomic

rank in this fashion does serve as a proxy to show that

classifications are called at higher taxonomic ranks “on

average” under certain parameter conditions or, e.g.,

with higher divergence of the query sequence from the

reference database. Sensitivity and precision were scored

as (correctly classified/total number of contigs) and (cor-

rectly classified/total number of classified contigs), re-

spectively. Thus, all performance measures are a

property of the whole contig set and not of single taxo-

nomic classifications as with some measures in the

CAMI challenge benchmark further on. Wherever error

bars are shown, they represent the maximum and mini-

mum values out of the ten benchmark datasets.

CAMI high-complexity gold standard benchmark

In a second benchmark, we downloaded the high-

complexity gold standard assembly together with the

taxonomy files and NCBI RefSeq database (dated Janu-

ary 30, 2015) that was supplied with the CAMI challenge

[22]. We ran CAT on the assembly with RefSeq and nr

(dated January 23, 2015) as reference databases. Import-

antly, both databases did not contain any of the query

sequences yet.

We scored performance in exactly the same way as in

the CAMI challenge, which allows us to compare the

results of CAT to any of the taxonomic classifiers tested

(“taxonomic binners”). In short, all four measures (ac-

curacy, misclassification, average precision, average

recall) are a function of the number of classified base

pairs and not of classified contigs as in the benchmark

above. If a tool classifies a sequence on a taxonomic

rank that is not present in the gold standard, it is not

taken into account. Thus, there is no penalty for classifi-

cations that are too specific. Accuracy is (number of cor-

rectly classified base pairs/total number of base pairs),

misclassification (number of incorrectly classified base

pairs/total number of base pairs), and both are thus a

property of the whole assembly. Precision is a measure

of the purity of a predicted taxonomic bin (i.e., all se-

quences from a single predicted taxon) with (number of

correctly assigned base pairs/total assigned base pairs).

Average precision is the mean precision of all predicted

taxonomic bins and is thus very sensitive to misclassified

small bins. Therefore in [22] in addition to precision

measures of the full data, small bins summing up to 1%

of the data are excluded and precision is recalculated.

We did the same. Recall is a measure of the complete-

ness of a real taxon bin (i.e., all sequences from a single

query taxon), with (number of correctly assigned base

pairs/real number of base pairs). Average recall is mean

recall for all real taxon bins.

For a comparison with all taxonomic classifiers tested

in the CAMI challenge, we downloaded the summaries

from https://github.com/CAMI-challenge/firstchallenge_

evaluation/tree/master/binning/tables/plot/supervised/

summary_high.csv and https://github.com/CAMI-chal-

lenge/firstchallenge_evaluation/tree/master/binning/ta-

bles/plot/supervised/summary99_high.csv.

MAG classification

For a third benchmark, 913 high-quality draft genome

bins (MAGs) (completeness ≥ 80%, contamination ≤

10%) from the cow rumen generated with both conven-

tional metagenomics as well as Hi-C binning methods

[7] were downloaded from the DataShare of the Univer-

sity of Edinburgh (https://datashare.is.ed.ac.uk/handle/1

0283/3009). Taxonomic classification of the MAGs was

downloaded from the supplementary data that accom-

panies the paper and manually corrected if the names

did not match our taxonomy files (Additional file 1:

Table S5). To save disk space on the alignment file being

generated, we ran BAT on batches of 25 genomes each.

Akin to the contig classification case in the first bench-

mark, we only considered classifications by BAT at

official taxonomic ranks and chose the majority classifi-

cation in those cases were BAT gave more than one

classification for a MAG (i.e., as if f = 0.5 for that MAG)

resulting in more conservative classifications.

To manually assess the 28 MAGs whose classification

was inconsistent with the published classifications, we

created a phylogenomic tree of those bins together with

closely related genomes that were downloaded from

PATRIC [40] on January 16, 2018. CheckM v1.0.7 [20]

was used to extract 43 phylogenetically informative

marker genes that were realigned with ClustalOmega

v1.2.3 [41]. We concatenated the alignments to create a
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superalignment and included gaps if a protein was ab-

sent. We constructed a maximum likelihood tree with

IQ-TREE v1.6.3 [42], with ModelFinder [43] set to fit

nuclear models (best-fit model LG+R7 based on Bayes-

ian Information Criterion), including 1000 ultrafast

bootstraps [44]. Per clade, rooted subtrees were visual-

ized in iTOL [45].

We classified the MAGs with 2 MAG classification tools

that are still under development, lastTaxa (https://gitlab.

com/jfroula/lasttaxa) and GTDB-Tk v0.2.2 (https://github.

com/Ecogenomics/GTDBTk). LastTaxa predicts ORFs

with Prodigal and searches the nr database with LAST,

after which classification is based on the majority classifi-

cation of individual ORFs. LastTaxa was run on the same

nr dataset as BAT, and they can thus be directly com-

pared. GTDB-Tk first identifies marker genes and places

the MAG in a reference genome tree based on these

marker genes (see also [39]). GTDB-Tk was run with the

classify workflow with release 86 of the GTDB-tk refer-

ence database. This database was constructed after the

publication of [7]. The results of these comparisons can

be found in Additional file 1: Table S5.

Usage of computer resources

Run time and peak memory usage were estimated with

the Linux/usr/bin/time utility. Elapsed wall clock time

and maximum resident set size were scored for runs of

CAT, MEGAN-LR, and Kaiju, classifying contig set #1

(10,533 contigs, see Additional file 1: Table S6) with the

nr reference database. All tools were run with default

parameter settings. Runs were performed on a machine

with an Intel Xeon Gold 6136 Processor, 128 GB of

memory, 24 cores, and 48 threads. Whenever one of the

programs allowed for the deployment of multiple

threads, all were used.

We estimated run time and peak memory usage for

CAT, MEGAN-LR, Kaiju, and recent versions of the

CAMI tools on the CAMI high-complexity dataset, with

the NCBI RefSeq database that was supplied with the

CAMI challenge as a reference. PhyloPythiaS+ was ex-

cluded because it needs a custom database that cannot

be constructed based on RefSeq. The CAMI tools were

run as suggested in their respective manuals and/or as

done in the CAMI challenge (see Additional file 1: Table

S4). MEGAN was run on a single metagenomic read file

(out of 5 in the challenge); all the other tools were run

on the gold standard assembly (42,038 contigs). Runs

were performed on a machine with an Intel Xeon E5-

2667 v3 Processor, 512 GB of memory, and 16 cores/

threads. Whenever one of the programs allowed for the

deployment of multiple threads, all were used.

CAT and BAT have been tried and tested on 128 GB

machines.
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